FP6-IST-2005-033606, Visualize All Model Driven Programming
Work Package 11– Deliverable D11.2
Version 1.0
Date 2008-11-28
[image: image1.png]=il
DlaB

	
	[image: image10.jpg]Information Society

Tachnolosies

SPECIFIC TARGETED RESEARCH PROJECT

INFORMATION SOCIETY TECHNOLOGIES

FP6-IST-2005-033606

VIsualize all moDel drivEn programming

VIDE

	WP 11

	Deliverable number D11.2
Web Service Publication / Consumption
Industrial use cases

1.1 Detailed description of the Use Case

With the wide adoption of service-oriented architectures and web services technologies companies are facing software development tasks related to web services such as:

· Providing/implementing a web service: In several scenarios companies need to provide a web service that realize in a technical way their business services, or that exposes their applications so that they are accessible to partners and/or can interoperate with applications built for other platforms.

This task occurs in two different flavours. First, sometimes one has to start from a WSDL document that predefines the service interface. This WSDL file may be defined by a standardization body for instance such as RosettaNet
. In the second case the company has an existing software application that they want to expose via web service technology, i.e., certain class methods should be published as web services. In both cases the implementation of the web service including code and other related artefacts has to be deployed to a runtime component, e.g., an application server.

· Consuming an external web service: In a model-driven application companies often need to access existing applications from a PIM-level model. Generally, the applications of the business partners are exposed as web services. The challenge is the ability to consume such web services from the model, i.e., the ability in a behavioural model to call a web service operation. In addition, code realizing that service consumption should be generated correctly when the model is transformed to code. This means that if the model is transformed to Java or ODRA for instance then code incorporating the web service consumption and all necessary proxy classes has to be generated.

1.2 Current development approach

The current web service development approach is only partly model-driven. When implementing a new web service, the service interface can be modelled in the SAP Enterprise Service Repository. Then, the programmer can use tools that generate skeletons to the target implementation language, i.e., either Java or ABAP and then he has to fill these skeletons with behaviour (i.e., with the business logic that implements the different web service operations). One limitation of that approach arises when a web service has to be implemented in more than one programming language or for multiple platforms. In such case, the current development approach would require implementing the web service operations multiple times, i.e., for each programming language and also for each target platform.

For example, different divisions of a big company may use different platforms IT and all these divisions may have to implement the same web service, e.g., for employee self-services. This web service could provide operations that allow employees to request vacation, cancel a vacation request, request attests, etc.

Similar observations are made when it comes to the consumption of an existing web service. Based on the programming language and the specific platform, the programmers have to first identify the tools that allow them to consume the web service and generate the necessary stubs for that consumption. The code of the application that consumes the external web service has also to be changed, e.g., by adding imports for the web service libraries and the stub classes. If a web service has to be consumed in multiple programming languages then this has to be programmed multiple times, i.e., once for each language and once for each platform.

For example, the different divisions of a big company mentioned above may have to access a web service that allows retrieving the number of days a certain employee is entitled to have. In fact, this number may vary depending on the type of the contract, the age of the employee, and the country. In this example, programmers have to identify and learn the tools that support the consumption and implement web service consumption logic multiple times depending on the programming language and the target platform.

1.3 VIDE contributions
VIDE allows a fully model-driven web service development for both web service publication/implementation and consumption.

· Providing/implementing a web service

If a new web service has to be implemented for multiple target platforms then the respective class in the PIM level model just has to be annotated using the VIDE UML profile. The logic of the class methods can be modelled at the PIM level using either the textual VIDE editor or the visual editor. Classes that have to be exposed as Web Services are stereotyped as <<PublishedService>>; methods of these classes that should be remotely accessible are stereotyped as <<PublishedMethod>>. Then, code implementing these web services including the necessary proxy classes can be generated for different programming languages and target platforms. The current toolset provides the Java/J2EE code generator and the ODRA code generator and both of them support web services.

In addition, if the web service has to be implemented starting from a pre-defined WSDL, then the WSDL importer wizard can be used. This tool generates a structural model that matches the service interface and the data types defined in the WSDL, which provides the starting point for the further implementation of the web service methods using either the textual editor or the visual editor.

