BE “
A=

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

Information Society

Technologies

FP6-1 ST -2005-033606

Vlsualize all moDel drivEn programming
VIDE

WP 11 Deliverable number D11.2

Model Simulation
I ndustrial use cases

1.1 Detailed description of the Use Case

Models are often perceived and used as a vehicledmmunicating general ideas of a
software system inside a team and as an aid whiekirth about the problem. In this sense,
the abstraction associated with the notion of maedeans treating a model informally and
skipping some essential details (like e.g. exadd daodel and behaviour details). The
situation is different for executable models, whitre abstraction implies only suspending the
decision of the final platform realisation, thougie semantics is precisely defined and
behaviour can be completely specified. Hence, is thse, practically all the analysis and
validation normally available only after softwasefully implemented, can be now performed
already at the stage of a completing a platfornefrahdent model. Having defined a meta-
model for our modelling language and a precise sé@insabehind its constructs makes it
possible to assure model consistency (in a siroildroader scope than e.g. in type checking
during traditional programming language code coatjah) and to enforce quality standards
for its structure and behaviour. However, somedsstan be disclosed only through a more
dynamic checking of the model, e.qg. by its exeeut®uch a feature can be useful for several
related purposes:

* Early (PIM level) debugging — this assumes emplgyan model execution engine
capable of stepwise execution of code and haveganhstructs traceable to respective
platform-independent model elements. This way tbdehcould be run and debugged
in a way analogous to typical programming languameronments.

* Early (PIM level) testing — executing a model dilgan terms of its particular
functionality elements: either by ad-hoc statenoatis from the model editor (as well
as queries, to check their effect on sample datdjoon external components (e.g.

FP6-I1ST-2005-033606, Visualize All Model Driven Bramming Work Package 11— Deliverable D11.2
Version 1.0 Date 2008-12-05

workflow engine, other applications, GUI (Graphitider Interface) components etc.)
— thorough published web service operations.

* Early (PIM level) validation — this case is simil@r the above, but has a different
focus. It is intended to run a model as a prototyp#he prospective software in order
to confirm it matches the expectations of non-Bksholders (e.g. the future users). In
this case it is especially important to provide neefor prototyping GUI and making it
execute and interact with the executable model.

In other words, the use case can be describedresiat achieving an analogous insight into
a model as in case of target platform implememntatio allow running and debugging it), but
making it much more direct and straightforward bgviding that functionality directly from

a UML tool and interpreting the results of codeax®n in terms of UML elements.

1.2 Current development approach

Current use of modelling languages (at least inlibsiness software field) seems to be
dominated by informal modelling, where a model serfor outlining an overall architecture
or requirements. Apart from that, more precise il models are used, but are usually
limited to structure modelling. In that case theyncserve as an input for class skeletons
integration in the target platform programming laage, or for generating SQL schema
definitions for database. Behavioural models aedusss commonly and, if so, they play a
more conceptual role, being not involved in codeegation.
This means, that in order to validate system behaar test the model functionality, a whole
path towards the platform specific code needs tdrdeersed. Namely, the following steps
need to be performed (see Figure 1):

1. Incomplete code generation — in order to get tapgform language’s source code

containing class skeletons.

. Coding the system behaviour in the target platftainguage, using respective IDE.
Validating the behaviour using the target IDE.
Coding sample data input (platform-specific) to plape data sources and run test
cases.
Preparing platform-specific invocations of the ftiogality to be tested.
Optionally — preparing Web service interfaces ®ftmctionality being tested.
Running the tests and interpreting the respondadpm specific).
Identifying necessary corrections and applying therthe code, or — if they involve
structural changes — updating the model and repgtie cycle.

Bw

© N O

© Copyright by VIDE Consortium -2-

FP6-I1ST-2005-033606, Visualize All Model Driven Bramming Work Package 11— Deliverable D11.2
Version 1.0 Date 2008-12-05

Modelling tool

Design model

| |
Target platform and IDE | | Target platform code structure

generation

Platform-specific
programming

Compilation

Clients / 5 Sample data (in the
test invocations target-platform form)
C——) call (plafform-specific)
— O
0 reply/errors ‘ #
cC——> ifi

(platform-specific)

Figure 1. Code dynamic validation with absence of model execution capability

As can be seen, most of the development effdocisted on the platform-specific side. Most
of the tests need to be performed at that phasehwieans that their results are not reusable
as multiple target platforms are considered. Moeeovf the transformation between a
platform-independent class model and the targejuage structures generated from it is not
trivial (consider for example differences in handlinheritance, objects removal or parameter
passing), applying necessary changes to the maaktdbon the code execution brings
additional complication.

