BE

Information Society

Technologies

4

nu
e

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

FP6-1 ST -2005-033606

Vlsualize all moDel drivEn programming

VIDE
WP 6 Deliverable number D.6.1
Model Compilers
Project name: Visualize all model driven programming

Start date of the project:
Duration of the project:
Project coordinator:
Leading partner:
Duedate of deliverable:
Actual submission date
Status

Document type:
Document acronym:
Editor(s)

Reviewer (S)
Accepting
L ocation
Version

Dissemination level

01 July 2006

30 months

Polish-Japanese Institute of Information Technology
SOFTEAM

31.01.2008

15.04.2008

developed / draftfinal

Report

DEL

Francois Jaouen, Anis Charfi, Piotr Habela, Krzgk&tencel,
Marcin Daczkowski

Francois Jaouen, Piotr Habela, Anis Charfi
Kazimierz Subieta

www.vide-ist.eu

1.0

PU/PP/RE/CO

© Copyright by VIDE Consortium




FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Abstract:

The VIDE project aims at a visual, Unified Modelihgnguage (UML) compliant actioln

language, the VIDE language, suited to businesBcapipns. The language is to be useq
the model driven software development process (whiises the requirements of
standard-compliance). Further development of tlogept also includes the integration o
business oriented modelling, aspect-oriented fasli and means for quality assura
provided inside a powerful, platform-independentedepment toolset.

This document specifies the mapping of the VIDEaneidel, which is compliant with UM
and OCL metamodel to Java and ODRA prototype ODBWtB its innovative SBQL (Stac
Based Query Language) developed by PJIIT.

The mapping integrates advanced features like #achtion and the consumption
WSDL based Web Services and RDBMS queries.

Finally this document will propose some ideas opriavement for the UML metamod
definition.

of

02

The VIDE consortium:

Rodan Systems S.A. Partner Poland
Institute for Information Systems at the German daesh Partner Germany
Center for Artificial Intelligence
Fraunhofer Partner Germany
Bournemouth University Partner United
Kingdom
SOFTEAM Partner France
TNM Software GmbH Partner Germany
SAP AG Partner Germany
ALTEC Partner Greece

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 6 — Deliverable D6.1

Date 2008-04-15

History of changes

Date Version Author Change description

14.11.2007 0.1 F. Jaouen Document creation

02.04.2008 0.2 F. Jaouen, VIDE Metamodel presentation, mapping action to Jhva
A. Spriestersbach, mapping activities to Java, edition.
A. Charfi

03.04.2008 0.3 F. Jaouen Mapping VIDE to ODRA chapter incorporated, explama
P. Habela of VIDE language design choices, edition

04.04.2008 0.4 F. Jaouen, VIDE metamodel presentation, Study of implementaf
P. Habela, tools for Java compiler edition
A. Charfi

11.04.2008 0.5 F. Jaouen, ODRA presentation, mapping Activity to Java, editio
P. Habela,
A. Charfi

14.04.2008 0.7 F. Jaouen, Mapping to JPA, mapping to web services, edition
P. Habela,
A. Charfi

15.04.2004 1.0 F. Jaouen, Final editing
P. Habela,
A. Spriestersbach,
A. Charfi

© Copyright by VIDE Consortium

0



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Executive summary

This document describes the mapping of VIDE languagwo execution platforms: Java and
ODRA. The first is a well known general purposeeabjoriented programming language
while the other belongs to a new brand of objecerwed programming language that
integrates database query to its core and desdjrfate rapid development of business
intensive application.

This work is based on WP1 that has collected requénts and WP2 that has defined the
VIDE metamodel, the starting point of the mappings.

The mapping to Java includes three steps:

1. Mapping to plain Java presented metaclasses byclassas and structured around the
4 packages: Structures, Activities, Actions andregpions.

2. Mapping to JPA to allow VIDE program to interadrisparently with databases. This
mapping integrates creation and deletion of pemsisobject as well as navigating
through persistent object and define mapping f¢eagueries based on JPQL.

3. Mapping to web services, using the annotationsddfin JAX-WS standard API. The
mapping to web services is bidirectional: the cderptan generate code to produce
web services as well as generating code to cadreally defined web services.

Mapping the SBQL language used in the ODRA systeiarnn, exemplifies a transformation
to a more homogeneous target platform. ODRA is ralgwbject-oriented environment that
provides a seamlessly integrated query and prograghlanguage. A similar approach is
followed by the VIDE language, where the behavibooastructs of UML are integrated with
the expression language part represented by OCt phavides a powerful querying
capability. Development of that mapping has severaposes. Firstly, it prevents VIDE
unintentional becoming a Java-only solution. Sebgntwill allow to check, what mapping
problems are inherent to code generation in genanal what of them are rather related with
the object-relational interaction complexity. Thyd by confronting common OMG
modelling specifications with the concepts of tBBBMS prototype, it provides insight into
the problem of specifying platform-neutral foundati for an object-oriented database
management system standard.

This document also contains a study of availabidstto implement the mapping to Java. It
concludes that OpenArchitectureWare is the besticehaccording to the requirements
established in WP1 (integration to Eclipse, Xpamplate based transformation tool).

