

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

FP6-IST-2005-033606

VIsualize all moDel drivEn programming

VIDE

WP 11

Deliverable number D11.2

Model Simulation

 Industrial use cases

1.1 Detailed description of the Use Case
Models are often perceived and used as a vehicle for communicating general ideas of a
software system inside a team and as an aid when thinking about the problem. In this sense,
the abstraction associated with the notion of model means treating a model informally and
skipping some essential details (like e.g. exact data model and behaviour details). The
situation is different for executable models, where the abstraction implies only suspending the
decision of the final platform realisation, though the semantics is precisely defined and
behaviour can be completely specified. Hence, in this case, practically all the analysis and
validation normally available only after software is fully implemented, can be now performed
already at the stage of a completing a platform-independent model. Having defined a meta-
model for our modelling language and a precise semantics behind its constructs makes it
possible to assure model consistency (in a similar or broader scope than e.g. in type checking
during traditional programming language code compilation) and to enforce quality standards
for its structure and behaviour. However, some issues can be disclosed only through a more
dynamic checking of the model, e.g. by its execution. Such a feature can be useful for several
related purposes:

• Early (PIM level) debugging – this assumes employing a model execution engine
capable of stepwise execution of code and having its constructs traceable to respective
platform-independent model elements. This way the model could be run and debugged
in a way analogous to typical programming language environments.

• Early (PIM level) testing – executing a model directly in terms of its particular
functionality elements: either by ad-hoc statement calls from the model editor (as well
as queries, to check their effect on sample data) or from external components (e.g.

FP6-IST-2005-033606, Visualize All Model Driven Programming Work Package 11– Deliverable D11.2
Version 1.0 Date 2008-12-05

© Copyright by VIDE Consortium - 2 -

workflow engine, other applications, GUI (Graphical User Interface) components etc.)
– thorough published web service operations.

• Early (PIM level) validation – this case is similar to the above, but has a different
focus. It is intended to run a model as a prototype of the prospective software in order
to confirm it matches the expectations of non-IT stakeholders (e.g. the future users). In
this case it is especially important to provide means for prototyping GUI and making it
execute and interact with the executable model.

In other words, the use case can be described as aimed at achieving an analogous insight into
a model as in case of target platform implementation (to allow running and debugging it), but
making it much more direct and straightforward by providing that functionality directly from
a UML tool and interpreting the results of code execution in terms of UML elements.

1.2 Current development approach
Current use of modelling languages (at least in the business software field) seems to be
dominated by informal modelling, where a model serves for outlining an overall architecture
or requirements. Apart from that, more precise kinds of models are used, but are usually
limited to structure modelling. In that case they can serve as an input for class skeletons
integration in the target platform programming language, or for generating SQL schema
definitions for database. Behavioural models are used less commonly and, if so, they play a
more conceptual role, being not involved in code generation.
This means, that in order to validate system behaviour or test the model functionality, a whole
path towards the platform specific code needs to be traversed. Namely, the following steps
need to be performed (see Figure 1):

1. Incomplete code generation – in order to get target platform language’s source code
containing class skeletons.

2. Coding the system behaviour in the target platform language, using respective IDE.
3. Validating the behaviour using the target IDE.
4. Coding sample data input (platform-specific) to populate data sources and run test

cases.
5. Preparing platform-specific invocations of the functionality to be tested.
6. Optionally – preparing Web service interfaces to the functionality being tested.
7. Running the tests and interpreting the responses (platform specific).
8. Identifying necessary corrections and applying them to the code, or – if they involve

structural changes – updating the model and repeating the cycle.

FP6-IST-2005-033606, Visualize All Model Driven Programming Work Package 11– Deliverable D11.2
Version 1.0 Date 2008-12-05

© Copyright by VIDE Consortium - 3 -

Figure 1: Code dynamic validation with absence of model execution capability

 As can be seen, most of the development effort is located on the platform-specific side. Most
of the tests need to be performed at that phase, which means that their results are not reusable
as multiple target platforms are considered. Moreover, if the transformation between a
platform-independent class model and the target language structures generated from it is not
trivial (consider for example differences in handling inheritance, objects removal or parameter
passing), applying necessary changes to the model based on the code execution brings
additional complication.

1.3 VIDE contributions
Shifting the means of precise and complete behaviour specification to the PIM level, allows
performing the validation and testing of the model once, even in case of multiple target
platforms (assuming the presence of respective model compilers, reliable in terms of
preserving the semantics when transforming to a target platform). Moreover, even if one
target platform is considered, a more directly available testing environment is an advantage.
Sample data, and test invocations can be encoded in a platform independent manner, and the
execution results are expressed in terms of the PIM rather than its platform-specific
counterparts. The overall process of testing the system behaviour is simpler, and offers many
opportunities for making the steps underlying model execution even more transparent. Hence,
the goal can be achieved by traversing a shorter path (as shown in Figure 2). This path
consists of the following steps need to be performed:

1. Activating the Model Execution Engine component.

FP6-IST-2005-033606, Visualize All Model Driven Programming Work Package 11– Deliverable D11.2
Version 1.0 Date 2008-12-05

© Copyright by VIDE Consortium - 4 -

2. Feeding a model into it.
3. Coding sample data creation in a platform-independent way, to populate data source in

order to run test cases.
4. Running the tests and interpreting the responses (provided in terms of the PIM).
5. Identifying necessary corrections and applying them directly to the model.

c
a
ll

Figure 2: Model execution capability available in VIDE

With VIDE PIM support for Web service interfaces, selected functionality can be nominated
to provide Web service operations that become available right after running the model. This
allows using various external clients to invoke modelled behaviour. Particularly, those
interfaces can be used for the presentation layer (GUI) prototyping, which may significantly
increase the expressiveness of the software under development when presenting it to
stakeholders.

