Developing application from scratch

Scenario description

Incorporate VIDE_ExtendedScenario.doc contents after updating it.
Domain Modelling

Computation Independent Modelling

PIM Prototyping

PIM development
The sample we are going to construct builds on initial contents derived from the CIM through the process of PIM prototyping. The following diagram shows the initial shape of the model after importing to the PIM-level editor.
... add screenshot here ...
The model will demonstrate the ability to partition its contents among multiple packages. Let’s assume we have identified the classes like Party and Product as pre-existing data that is going to be imported from other systems, or for some other reasons we are going to establish separate name spaces for them. We need to make the following:

1. Create a in the root class diagram three packages: Products, Parties and Sales
2. Create two package import relationships, to make the Sales package import the Products and Parties packages
3. Move Product class to Products and Party class to Parties package; move the remaining classes into the Sales package.
The approach to representing persistency followed in this example involves using the «module» stereotyped class, the state of which is assumed to be persistent. In that case by default, the objects stored in the that class attributes, as well as the objects navigable from them are to be persisted by the Model Execution Engine (as well as by the target platform code). An alternative way to determining persistency can be based on object extents: in that case all instances of classes of stereotype «persistent» are made persistent and can be retrieved as such from extents of respective classes.
Hence, we create SalesScenario class with stereotype «module» and provide it with several attributes that assure useful entry points for navigation through the model instance objects. Those attributes include:
...
Note the last two attributes – they demonstrate a possible way of hierarchically decomposing a complex functionality to manage data. Separate classes for management of quotations and orders were provided so as to reduce the total amount of attributes and operations in the main module class. We are going to revisit that class after completing the rest of the model.
The functionality inside the Sales module can be best described by depicting the lifecycle of an opportunity. The diagram below shows particular states possible for an opportunity and the events that can upate them. A lifecycle phase name of an opportunity can be determined (except for the “lead” phase in which no opportunity is yet created for a lead) by invoking Sales::Opportunity.getStatus() operation. This will provide the phase names as shown in the figure.


[image: image1.emf]inSpecificationspecifiedqualifiedpropose

agree

evaluated

Opportunity.setSpecified

Opportunity.setEvaluation

Sales.getOpportunityForProcessing

Quotation.approveQuotation

lead

Opportunity 

object created

declined

Quotation.proposeQuotation

Quotation.completeQuotation


[image: image2.png]
The following names of salesPhaseCode are used:

lead -> inSpecification -> specified -> evaluated -> 
qualified | cancelled

qualified -> proposed -> declined | agreed

Steps performed in the demonstration cycle
All the communication between our sample application and external world is realized through the Sales class, as this provides respective Web service operations. The normal flow, which assumes certain level of external control – i.e. through a workflow process instance, can be summarized as follows.
0. Products and Parties (sample objects) are created (and stored in the pty and prod attributes of the Sales module class respectively)

1. getProspects() : Party [*]; getNamesOfProductsAvailable : String[*] – to feed data for external client (e.g. GUI).

2. defineNewLead(prospect_name, description) : Lead
new Lead object is created under ld variable and the Prospect object identified by the name is connected with it. The identifier is set automatically.
3. getLeadInfos(pName : String) : LeadInfo [*]
lists all leads, including id, description and prospect name for the prospect identified by name

4. addOpportunityItem(lid : String, pid : String, qty : String) : Boolean
For the lead identified by lid and product identified by pid, respective Item is added to the Opportunity (using operation addItem(pid, qty) on the Opportunity object). In case the Opportunity for a given lead does not yet exist, it is first created and attached to the Lead. Since the priority nor the date of definition are set at this phase, the priority is set to 0 and the processStatusValidSinceDate – to the current date.
5. setLeadSpecified(lid : String, at : Date) : Boolean
Introduced to mark the completion of lead specification (that is, all the items are defined at that time). Identifies the lead by its id provided and performs:

Opportunity.setSpecified(since : Date)

Creates new SalesCycle under salesCycle link. Sets salesCycleCode to empty string, salesPhaseCode to ‘specified’ and sets appropriate phaseProcessingDatePeriod with startDate set to since. Sets processStatusValidSinceDate to since.

6. getLeadInfosForEvaluation() : LeadInfo[*]
Selects the relevant leads by checking for presence of related Opportunity with status equal to ‘specified’. Based on that selection, returns a list of objects consisting of lead id, name of opportunity (actually, taken from lead description field) and the name of prospect.
Used by GUI to provide user with the list of opportunities that await evaluation.

7. getOpportunityDetails(lid : String) : OpportunityDetails[*]
Retrieves Lead from ld using the identifier provided in lid. For the lead found, navigates to its Opportunity and lists details of each of its items: product name, quantity, and value calculated by the product’s list price. 
Used by GUI to provide user with details needed to perform opportunity evaluation.

8. setOpportunityEvaluation(lid : String, prior : Integer, prob : Integer, exRev : Integer, at : Date)
Identifies lead inside ld collection using the id in lid parameter. Then invokes the:

Opportunity.setEvaluation(prior : Integer, prob : Integer, exRev : Integer, since : Date)

Invokes on the selected opportunity object Opportunity.setProcessed(since : Date, decision : String) with decision equal to ‘evaluated’ – to switch the state of this opportunity.

Sets priority to prior.

Creates salesForecast with probability set to prob, expectedRevenueAmount set to exRev and for expectedProcessingDatePeriod – creates new Period with stardDate set to the current date.