One goal of the study is propose some enhanceroétiie UML metamodel. This is done in
the last chapter of this document.

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Table of Contents

Y 013 = Lo TP TTTTTPPP -3-
HISTOrY Of CRANQES ... . e eeaeeees -4 -
EXECULIVE SUMIMIATY ..etiiiiiiie e e e e e e e e e et eeeeee e ettt s s e e e e e e e e e e e e e e eeeeeeeneeeeeesesnnnnnnnnnnnen -5-
Table Of CONIENLS ...t e e e -6 -
[ 0 N 1= o] L= PP PPPPRPPPPPPPPR -9-
LISE OF FIQUIES ..ttt e e eena e e s e e e e e e e e e e e eeeeeeeennnnes - 10 -
1 IntroducCtion and OVEIVIEW ..........coeiiiicomr ettt e e e e e e e e e e s s s s eee e e e e s aanaes -11 -
2  Requirement refiNEMENT .........cooiiiii i ettt e e e neeeee e e e e e eees -13-
3 SOUICE MOAEL.....uuiiiiiiiiiiiiiiie ettt -18 -
3.1 GlODAI VIBW ... -18 -
3.2 SHTUCTUIES ... e e e e e e e e e e -18 -
TR T o4 1NV 1= -22 -
Si4  ACHIONS L.ttt ettt e e e e e e e e e e e e e e e as -24 -
3.5 0] (2515 (0] I TSP -29 -
4 Choices behind the VIDE metamodel design and glagiquage selection ............... -33-
5  Target PIAatfOrmMS ... e -35 -
5.1 J2EE Reference AppliCation ..........oovviiiiceeeemreiiieie e eee e s -35-
5.2 SAP Application Server Variant ..............eee.ooooeeeeeeeeeeeeeeeeeeeinnnnnns .36 -
5.3 O R A e - 36 -
B VIDE 10 JAVA ..coviiiieiiieii ettt e et e e e e e e e aa e e aeene -40 -
G0 Y o] o] o Y- T o S -40 -
6.2 Mapping SErUCTUIal PartS..........oooiiiii e - 40 -
B.2.1  DaAla LYPES ..euniiiiiie i - 40 -
6.2.2 Classes and packages ..........oooiviiiiiiicemmmmmmie e s -43 -
6.2.3  ASSOCIALION ...ttt bbbttt ettt e e e e e e e e e e e -44 -
B.2.4  PIOPEITY ..ttt st e e e e et e e e et e e et e e rnnn e -44 -
ST O o1 = 11 o] o - 47 -
6.3 MappPiNg ACLIONS T0 JAVA ... .uuuuiiiiieeeeeeeeeeeeiiiiiaa e e e e e e e e eeeeeeeeeeenananaes - 48 -
6.3.1 Sample input model for ACtIONS.........ccoe i =48 -
6.3.2  General CONCEPLS . .ciiieie ettt a e e e e eeeeeeas -49 -
6.3.3  INVOCALION ACHIONS .. .ooiiiiiiiiii e e e e e - 50 -
6.3.4 ODbject Creation ACHIONS ......coouii i e e s -52 -
6.3.5 StructuralFeature ACHIONS.........cooii it -54 -
6.3.6  LINK ACHIONS ettt e e e e e e e e e e e e e e e eeeeabessnsmnnnnnnnne - 60 -
6.3.7 ValueProCeSSINGACHONS. ......uuuuuiiee e e s e et s s e e e e e e e eaeeeeeeeeanees : 67 -
6.3.8  Variable ACLIONS........cooiie e - 67 -
6.4  Mapping Of ACHVILIES 10 JAVA .....uvvreiiiiiiiie e a e e e -72 -
Gt R o 1Y/ 1 U -72 -
A o 1Y/ 11 = o o = U -72 -
6.4.3  ACHVIEYNOUE ... e e e e e -72 -
6.4.4  BERAVIOK ... e e e -72 -
6.4.5 ConditionalNode & ClauSe ..........cooiiiiiiiceeeeeiiie s L2 -
6.4.6  CONIOIFIOW ..ot e e e -73 -
6.4.7 ExpansionRegion, EXpansionNNOE .............ceemmmmeeieiieeeeieiiieeieeeiiiiiin -74
6.4.8 FOIKNOUE........ccoiiiiiiiiiiiiiit e e et b s s -74 -
e T o To ] o]\ o o 1= PSSR -75-
6.4.10  ODBJECIFIOW ..ot -76 -
-6 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
6.4.11  ODBJECINOUE.....ceeiiiiiiiiee i eeeeeeas -76 -
6.4.12  SeqQUENCENOUE .......cceeeiiiieeeeeeeet e e e e e e e e e e e e e e e s -76 -
6.4.13  StructuredACtVItYNOE .......ccooviiiiiiiiiiieee e A
6.4.14  VariabIe .....ooeeiiiiiiiii e - 77 -