1.3 VIDE contributions

Shifting the means of precise and complete behawpacification to the PIM level, allows
performing the validation and testing of the modatce, even in case of multiple target
platforms (assuming the presence of respective Mmodmpilers, reliable in terms of
preserving the semantics when transforming to getaplatform). Moreover, even if one
target platform is considered, a more directly ke testing environment is an advantage.
Sample data, and test invocations can be encodaglatform independent manner, and the
execution results are expressed in terms of the Pdler than its platform-specific
counterparts. The overall process of testing tistesy behaviour is simpler, and offers many
opportunities for making the steps underlying masadcution even more transparent. Hence,
the goal can be achieved by traversing a shortdr (@ shown in Figure 2). This path
consists of the following steps need to be perfarme
1. Activating the Model Execution Engine component.

© Copyright by VIDE Consortium -3-

FP6-I1ST-2005-033606, Visualize All Model Driven Bramming Work Package 11— Deliverable D11.2
Version 1.0 Date 2008-12-05

2. Feeding a model into it.

3. Coding sample data creation in a platform-indepahdeay, to populate data source in
order to run test cases.

4. Running the tests and interpreting the respongesi(fed in terms of the PIM).

5. Identifying necessary corrections and applying tlimactly to the model.

UML / VIDE PIM Editor

Ad-hoc queries and Executable model
statements

——— >
———— %
————

Status /
output
window

Sample data

Model Execution Engine

Figure 2: Model execution capability availablein VIDE

Web Service
Interfaces

With VIDE PIM support for Web service interfaces]excted functionality can be nominated
to provide Web service operations that become abailright after running the model. This
allows using various external clients to invoke gl behaviour. Particularly, those
interfaces can be used for the presentation |lag&H)(prototyping, which may significantly
increase the expressiveness of the software undeelapment when presenting it to
stakeholders.

1.4 Example based on VIDE toolset

The concept outlined above have been realisedeiViDE prototype in its basic form. The
developer can connect to the Model Execution Engind make model execute on it
(according to a semantics compliant with the onsumed for respective UML 2.1
constructs). Web service interfaces — for publighas well as for consuming Web service
operations — are also supported by the model execwgngine. Although the Model
Execution Engine uses its internal language thatifferent from the UML, this language
remains very similar and on the same level of abstin. In consequence, the messages
returned by the Model Execution Engine are quitermative to VIDE developers.

The diagram below presents a minimalistic sampla ofiodel that can be tested using the
Model Execution Engine in its current shape. Itsists of two domain clad8roduct and
Order, as well as a «<modulex»-stereotyped cRsx®luctList that provides an environment, a
persistent storage and behaviour to manipulatengtances of the former class. Note also the
following constructs in the model:
» Stereotypes «PublishedService» and «Published@Qmesatn class ProductList,
making the respective UML behaviour invokable ash\Wervice.

© Copyright by VIDE Consortium -4 -

FP6-I1ST-2005-033606, Visualize All Model Driven Bramming Work Package 11— Deliverable D1
Version 1.0 Date 2008-12-05

1.2

e Multi-valued prod : Product property — for a global storage of Product class

instances.

* WRITE_SAMPLE_DATA() — a disposable method introddider the time of testing.
It contains statements creating sample data inssan& similar method could be
created in order to ease batch invocation of diffequeries or statements — instead of
having them executed directly from the ad-hoc stetgs invocation window of the

VIDE editor.
* «ld» — a stereotype indicating that the Model ExecuEngine has to take care

of

generating a unique value for this attribute in lyesveated attributes (code generated

by model compilers is supposed to assure the sartieeo target platforms).
* Unidirectional association between Product and Octiesses.

package FroductlList)

Product

<<Id>=+product|D : String

+productMame : String

+unitPrice : Integer

+onStock : Integer

+placeOrder (cName : String, qty : Integer) : Boolean

Order

1 + |+customerMame : String
+orderDate : Date
+quantity : Integer
+shipped : Boclean