Subsequent steps are to be covered by the workflow process in the demo

9. getCurrentPriceThreshold() : Real
This simplified implementation returns a value (currently 4000.0) that is hardwired inside the method’s implementation.

10. getOpportunityForProcessing(at : Date) : EvaluatedOpportunitySummary [0..1]
Locates, if available, the first located opportunity of status ‘evaluated’.

Invokes on the selected opportunity object Opportunity.setProcessed(since : Date, decision : String) with decision equal to ‘qualified’ – to switch the state of this opportunity.

Returns a summary object including lead id of the opportunity selected, the priority, the weighted forecast and the name of assigned responsible employee.

11. generateQuotation(opid : String) : String
Invokes the quotationFromOpportunity operation providing it with the Opportunity object selected based on the opid parameter and retrieves the id of the resulting Quotation object.


QuotationManagement.quotationFromOpportunity(opportunity : Opportunity) : Quotation
Creates a Quotation object (with current date set), 

connects it with the original Opportunity object, 

connects it’s customer property with a Party object read from opportunity’s prospect property,

in its state object raises the flag NOT_PROPOSED,

links the created Qotation object to allQuotations link of the QuotationManagement

and returns the Quotation object.

12. setQuotationProposed(at : Date, qid : String)
Retrieves a quotation from quotationMan using the qid identifier and invokes proposeQuotation(at) on this.

Quotation.proposeQuotation(at : Date)

On the Opportunity associated, invokes setProcessed(at, ‘proposed’) to effectively change the state reported by the Opportunity to ‘proposed’.

Sets flag PROPOSED in its state object.

Sets field proposed to the date provided in at.

Similarly, sets the startDate in its period to at.

13. setQuotationResponse(response : String, at : Date, qid : String)
Locates the Quotation based on the qid identifier parameter.

If the response is ‘approve’ – invoke approveQuotation(at), effectively changing the state reported by the Opportunity to be ‘agreed’ on the Quotation object, and then, invoke orderFromQuotation providing the Quotation object as the parameter.
If the response is ‘decline’ or other – invoke completeQuotation(at) on the Quotation object.


Quotation.completeQuotation(at : Date)
Invokes setProcessed(at, ‘declined’), effectively changing the state reported by the Opportunity to be ‘declined’.

14. createSalesOrder(quotid : String) : String
Invokes the orderFromQuotation operation providing it with the Quotation object selected based on the quotid parameter and retrieves the id of the resulting CustomerOrder object.


CustomerOrderManagement.orderFromQuotation(quotation : Quotation) : CustomerOrder

Creates a CustomerOrder object (for now – containing default dates of 2000-01-01), 

connects it with the original Quotation object, 

connects it’s customer property with a Party object read from quotation’s customer property,

sets its title to the original lead description

links the created CustomerOrder object to customerOrders link of the CustomerOrderManagement

and returns the CustomerOrder object.

Auxiliary operations:

checkStatus() : String

List of WS operations not used currently in the scenario:
createLead() : Lead

defineLead(lid, pname, desc) : Boolean

processEvaluatedOpportunities(at : Date)
getProposedQuotations() : QuotationInfo [*] - allows to list proposed quotation to locate the one that requires further processing. Probably not needed here, as the workflow system will keep track of the quotations that are in process.

The draft of the process view for the part to be implemented
a) Previously implemented steps – to be completed outsider the workflow engine control

[image: image3.emf]Create Lead

Define 

Opportunity

Evaluate

Opportunity

Consistency

Check

[not consistent] 

[consistent] 

setSpecifiedsetEvaluation

Step not 

supported 

currently


b) New part of the process – to be controlled by the workflow engine

[image: image4.emf][weightedForecast > priceThreshold && priority >= 3] 

generateQuotation

Register result

[accepted] 

Create Sales Order

generateQuotation(opid : string): string

createSalesOrder(quotid : String) : String

getOpportunityForProcessing

EvaluatedOpportunitySummary

opID : string

priority : integer

weightedForecast : real

assignedSalesperson : string

getCurrentPriceThreshold

integer

Send quotation

setProposed

setQuotationProposed(at : Date, qid : string)

setQuotationResponse

setQuotationResponse(response : string, at : Date, id : string)

„approve” or „decline”


_1278749304.vsd
getCurrentPriceThreshold


[weightedForecast > priceThreshold && priority >= 3] 


generateQuotation


Register result


[accepted] 


Create Sales Order


generateQuotation(opid : string): string


createSalesOrder(quotid : String) : String


getOpportunityForProcessing


EvaluatedOpportunitySummary opID : string
priority : integer
weightedForecast : real
assignedSalesperson : string


Send quotation


integer


setProposed


setQuotationProposed(at : Date, qid : string)


setQuotationResponse


setQuotationResponse(response : string, at : Date, id : string)


„approve” or „decline”



_1288623846.vsd
inSpecification


specified

qualified

propose


agree


evaluated

Opportunity.setSpecified


Opportunity.setEvaluation


Sales.getOpportunityForProcessing


Quotation.approveQuotation


Quotation.proposeQuotation


lead

Opportunity object created


declined

Quotation.completeQuotation



_1278749058.vsd
Create Lead


Define  Opportunity


Evaluate Opportunity


Consistency Check


[not consistent] 


[consistent] 


setSpecified


setEvaluation


Step not supported currently