6.5 D 0] (2515 (0] I PP -78 -
S TRt R O 1| =5 o -78 -
6.5.2  FeAtUrECAlIEXD ..uuuuniiiiee e -78 -
B.5.3 I X it ——— et e e n e -78 -
R A | (=T =1 (=] b d o TSR URURTTTPT -79 -
6.5.5  HEIAIOIEXP ..ccvui it -79 -
6.5.6  LITEIAlEXP ..o e e oo e e e e -81-
B.5.7  LOOPEXD it -82 -
6.5.8 NavigatioNCallEXD .....ccoviiiiiiiiiiiiiii e -82-
NS T O Tod| =5 q o] (=211 [ S -82 -
6.5.10  OcIVariable ... -82 -
6.5.11  OpPaAqUEEXPIESSION......cccceeiiiiiiieeeiiiieeeeee e e e e e e et e e e e e e e e eeaeas .82 -
6.5.12  OperatioNCallEXP ......cceeeeeiiiiiiieiiieie s ettt e e e e e e e e e e eeeeeaeees : 82 -
6.5.13  PropertyCallEXD ...ccooeeeieeeiieeeeeeeee s e e e e e e e e e e e e e e e aa e aa - 83 -
6.5.14  VariableEXP ...ccoo i i e e -83-
6.5.15  EXPreSSIiONINOC .......uuiiiiiiiee e e e e e e e e e e e e e s - 83 -

T VIDE O J2EE ...ttt e e ettt et e e e e e e e e e e eeaensssbbaen e e e e eeees -84 -

7.1 Java PersiStenCe AP ...ttt -84 -
7.1.1  Presentation Of JPA ...ttt ae e e -84 -
7.1.2 VIDE Mapping t0 JPA ...t a e .84 -

7.2 WED SEIVICES ...ttt nne e - 90 -
7.2.1 VIDE Web Services Profile ... .90 -
7.2.2 Java Web Service annotationsS.............iceceeeeeiiiiiiiieeee e =91 -
7.2.3 Publishing a VIDE class as a Web SEerViCe ... eeeeeerreiiiiiiiieeeeeennennnnnnnn = 92 -
7.2.4 Consuming an External Web Service.........ocooceeeiin -92

8 The model compiler to ODRA .......ovuueeeeee st ss s e e e e e e eeaaeeeeeeeessenennnnnnnneees -94 -

8.1 T goTo (B ok 1 o] o IR -94 -

8.2 SHTUCTUIES ... e e e e e e e e e e e nnnanns -94 -
S T2t R |V = T o] o[ T PP -94 -

8.3 ACHIONS ..ttt a e e e e e e ————————— s - 100 -
SR Tt R |V = T o] o 1 T T - 100 -

8.4 ACHVITIES ettt e e -104 -
S0t R |V = T o] o [ T T -104 -

8.5 0] (=251 [0 1 P - 107 -
S TS0t R |V = T o] o [ o T - 107 -

8.6  VIDE Web services compilation rules for ODRA platfo..............cccoevvvnnnns -110 -
8.6.1 Web Services Profile ... -110 -
8.6.2 Generic Web Services compilation schema noteS...uu.....cccevvvvvvvevvvvnnnnn - 111 -
8.6.3 The model compiler t0 ODRA .........uuuuuu st e e e e e e e e e eeeeeeeeeeeene 211

9  Transformation fraMEWOIKS ..........couiiiiiiiiiiiiiiieee e -117 -

9.1 V= LU= i o] o I O 1 (=T - TR - 117 -
9.1.1 Requirements defined by VIDE specification................cccceeevvvvvvvviinnnnnns - 117 -
S O 11 o1 g O 1 (T - T -118 -

9.2 TOOI EVAIUALION ....ccoiiiiieiieeeeeeeee ettt -119 -
S N R O 1= V1 ST -119 -
9.2.2  ANAIOMDA ...t -119 -

-7 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
9.2.3  OpenArChIiteCIUIEWAAIE.........cooiiiiiiiiiiiieeeeeee ettt e e eeeaeeees +.120 -

9.3 EVAlUATION RESUILS .. .oneeee e et -121 -
10 UML Metamodel evolution propoSItioNS ........occceeeevviurimiiiiineee e ee e eeeeeeeeiineens 123 -