+orderedProduct +order { unique }

<<module, PublishedService = >
ProductList

+ prod : Product[*] { unique }

< <PublishedOperation > >+ addMewProduct {(pMame : String, pPrice : Integer, pQty : Integer)
<«PublishedOperation >+ modifyProduct (pID : String, pPrice : Integer, pQty : Integer) : Boolean
< «PublishedOperation = >+ listProducts (: Product { unique }

< <PublishedOperation > >+ listProductsAvailable () : Preduct { unigue }
+WRITE_SAMPLE_DATAQ

Figure 3: A minimalistic sample model illustrating the model execution capability

Related models. The folder \Products as a whole constitutes a Vipgject that can b
imported to Eclipse (using Import -> Existing Pginto Workspace), setting \Products
the root directory of the project imported.

Any other VIDE project available in the library theas behaviour fully developed usi
Textual VIDE Language can be also tested agaimsuge case to observe the behaviour

D

as

ng
of a

more complex model.

In order to run the example, the following stepsht® be performed:
1. Import the example project provided as a .zip ahi

2. Ensure the VIDE perspective is selected.
3. Open the model file (Products.uml file) in the Reipary Browser.

© Copyright by VIDE Consortium -5-

FP6-I1ST-2005-033606, Visualize All Model Driven Bramming Work Package 11— Deliverable D11.2
Version 1.0 Date 2008-12-05

4. Start ODRA Model Execution Engine using the sceiigiating a new database file and
establish a connection from the editor (“Connectato existing server” toolbar
command) as described in the documentation.

5. Now, you can open the existing ProductList.odre, fir generate a new one from the
model by using the Repository BrowseGenerate classes and contexts command
button.

6. Having the .odra file opened in the editor, pré&fxecute toolbar button to send the
model into the Model Execution Engine. You shouteslse the following message in
the ODRA Results View:

Modul e created: ProductList.

Current nodul e: ProductLi st.

Endpoi nt Product Li st EndPoi nt install ed.
Current nodul e:

7. Make sure the ProductList class is selected inRbpository Browser in order to set
the context for statement execution against a miod&nce.

8. Create or open the statements.vide textual filgpeTWRITE_SAMPLE_DATA()
operation invocation. Press the “Execute” toolhattdn to invoke the statement.

Now, the example is running and sample data argafle in it. Next, tthe following steps
can be performed:

* Invoking other statements or queries (by repeadiegs 5-7 from the above list) and
observing the engine responses in the “ODRA ReMidta” window.

* Creating and executing ad-hoc OQBE queries. A sampery “toBeDelivered” can
be invoked using the following steps (see the sieat in Figure 4).

1. Open the OQBE diagram file (toBeDelivered.ogbe_diagy

2. Press the “Execute OQBE” toolbar command.

3. Observe the results of query invocation shown i@ tO@DRA Results View”
window (see the figure below).

* You may also invoke the sample model’'s publishedalb®ur from external tools
using the Web Service interfaces. When the engineinning and is initiated with
sample data, respective service interface will bevailable at:
http://localhost:8888/ProductsSample/ProductListsePWSDL(see Figure 5).

© Copyright by VIDE Consortium -6 -

FP6-I1ST-2005-033606, Visualize All Model Driven Bramming Work Package 11— Deliverable D11.2

Version 1.0 Date 2008-12-05
o
Fle Edit Refactor Diagram Navigate Search Project Run Development ODRA VEB Visual Editor Window Help
| Ca (IR NG oy R [B It o E3 |8 Ve &
irshone | O e o e R o = | T | = 3
(% Navigator 53 EE Outiine| = B|([) -toBeDsivered.ogbe_dagram 23 . s
sleE H b
-l AuctionSite o P
=12 Products
B settings) I)) Bxample
B2 Products-vide | «output» openOrders | LinkExample
] project [= Attribute
[&] Products.odra prod : Product : Order
-4 Products.uml | == productName «output» product = shipped not aad s=en
:%a Products.umidi == onStock «output» available i = customelame =outputs recipient *- Comparator
2] statements.vide | ©= quantity «outpubt=quantity Foum;ﬂag
4] toBeDelversd.oghe order
D toBeDelivered.ogbe_diagram q Sorifing
i_] VidePrimitiveTypes. ibrary.uml B B B B NestedOutput
< 1 videorofile,uml (i X __l;' Forall
= Repository 3 [uborerows | = E]Fﬂ Lo
= | [0 Properties (= 0DRA Resuits view £2 B Console| €@ | Error Log ® [E
o xiSale[a]j v
<) 868w @)
5 £ Productiist stk
product("Antivirus Firewall”)
-] Product avalable(50)
[E Order openOrders(
B struct {
#-f2] ProductList m:pmt(&uw",)
}:wanﬂkv(s)
)
}
}