As a result, with the VIDE toolset a web service that needs to be implemented for various target programming languages and platforms has to be modelled once only.

· Consuming a web service
Similarly to the web service publication case the VIDE toolset allows consuming external web services from PIM-level models. In addition, code realizing service consumption and all necessary stubs and proxies are generated automatically to different target programming languages and platforms. As said, currently Java/J2EE and ODRA are supported.

The WSDL importer wizard enables easy and user-friendly service consumption. In fact, the users have only to specify the WSDL file of the consumed web service or an URL to that file. The importer generates a class model containing the service class and all data types that are defined in the WSDL file. The service class is stereotyped with the annotation <<ConsumedService>> and tagged with the URL of the respective WSDL. The methods of that class can be then called from within any method or constructor in the PIM-level model using the CallOperationAction, exactly in the same way as ordinary methods are called.
1.4 Example based on VIDE toolset

The following example is divided in two parts to demonstrate VIDE’s support for the two web service development tasks mentioned above and namely implementing/publishing a web service and consuming an existing, remotely available web service.
The example is based on the Sales Scenario, which is used in most VIDE documents and in the previous use cases. We focus in this example on pre-sales processes – the lead and opportunity management. The main classes covering this part are shown in Figure 1.

[image: image2.png]Farty
om Parts)

[Frote Sting

- name Stng

| paryadaess :suing

01 prospect

o

)

e

(>~ fead - Sting

g

pperturityen | 1

[+ Gesepton -suing
- quantiy sieger

- netémount - nteger

ccer>» panyi -Sting funae} [-ereneOpporunty (e Do, end ey T oteredvits
|- maiAdiess g | S 1eSPorsbeEmPlosee
1 Tteat i cpporuriaem
penisedOpporunty — tem erosselingpporuni i
01 P ocustomer pporuniy G i Tuniue}
o) o 1, semponl i
1] s
GuotsionBase Oppertuni

P
exied :Date

proposed :Date

period -Period

piingSiuaegy :Sting

prioe neger

- stte - Guotatonsiate

[getCastomers 0 Pary

- getEuied 0.Date

- get :tang

- getperion :Period

- getPrice :meger

|- gtProposed g:Date

- etGuottontems ():Guotatontem furigue
- etsate) Guotaionstae

- setCustomer (o-Pary)

- setEipied esp:Dite)

- setd :tang)

- setPeriod (pa: Peroa)

- setPice (p:tang)

- addquoratontems (3 Quotatontem)
- sersate (- Quotatonstate)

- etPringstateay (z:tang)

|- getPricingststeqy 0:5ting

[ty nteger
- processStatusValdsinosDte :Date
- resutFeasonCode :sting

Fradut
(tom Produets]
[Fproduatiame :sting

baseProduet .

| cheokConsistency :Boolean
- setProsessstausValdsince (nd:Date)

|- constueCiosselingDpportunies.)

- setResponsieEmplogee emp: Paty)

- caluteEspactedFevsnueamannt (): meger
- addtem (o Produot,qu - tege)

- SetEuataton (rior tege, prob-Ineger, e teger,sinoe - Date)

- setspesiied (sinoe-Date)
- setProsessed (sinoe: Dat,decison: Sting)

|- qetstaus :5uing

Tuniqe

- pi neger
- onstock -imeger

Jccks> proguetn -sting

[cheokAuatab._(ay: megen: .

conptmenapron | -

Tonique

i SHiszForecat
[Fprobabiny <iteger

[y 1| evmenment e

1] omopportniy

01 | sqvotston

Gustation

S [eompltsauorton (aDat)
- confimGuotaton 3. Ose)

- getStandaraPrioeSum (1:iager
- GheokEspred (:Backan
|- proposeGustaton (t:Date)

f

sdosForecant |- eipectedProsessingDatePariod :Period

[getvegnearrsosst 0 meger

|- setEipectedProcessingstann._(nd:Da

T
- phaseProcessingDatePer.. <P
. sslesCipleCode :sting

sdesCle
. csesPhasaCode . Sving
i

Figure 1: Main classes of opportunity management

Web Service Publication
Related models: The main model file is PublishedSales.uml. You need to have the files videprofile.uml and VidePrimitiveTypes.library.uml in the same folder
Publishing a web service using the VIDE tool set includes the following steps:

· Annotate the PIM model with <<PublishedService>> and <<PublishedOperation>> stereotypes
· Generate Java/ODRA code including service-related artefacts
· Deploy and verify that the service is running

To demonstrate this aspect of VIDE’s web service development, the Sales Scenario structures are extended by a class named Sales, as shown in Figure 2.

[image: image3.png]<<module, PublishedService:>
Salee

10 Lead] furie

- o <Product]unique

- iy P uniue

. quotationttan GuotationManagement

. orgerttan - CustomerDrdetanagement

< <PublishedOperations >+ _getvalue (id: String] - Integer

Figure 2: Web Service - Sales class

This simple version of the Sales class has a single operation called getValue that returns an Integer indicating the value of the potential CustomerOrder derived from a Lead (specified by the Lead ID parameter). If there is no Opportunity assigned to the lead or if the corresponding Quotation has not been created yet, the method will return -1 as result.

The Sales class is defined to be part of a distributed environment, helping the sales personnel to turn an initial recognition of a selling opportunity into a sales contract. Therefore the Sales class should be accessible as a web service. The UML editor of topcased support loading and applying the VIDE profile. This UML profile includes the stereotype <<PublishedService>> for the web service class, here Sales, and <<PublishedOperation>> for the functionality to be published, here the getValue operation.

The behaviour of the getValue method can be modelled using VIDE’s visual or textual editor (Figure 3).

[image: image4.png]] dasses_Composed.uml | [d) *Activiy-getValue (classes_Compased.um_dagram) £3 =
9158l : Sdles [1..1] ALY
o
(o1 varible
Controron
foreach lead @ selflid =
& ExpansiorRegion
lead leadID = lid {3 SequenceNode.
o Condiionalide
Iead.opportunity->collect (temp : Opportunity | temp. quotation)>notEmpty() | ——
& Actons @
>—>‘ (8 retum lead.opporturity->collect(temp: Opportunity | temp, auotation)->collct(temp: Quotation | ErpgetPi=0) | 5 Addsructrar
S ddaratlevil
8 Replyaction
£ resteobiectac
() Caoperatonsc
| Eoremovetaste
i Clearvaribleac

Figure 3: Behavioural modelling using VIDE's Visual Editor
The VIDE code generators can now be used to map the model to web service code. Exemplarily, Figure 4 shows the generated Java class Sales with JAX-WS annotations. Additional artefacts are produced to facilitate the deployment, e.g. an ant script to build an Enterprise Archive (EAR).

[image: image5.png]&) dlsses Composed.uml [[J] selesava 23

[3avax. jus. UenService (cargetNanespace
public class Sales ¢

"hetp://vide-ist.eu/SalesScenario”)

Iad "
private Java.uti1.set<satossoanario. sales. Lead> 1ds

W e pe e e G e T ST FEE
Trivate Jva il ser<enlocsemnatio. pereies Partes iy
Irivate salesdeenarie.saloe. CuarenarotaseRanagm otaeTan,

- Ovned Attributes: -

A - methoo: "
ER
* ggenerated
"
S BsuppressVarnings ("unchecked”)
[3avax. jus. Usbli=thod (operationNane = "getvalue’)

public int getValue(String lid) (

-

Ll o

Figure 4: Annotated Java output

After deploying, the WSDL of the web service is accessible and the functionality can be tested by using a small Testclass (cf. Figure 5).