11 (Ofe] o (ol (1[I o] o [T -125 -

12 Gl OSSANY ..ottt ettt e e e e e et e e e e eeaaeeeeeaerrae - 126 -

13 (R (] (=] [T TR -129 -

DISCIAIMET Of SAP AG ...t eeas -130 -

-8-

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

List of Tables

Table 1: Summary of the relevant requirements itledtduring the WP1 work ............. -17 -
Table 2: Mapping of OCL DaSIC tYPES .......occeeeeeriieee e -41 -
Table 3: Mapping of OCL COllECLION LYPES....commmmeeeererrriniiiiiiieeeeeeeeseeereeeeeesreennneennees -42 -
Table 4: Mapping of UML multiple elements .......c......ooouiiiiiiiiiiiiieeeeeeeee -43 -
Table 5: Basic field accessor and mutator methads............cccceevveeiiiieiiinicecevieeeee, -45 -
Table 6: Additional accessor and mutator methodsnfalti-valued fields ....................... -46
Table 7: Additional mutator methods for multi-vailli@rdered fields ... 46--
Table 8: Additional mutator methods for multi-vatli@rdered association ends ............. -47 -
Table 9: Multiplicity table of the example ....ccc....oooorrrriee e -49 -
Table 10: Mapping OCL iterator operations to ODRB(ER. .........ccocevvviviiieeeneiniiiieeee, - 108
Table 11: VIDE-WSDL naming CONVENLIONS ......cceuumruuriiiiieeeeeeereeerreeeesnnnnnnnnnnnnns -111 -
Table 12: AndrMDA vs. 0AW comparison table ..............ooooiiiiiiiiiiiii e, 2121 -
-0-

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 6 — Deliverable D6.1

Date 2008-04-15

List of Figures

Figure 1 : Deliverable D6.1 in the overall projeontext............ccccceeieieeiieeeeeeeeeee s -11-
Figure 2 : Work package 6 in the overall projeCtkviow .............ooovviiiiiiiiiiiiiiiinnieeees -12 -
Figure 3 : VIDE metamodel main packages .....ccccceceeeiiieiieeeieeiieeeeeeei e -18 -
Figure 4 : VIDE Class MOUEI ........oiiiiiie et ee e e e -19-
Figure 5 : VIDE Feature MOOEI ...............ummmeeeeeeeeriiiniiiiisieseseeeeeeeeseessssessnnseesnnsnnnnn - 20 -
Figure 6 : VIDE Package and IMPOrt ... eeeeeeeeeeees -21-
Figure 7 : VIDE Type hierarChy ...........uucooiiiiiieeieis e eeeveeeeee e -22 -
FIQUIE 8 | VIDE DaAtatyPeS .....uuuuuuiiiee s ceeeetttiiiiaas s s s e e e e e e e e eeeeeeeeeessneennsesssennnnnnnnns -22 -
Figure 9 : Relationship between Operation andwtgtin VIDE Metamodel.................. -23 -
FIQUIE 10 : VIDE ACHVILY ... ettt e e e e e e e e e e -23-
Figure 11 : Detail of ConditioNaINOUE.........ceeeeuiiiiiiieee e e -24 -
Figure 12 : Exception HaNAIEr ...........uueueeiiiie e -24 -
Figure 13 : VIDE Action metamodel .........coococeiiiiiiieeecese e e eeeeeee e -25 -
Figure 14 : Invocation Actions in VIDE Metamodel..............cccooiiiiiiiiiiiiicciie e - 26 -
Figure 15 : Object Actions in VIDE Metamodel .............oovvviviiiiiiiiiiiieeeeeeeeeeeeeeeee, - 26 -
Figure 16 : Structural features actions in VIDE Bfabdel.............ccccceeeeiiiiiniiiiiiiiaaen 27 -
Figure 17 : Link Actions in VIDE Metamodel ... ..eeeeeiiiiiiiiieeeeeiieiceeceeveiiees -28 -
Figure 18 : Value and Variable Actions in VIDE Metadel ..............cccovvviiiiiiiinnnnnn: =29 -
Figure 19 : OCL expressions and their connectiovialmeSpecification in VIDE metamodel.
................................................................................................................................... - 30 -
Figure 20 : Literal Expression in VIDE metamodel...........ccccovvviiiiiiiiiiiiie e, -30 -
Figure 21 : Conditional and Iterator expressioNIBE metamodel ..............cccoeeeeeeeeenn. 3
Figure 22 : OCL Operation call in VIDE Metamodel............cccceeeiiiiiiiiiiiiiiiiiieeiiiieeees -32 -
Figure 23 : Java EE 5 ArchiteCture OVEIVIEW e .ceeeeveveiiiiiiiiineee e eeeeeeeeeeeee e -35-
Figure 24 : Architecture of ODRA ... ...uu i rre e e e e e e aa e - 37 -
Figure 25 : Enumeration mapping eXample ... -40 -
Figure 26 : Class inheritance mapping example npLL............oevvveiiiiiiiieiieeeeeeeeennns -44 -
Figure 27 : Class inheritance mapping example gfoamed) ...........cccoeeeiiiiiiiiiiiiiiinns =44 -
Figure 28 : Operation mapping example (INPUL)....... oo -47 -
Figure 29 : EXample MOdel .........oooiiiiiii e - 49 -
Figure 30 : Example of FOrKNOUE ..........uummmmmie i erre e e e -75 -
Figure 31 : SIMple COMPOSITION .....ciiiiiie et -86 -
Figure 32 : COMPOSItION t0 MANY .......cciiiieeeeeeiieiieeiieiirrs e e e e e e e e e e e eeeeeeeeeereneeeeeernnnne - 86 -
Figure 33 : Association Many t0 ONE .......coccccoeieiiiiiiiiiiiiaa e e e e e e e e e e eeeeeeereeeneeeeeeeee - 87 -
Figure 34 : Bidirectional aSSOCIAtION.......cccceeuiiiiiiiiiiiiiee e - 87 -
Figure 35 : Example for consumed service mappit@@DRA .........ccccoeviiiinieiiiiiennnnnne. - 1413
Figure 36 : Example for published service mappimg ODRA ..........c.cccccciciiiiiiiieeeeeeeen, -6l4
Figure 37 : Activity ownership in UML Metamodel ..............ccoeiiiiiiiiiiiiiiiiiiiiiiiiiies 2123 -
Figure 38 : Activity ownership proposition ......cc..coooeeeeeiiiiiiiceeiee e ereee e - 123 -
-10 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