Model: Products.umi

[I

Figure4: Using the Visual Expression Builder for creating and invoking ad-hoc queries

= http:/ flocalhost:8888/ProductsSample/ProductlistService?WSDL - Windows Internet Explorer -0 x|
@E} - I@, http:/flocalhost: 8888 ProductsSample ProductListService?WsDL| j 1| % I'\'-,'eb Search 2
52? aby @hth:l:Hloalhost:8888!ProdudsSample!Producﬁ_isiSer... | | a @ - e f&b - QEBQE - @TQ"'S -7

<?xml version="1.0" encoding="UTF-8" ?=>
- «<wsdl:definitions name="ProductListService" targetNamespace="http://vide-ist.eu/ProductsSample"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/" xmins:tns="http://vide-ist.eu/ProductsSample"
xmins:xsd="http:/ /www.w3.0org/2001/XMLSchema" xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/">
- <wsdl:types>
- =xsd:schema elementFormDefault="qualified" targetNamespace="http:/ /vide-ist.eu/ProductsSample":>
- <xsd:element name="addNewProductOperation":
- «<xsd:complexType>
- <xsd:sequence:
<xsd:element maxOccurs="1" minOccurs="1" name="pName" type="xsd:string" />
<xsd:element maxOccurs="1" minOccurs="1" name="pPrice" type="xsd:int" />
=xsd:element maxOccurs="1" minOccurs="1" name="pQty" type="xsd:int" />
</xsd:sequence=
</xsd:complexType=
</xsd:element=
- «<xsd:element name="addNewProductOperationResponse">
<xsd:complexType /=
</xsd:element=
- «<xsd:element name="modifyProductOperation">
- =xsd:complexType:>
- <xsd:sequence
<xsd:element maxOccurs="1" minDccurs="1" name="pID" type="xsd:string" />
<xsd:element maxOccurs="1" minOccurs="1" name="pPrice" type="xsd:int" />
«xsd:element maxOccurs="1" minDccurs="1" name="pQty" type="xsd:int" />
</xsd:sequence:
</xsd:complexType=
</xsd:element=
- <xsd:element name="modifyProductOperationResponse":>
- =xsd:complexType:>
- «<xsd:sequencex>
<xsd:element maxOccurs="1" minOccurs="1"
name="modifyProductOperationResponseResult" type="xsd:boolean" />
</xsd:sequence:
</xsd:complexType=
</xsd:elementz
- <xsd:element name="listProductsOperation":>

=
|Done l_ l_ ’_ ’_ l_ l_ |ﬁ Local intranet | 0% v g

Figure5: Definition of web service operations made available by running VIDE model

© Copyright by VIDE Consortium -7 -

FP6-I1ST-2005-033606, Visualize All Model Driven Bramming Work Package 11— Deliverable D11.2
Version 1.0 Date 2008-12-05

Normally, based on the results observed duringrbdel execution, you may wish to update
the model. Please see the VIDE Cookbook documend fmore detailed description of the
editor functionality and the language constructs.

Compared to the current prototype, the followintufa improvements would be desirable to
fully realize the concept outlined of UML model silation:

* Making the steps underlying model execution moaadparent (currently the Model
Execution Engine code generation and passingstdtre the engine are two separate
commands that have to be invoked).

* Annotating the Model Execution Engine internal laage syntax tree with references
to UML model, so that all the runtime messages loarpresented in terms of the
model.

* Providing the Model Execution Engine with a meahstepwise execution of code,
and provide respective controls for debugging &oIDE editor.

» Extending the VIDE editor with a utility easing theeation of sample date to be fed
into the model.

© Copyright by VIDE Consortium -8-