1.4 Example based on VIDE toolset
The concept outlined above have been realised in the VIDE prototype in its basic form. The
developer can connect to the Model Execution Engine and make model execute on it
(according to a semantics compliant with the one assumed for respective UML 2.1
constructs). Web service interfaces – for publishing as well as for consuming Web service
operations – are also supported by the model execution engine. Although the Model
Execution Engine uses its internal language that is different from the UML, this language
remains very similar and on the same level of abstraction. In consequence, the messages
returned by the Model Execution Engine are quite informative to VIDE developers.

The diagram below presents a minimalistic sample of a model that can be tested using the
Model Execution Engine in its current shape. It consists of two domain class Product and
Order, as well as a «module»-stereotyped class ProductList that provides an environment, a
persistent storage and behaviour to manipulate the instances of the former class. Note also the
following constructs in the model:

• Stereotypes «PublishedService» and «PublishedOperation» in class ProductList,
making the respective UML behaviour invokable as Web service.

FP6-IST-2005-033606, Visualize All Model Driven Programming Work Package 11– Deliverable D11.2
Version 1.0 Date 2008-12-05

© Copyright by VIDE Consortium - 5 -

• Multi-valued prod : Product property – for a global storage of Product class
instances.

• WRITE_SAMPLE_DATA() – a disposable method introduced for the time of testing.
It contains statements creating sample data instances. A similar method could be
created in order to ease batch invocation of different queries or statements – instead of
having them executed directly from the ad-hoc statements invocation window of the
VIDE editor.

• «Id» – a stereotype indicating that the Model Execution Engine has to take care of
generating a unique value for this attribute in newly created attributes (code generated
by model compilers is supposed to assure the same on their target platforms).

• Unidirectional association between Product and Order classes.

Figure 3: A minimalistic sample model illustrating the model execution capability

Related models: The folder \Products as a whole constitutes a VIDE project that can be
imported to Eclipse (using Import -> Existing Projects into Workspace), setting \Products as
the root directory of the project imported.
Any other VIDE project available in the library that has behaviour fully developed using
Textual VIDE Language can be also tested against this use case to observe the behaviour of a
more complex model.

In order to run the example, the following steps need to be performed:

1. Import the example project provided as a .zip archive.
2. Ensure the VIDE perspective is selected.
3. Open the model file (Products.uml file) in the Repository Browser.

FP6-IST-2005-033606, Visualize All Model Driven Programming Work Package 11– Deliverable D11.2
Version 1.0 Date 2008-12-05

© Copyright by VIDE Consortium - 6 -

4. Start ODRA Model Execution Engine using the script creating a new database file and
establish a connection from the editor (“Connect to an existing server” toolbar
command) as described in the documentation.

5. Now, you can open the existing ProductList.odra file, or generate a new one from the
model by using the Repository Browser’s Generate classes and contexts command
button.

6. Having the .odra file opened in the editor, press the Execute toolbar button to send the
model into the Model Execution Engine. You shout observe the following message in
the ODRA Results View:

Module created: ProductList.
Current module: ProductList.
Endpoint ProductListEndPoint installed.
Current module: .

7. Make sure the ProductList class is selected in the Repository Browser in order to set
the context for statement execution against a model instance.

8. Create or open the statements.vide textual file. Type WRITE_SAMPLE_DATA()
operation invocation. Press the “Execute” toolbar button to invoke the statement.

Now, the example is running and sample data are available in it. Next, tthe following steps
can be performed:

• Invoking other statements or queries (by repeating steps 5-7 from the above list) and
observing the engine responses in the “ODRA Results View” window.

• Creating and executing ad-hoc OQBE queries. A sample query “toBeDelivered” can

be invoked using the following steps (see the screenshot in Figure 4).

1. Open the OQBE diagram file (toBeDelivered.oqbe_diagram)
2. Press the “Execute OQBE” toolbar command.
3. Observe the results of query invocation shown in the “ODRA Results View”

window (see the figure below).

• You may also invoke the sample model’s published behaviour from external tools

using the Web Service interfaces. When the engine is running and is initiated with
sample data, respective service interface will be available at:
http://localhost:8888/ProductsSample/ProductListService?WSDL (see Figure 5).

FP6-IST-2005-033606, Visualize All Model Driven Programming Work Package 11– Deliverable D11.2
Version 1.0 Date 2008-12-05

© Copyright by VIDE Consortium - 7 -

Figure 4: Using the Visual Expression Builder for creating and invoking ad-hoc queries

Figure 5: Definition of web service operations made available by running VIDE model

FP6-IST-2005-033606, Visualize All Model Driven Programming Work Package 11– Deliverable D11.2
Version 1.0 Date 2008-12-05

© Copyright by VIDE Consortium - 8 -

Normally, based on the results observed during the model execution, you may wish to update
the model. Please see the VIDE Cookbook document for a more detailed description of the
editor functionality and the language constructs.

Compared to the current prototype, the following future improvements would be desirable to
fully realize the concept outlined of UML model simulation:

• Making the steps underlying model execution more transparent (currently the Model
Execution Engine code generation and passing its result to the engine are two separate
commands that have to be invoked).

• Annotating the Model Execution Engine internal language syntax tree with references
to UML model, so that all the runtime messages can be presented in terms of the
model.

• Providing the Model Execution Engine with a means of stepwise execution of code,
and provide respective controls for debugging to the VIDE editor.

• Extending the VIDE editor with a utility easing the creation of sample date to be fed
into the model.