1 I ntroduction and Overview

This deliverable builds onto the UML 2.1 and OCIO Znetamodels and their underlying
semantics (as defined in standard specificatiodsr@imed in [VIDE2007c]). It is intended to
specify rules of transforming VIDE-created UML mdglénto executable code on chosen
exemplary target platforms. One of them — Java s-et@sen so as to investigate and develop
VIDE support for highly automated development ofdeofor popular industrially used
platforms. This unit of work also considers Javaduh application server platforms and
related J2EE technologies. Because the focus ofEV#de business application involving
databases, a data persistence framework base oQJaR#A Persistence API) is addressed by
the mapping. The other platform — ODRA (Object bate for Rapid Application
development), presented in detail later in thisorgps intended to allow investigating the
opportunities and limitations of code generation domore homogenous, object-oriented
environment. It also serves for supporting the asge on extending OMG specifications
towards the area of object-oriented database maragesystems. To this extent, unification
between UML semantics and ODRA'’s underlying Staekd®l Architecture is attempted. The
mappings for both platforms also cover the Web isenbased connectivity, so that the
abstract services being specified in VIDE can hinar direct, executable, but also fairly
platform-independent counterparts.

Since the source form for the model transformatispscified in this document is VIDE
metamodel, the relevant parts of the metamodehdeéfin [VIDE2007c] are summarized here
mainly through UML static diagrams and followed lwiespective transformation rules. The
transformations are specified in a generic way, éxa@x, where necessary, they are
additionally illustrated with an example.

VIDE tool architecture design and implementation
Design of visual interface for VIDE environment
ME’CP/%"Q VIDE CIM language
language Busi biect: e I:L?rllzing
into model : usiness objects . -
repository = Business process models definitions Business rules system
Transformation inio v”} Partial transfer onto PIM elements
workflow process definition o
\ J VIDE PIM language
v ppin VIDE programming editor (initial specification) VIDE
PIM i wrappers
CafimET - - VIDE textual language ‘ VIDE visual language AN o IZFJ)EMS
EMF-based  janguage UML Actions, UML Activities and OCL and XML
model repository intd model
K repositofy Static structure models (use UML Classes and Components notions)
AOP module Model execution QA module VIDE

> reference

library

A possibly complete Exemplary model compiler
code generation
Executable workflow
process definitions
Figurel: Deliverable D6.1in the overall project context
-11 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Work package 6 constitutes the latest step ofékearch phase of VIDE project. As shown in
Figure 2, it directly interfaces with the followingork packages:

WP1

WP1 — by addressing the assumptions and requiremsmecified in that work
package, in the area covered by WP6. The desarnipfitiow those requirements are
addressed can be found in Chapter 2 of this documen

WP2 — by defining the VIDE PIM-level lanuage togathvith its metamodel, which
consititutes the source for the mappings designdtie course of WP6. Some design
decisions behind the VIDE PIM language are brieftplained in Chapter 4.

WP8 and WP9 — these work packages, being perfotmgoime extent parallel to each
other and iteratively, set the actual realizatidntlee project’'s research results,
including the transformations defined in WP6. Thi®rk package defines the
transformation to be used by the components: JavdeMCompiler, ODRA Model
Compiler and Model Execution Engine, specified ifP8and being implemented in
the course of WP9.

WP9
WP2
requirements WPS8
A
PIMIlanguage
specification
J’ maodel
> WP6 compilers

Figure2: Work package 6 in the overall project work flow

-12 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 6 — Deliverable D6.1
Date 2008-04-15

2 Requirement refinement

We provide here a list of requirements with resgecthe VIDE project, collected in the
deliverable document D1.1 [VIDE2007b] (see thatumoent for a detailed description of
these requirements) and indicate those found retefa the WP6 scope. In the column
“‘comment” we provide the relation of each requireimt® the VIDE language, which is the
subject of this deliverable document. For clarifica, we denote which topics are subject of

other work packages. We also sketch how WP6 adekdhe relevant goals.