[image: image6.png]dasses Composed.uml | 1) SalesTester java 23 =0

package nongen; A

“import salesScenaric.sales.Sales;
import salesScenario.sales.SalesService;

public class SalesTester (

ER
* eparam args
"
© public static veid main(String[] args) (
Sales s = mew SalesService () .getSalesPort();
System. out.printin(s.getvalue ("d00017)) ;

.r

5 Proprtie [F=00RA Resus Ve | 2 Consol 23\ @)Ernorioa] & X 3% | Lw pA| €] &) 4 B - (9 - O

<terminated> SalesTester [Java Applcation] Ci|Program Files (xB6)Javaljre16.0_0S\binljavaw.exe (20.10.2008 11:08:40)

125 =

o

Figure 5: Testing the deployed web service

Web Service Consumption

Related models: The main model file is ConsumedSales.uml. You need to have the files videprofile.uml and VidePrimitiveTypes.library.uml in the same folder
Consuming a web service using the VIDE framework consists of the following steps:

· Import WSDL into an existing PIM model

· Access the service from existing PIM behaviour model

· Generate Java/ODRA code including service proxy classes

· Verify that the service is consumed by the generated code

To demonstrate this aspect of web service development, the Sales web service described in the publishing example is consumed by a small application that allows a field service representative to check the cumulative value of Leads he created in the last month.

VIDE’s repository browser provides functionality to import a service class and its interrelated message types and exceptions from the WSDL of the service (cf. Figure 6). The service class is automatically stereotyped as <<ConsumedService>> and the tagged value URL is set to the address of the WSDL file.

[image: image7.jpg]=] Console | = Propetties eHES X Boed AR 0

=50 Sales
-] SalesStatisos
552 detaut
- getvalue
- getvalueRlesponse
2 SalesComman
€3 getValuslnmrapped (arg0 : Sting): Integer
4 gelValusWiapped (getValue : getValue) : getValusResponse:

Modek, ConsumedS ales.uml

Figure 6: VIDE WSDL importer
The web service can now be referenced in the model. In this example, the getValue functionality is called in the behavioural specification of the getCumulativeValue operation of class SalesStatistics (Figure 7). Here, the operation call is part of the conditional OCL expression in a ConditionalNode, to be persisted as an OCL OperationCallExpression. Another possibility of binding in the remote operation is the use of a UML CallOperationAction.

[image: image8.jpg]4] “Ativi-getCumulativelalus (ConsumedS ales.url_diagram)

9] self: SalesStatistics [1.1]
o0 self = self o] Variable

() = ContiofFlow @
9] result: Integer [1.1]

% Expansioregion

) sale = create : SalesCommon 55 SequenceNode

7= Conditionablods.

foreach lid : selflatestLeads

(= Actions @
@ sale 5 AddStuctuaFeatureVaushction
value = getalueUnwrapped o1 AddVariableValusction
i @ Rephéction
S —) CreateObiectActon
3 result = result + value () Calperationdetion

[—

s CleaVaiablebcton

Figure 7: Bind-in external functionality
The VIDE code generators detect the <<ConsumedService>> stereotype and create adequate artefacts for the service endpoint, hiding the complexity derived from the remote service call. The generator output can be verified by executing a small TestClass (cf. Figure 8).

[image: image9.jpg][J) SalesCommonava | (1] SalesStatisticsjava (1) ConsumedTesterjava &1

®import java.util.Hashset:[] A
public class ConsumedTester {

sen
* Gparam args
"
public static void main{String[] args) (
Set<String> paramlatestlesds = new HashSet<String>():
paranLatestleads.add (400017 ;
paranlatestleads.add(400027 ;
paranLatestleads.add ("d0003") ;
paranLatestleads. add ("d0004") ;
SalesStacistics stat = new SalesStatistics():
stat.setlatestleads [paranlatestleads) ;
System.out.println("Cumlative value of the latest leads: " + stat.getCumulativeValue(]):

] Cansale 52 Propeties| (] Repasiory Browser X% Gepf(E|E #B-r9-°0
<terminated> ConsumedT ester [Java Application] C:\Programme?J avatidk1.6.0_03\bin\javaw.exe (20.10.2008 15:48:03)
Cummlative valus of the latest leads: 7825

Figure 8: Testing the consumed service

� � HYPERLINK "http://www.rosettanet.org/" ��http://www.rosettanet.org/�

© Copyright by VIDE Consortium
- 2 -