Requirement | Name Priority Comment
Number
REQ — Accessibility at the Should Outside D6.1 scope. Addressed by D7.1 aand th
NonFunc 1 CIM level CIM-to-PIM transition support functionality to be
described in D5.1.
REQ — CIM level collaboration| May Outside D6.1 scope. fanping this requirement will
NonFunc 2 be considered in the course of D9.3 development.
REQ — On-line support for Should Outside D6.1 scope. Addressed in D5.1 @retlea
NonFunc 3 CIM/PIM users of CIM-PIM navigation.
REQ — Clear and unambiguous Should Outside D6.1 scope. Addressed in D2.1
NonFunc 4 notation — VIDE should
have clear,
comprehensible and
unambiguous semantic
description suited to the
users of the VIDE tools
REQ — Model view saliency — | Should The compilers have a contribution to thiguirement
NonFunc 5 VIDE models views because they allow users to think and concentratel o
must be user-oriented. a PIM view of their problem, VIDE model, without
cluttering this view with PSM consideration thag ar
automatically handled by the compilers.
REQ — Appropriate Should Outside D6.1 scope. Addressed in D2.1.
NonFunc 6 textual/graphical CIM-related issues are subject of WP7 and WP5.
fidelity — VIDE must
provide appropriate
textual and graphical
modalities for its users.
REQ — Timely feedback and | Should Outside D6.1 scope. Supporting the work aitipie
NonFunc 7 constraints users on a common model will be considered in the
course of D8.1 and D9.1 development.
REQ — Runnable and testable | Should D6.1, by defining mappings towards the etadala
NonFunc 8 VIDE prototypes platforms, lays a foundation for a systematic
realization of this functionality.
This requirement is more directly addressed in D9,0
and to be further investigated for D9.3.
REQ — Scalability of proposed| Must Regarding the large amounts of data, theotiS€QL
NonFunc 9 solution — the proposed queries and the support of generation for Web
solution must at least Services allow such scalability.
conceptually scale to J2EE system architecture for the Java compiler
enterprise level. ensures enterprise scalability.
REQ — User 1| Flexibility and Should The choice of OpenArchitectureWare as the
interoperability of framework of the Java compiler implementation,
VIDE language and mainly because of its integration within Eclipse
tools - The VIDE contributes to this requirement.
language and tools
SHOULD have

-13 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 6 — Deliverable D6.1
Date 2008-04-15

flexibility and be

interoperable with some

existing tools.

U

REQ — User 2

Reuse of UML
Standard — end users
are very sensitive to
using standards. A key
aspect is that the VIDE
language reuses as
much as possible the
UML standard.

Should

Not strictly inside the scope of D6.1. Ngveless, it
should be noted that as the input metamodel to the
compilers is UML and OCL based, it ease the
understanding of compilers transformation.

REQ -
Semantics 1

Semantics of VIDE Inte
rnal Communication — &
precise description of
the semantics is neede
sufficient for internal
communication
purposes within
implementation
stakeholders in the
development of the
VIDE tool.

Should
A

d

Thanks to the UML and OCL based metamodel, a
clear semantic (although some interpretation visian
are possible) is available that allows the defomitof
transformation rules to Java and ODRA.

REQ —
Semantics 2

Simple VIDE semantics
— after a first analysis i
seems sufficient that th
semantics of VIDE ig
described in __ natura

language

. Should

[¢)

No restriction on the metamodel has beendou
during the study of the mappings.

REQ - Lang

Usage of UML2
Behaviour (“Action
Semantics”) — VIDE
should use the
behavioural model
elements of UML2
(earlier known as
“UML Action
Semantics”), unless
proven insufficient.

Should

No restriction on the metamodel has beendou
during the study of the mappings.

REQ - Lang

Simplified UML meta-

model — If it turns out

that

« the UML meta-
model is
unnecessarily
complex in a way
that it blocks the
creation of a
sensible  concret
syntax (see remark
on
ConditionalNode),

* not all of the UML
meta-model can b

May

D

[72)

D

covered

No restriction on the metamodel has been found
during the study of the mappings.

Nevertheless some complexity, inherited from the
UML metamodel, remains in the VIDE metamodel
and leads to propose some modifications. See segtio
10.

-14 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

e elements arg
missing which are
located in another
needed languag
(like OCL)

it may be changed.

D

REQ — Lang | User Language & Should Outside D6.1 scope.
3 Concepts — the VIDE
language and VIDE
tools presented to a
certain user groups
SHOULD employ the
language that is
understood by the user

group.

REQ — Lang | Compliance with Should One of the 2 compilers proposed transtata VIDE
4 Standards — VIDE to Java, a well known programming language wide
should not compete used in the industry and well defined.
with existing adopted
modelling standards,
especially those
adopted by the OMG,
such as UML or
BPMN.

y

REQ — Lang | Deviation from May No deviation from existing standards was miade
5 Standards — VIDE may D2.1.

deviate in parts from
existing standards, if a
standard-conformant
way is provided as well
and if there are good
reasons with respect to
the overall user
requirements.

REQ — Lang | Modularisation and Should Outside D6.1 scope.
6 extensibility — it should
be possible to replace
parts of the language
with different artefacts
and add additional
language constructs for
special business
specific patterns. This
requires the language
be structured in
modules.

O

REQ — Lang | Language for CIM, Should Ad. 1. Outside 62.1 scope. Addressed i1 D7.

7 PIM, PSM modelling: Ad. 2. Outside 62.1 scope. Addressed in D2.1.
1) VIDE SHOULD Ad. 3. Compilation to Java is described in D6.1,
support  requirement compilation to other mentioned language is also
definition tasks andg possible without restriction.

business process
description with BPML
2) VIDE SHOULD
adopt action semantigs
for the modelling of

[

-15 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 6 — Deliverable D6.1

Date 2008-04-15

executable PIM models
3) VIDE SHOULD
provide support for
target PSM
environments e.g. Jav
C++, or

SmallTalk; VIDE
should provide platforn
implementation
mappings in PIMs o
ClMs.

REQ - Tool 1

Usage of industrially
adopted tools — VIDE
must use industrially
adopted meta-
modelling standards
where applicable.

Must

The compilers are integrated with Eclipsefplan.

REQ - Tool 2

Meta-modelling
Framework — VIDE
must use EMF as its
modelling framework.

Must

The compilers are defined on top of EMF mbig|
framework. Moreover OpenArchitectureWare, the
framework selected for implementing the Java
compiler is based on EMF.

REQ - Tool 3

Meta-modelling

Concepts — VIDE metar

models should be
constructed to be
compatible with MOF
concepts.

Should

Outside D6.1 scope. Addressed by D2.1.

REQ - Tool 4

M2M Transformation
Technology (VIDE
should use ATL as it's
transformation
framework, unless it is
proven insufficient)

Should

This technology has not been used becaube of
lack of operational metamodel and code mappings
Java and ODRA

REQ - Tool 5

M2T Transformation
Technology (VIDE
should use XPAND as
its M2T transformation
language, unless prove
insufficient.)

Should

=]

This technology has been widely used fohn bot
compilers.

REQ —Tool 6

T2M Transformation
Technology (VIDE
should use XText
framework, unless
proven insufficient. An
alternative can be
parsers generated with
ANTLR or LPG.)

Should

Outside D6.1 scope. To be addressed in D9.3.

REQ - Tool 7

Meta-modelling
Framework (VIDE
SHOULD use GMF as
it's graphical modelling
framework)

Should

Outside D6.1 scope. To be addressed in &1
D9.3.

-16 -

© Copyright by VIDE Consortium

for



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 6 — Deliverable D6.1
Date 2008-04-15

REQ - Tool 8

Use of OCL - VIDE
should re-use existing
standards as UML
(REQ — User 1), and in
particular OC; the goal
is to achieve a seamleg
integration with the
concrete syntax of the
action language to be
developed.

Should

Outside D6.1 scope. Addressed in D2.1.

REQ - Tool 9

CIM modelling
standards.

May

Outside D6.1 scope. Addressed in D7.1.

REQ - Tool
10

PIM, PSM modelling
standards — VIDE
SHOULD provide
support for PIM
modelling with UML
and action semantics;
the meta-modelling
standard for VIDE
should be Ecore.
VIDE SHOULD
support well known
PSM modelling
standards (e.g. XMl for
model

and meta-model
interchange, JMI for
Java based PSM).

Should

Outside D6.1 scope. Addressed in D2.1.

REQ - Tool
11

Framework for CIM,
PIM, PSM modelling

Should

The transformation technology for the Javailer
adopt the M2T paradigm. See section 9 for more
details.

REQ - Tool
12

VIDE extensibility

Should

Outside D6.1 scope. Toduelressed by D9.3.

REQ - Tool

Integration and

metadata interchange +

VIDE should provide
model and meta-data
interchange capability
by adopting the XMl
standard.

Should

Outside D6.1 scope. Addressed by D2.1

REQ - Tool
14

Model driven approach
The VIDE tool strictly

follows a model driven
approach as stipulated
in figure 9 page 120 of

the D.1.1 deliverable

Must

The compilers bring their contribution toghi
requirement because they permit the transformation
from PIM level in VIDE language to PSM level,
either Java or ODRA.

Table1:

Summary of therelevant requirementsidentified during the WP1 work

217 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

3 Sour ce M odel

31 Global view

The source model from which translation to Javauxds the VIDE metamodel defined in
[VIDE2007c]. It is briefly presented hereafter. &ig 3 shows a high level view of the VIDE
metamodel. While technically not structured witbegl packages, this decomposition is useful
to structure the specification of the mapping teala

Structures

Activities

T N

>
>
’

A

1

1

N 1
S 1
1

1

1

1

: ] Actions
Expressions

7

Figure 3: VIDE metamodel main packages

3.2  Structures
This part describes the static structures (packelgss, etc) of the VIDE metamodel as well
as the base types and several high level classegd @ other packages.

Figure 4 presents the static class model of VIDEas§es, which are types, belong to
Packages and have Attributes (named Propertieseinmetamodel), and Operations, which
have Parameters. Classes have inheritance relaifiof®ubclass, Superclass).

Association have two Property whose Type (not shmwthe Figure) holds the linked classes.

-18 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0

Date 2008-04-15

Type Package
+ *
TypedElement type 0.1

+ ownedType + package + nestedPackage

*
*

+ raisedException
«enumeration»

VisibilityKind
* public Classifier
+ private
+ pratected

0.1
+ nestingPackage

+ awnerFormalParam

BehavioralFeature
0.1

ValueSpecification Association

+ defaultvalue | !

- "
+ association
0.1 + subClass

Class
+ isAbstract : Boolean

Property 2
+isReadQnly : Boolean + memberEnd
+isCompositePart : Boolean

Operation

+ isQuery . Boolean
+ superClass

* + class !
*
+ ownedAttribute 0.1
+ class
| + ownedOperation 1
*
* | + ownedParameter
) 0.1
Parameter .
+ direction : ParameterDirectionind | + ownedParameter + operation
«enumeration» * & postcond tion
ParameterDirectionKind *
+in Constraint + precandition
+inaut + expression ; Expressi...
+out
+ return

Figure4: VIDE class model

Figure 5 presents the Feature metaclass, whichersvadl into two main branches,

BehavioralFeature from which Operation inherits &tdicturalFeature to describes Property
(attributes and association end).

-19 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
Element
MultiplicityElemant Relstionship NamedElement
+ igOrderad ; Boolean + wigibility ; Visibilitykind
+ islinique | Boolean * nAme | String

+ ypper | UnlimsedMatural
+ lowver - Integer

TypedEilarant Hamespace RadefinableElerment PackageableElement
v packagelmpart | Packagelmpart # wisibdity : Visdilmying

Feature Type Fackage
+ visdbility - Visibilitytand
+ isStatic ; Beolean

StructuralFeature BehavioralFeature Classifier
Praperty Operation Class
+ jsReadOrty | Baolean +asCuery - Baalean + iAbatract | Bogle s

+ isCompasiteFart . Boakan

Figure5: VIDE Feature Modd

Figure 6 presents the Package classes. It confgpss, it can be nested (nestedPackage) and
any Namespace (Package, Class) can import packages.

-20 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 6 — Deliverable D6.1

Date 2008-04-15

Element

NamedElement
+ visibility : VisibilityKind
+ name : String

Relationship

Type Namespace DirectedRelationship

+ ownedType
+ packagelmport
w
0.1 Package + impartedFackage Packagelmport
+ package 1 1| + visibility : VisibilityKind
* 0.1
+ nestedPackage + nestingPackage

Figure6: VIDE Package and Import

Figure 7 presents the Type hierarchy. Beside GladsAssociation, DataType is the root of a
rich family of type with atomic ones like Enumematj Primitive and VoidType and aggregate
ones with Tuple and heir of CollectionType. Tuplp&€y VoidType and the heir of

CollectionType all come from the OCL metamodel am@ modelled as instances of
DataType, at M1 level in the categories of moddingel by OMG. This is presented Figure

8.

© Copyright by VIDE Consortium

-21 -



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0

Date 2008-04-15

NamedElement

+ name : String

Type
Classifier
+ elementType
Class Association DataType
+ isAbstract : Boolean
Enumeration PrimitiveType TupleType VoidType CollectionType p
Property *
+ isReadonly : Boolean + ownedProperty Sequencelype SetType OrderedSetType

+ isCompositePart ; Boolean

Figure7: VIDE Type hierarchy

«dataType» P 1assifier 1 «dataType» «dataType»

TupleT CollectionT VoidT
upleType + clementType ollectionType oidType

+ ownedProperty
=

Property
+ isReadOnly : Boolean «dataType» «dataType» «dataTypes wdataType»
+ isComnpositePart : Boolean BagType orderedSetType SequenceType setType

Figure8: VIDE Datatypes

3.3 Activities

Baglype

This part describes activities. Activity is the ralent where actions and expressions are
defined. It provides a context for the executiontluédse elements as well as a mean of

ordering their sequences.

Figure 9 shows how Activity is connected to Operatin VIDE metamodel. The property
method defined on the association between abstiastes BehavioralFeature and Behaviour

allows navigating from an Operation to its Activity

© Copyright by VIDE Consortium

-22 -



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

specification method

BehavioralFeature Behaviour
A 0..1 0..1 N
Operation Activity
ownedO peration *
1
@ Class

Figure9: Relationship between Operation and Activity in VIDE M etamodel

Figure 10 presents the metamodel of Activity. Antiity is composed of several
ActivityNode, which can be ControlNode, ObjectNoaleExecutableNode. All these nodes
are surrounded by ActivityEdge to define the segaeaf execution. ExecutableNode is
further refined in Action, the base class for alli@ns metaclasses, presented thereafter, and
several nodes that allow a finer control of the cexien flow: ExpansionRegion,
ConditionalNode, LoopNode and SequenceNode.

ActivityNode 1 5
+ target + incoming ActivityEdge
1+ source .
* + node + outgoing * + edge
+ activity £ 0.1
0.1

Activity
+ activity + isReadOnly : Boolean

ControiNode ObjectNode Namespace ExecutableMode i

+ packagelmport : Packagelmport
+ executableNode

o * +test
+ setupPart
+ baodyPart
ForkMode ActivityParameterNode structuredActivityNode Action
+ parameter : Parameter + edge ! ActivityEdge
+ activity : Activity
+ node : ActivityMode
0.1 0.1
0.1
0.1
ExpansionRegion ConditionalNode LoopMode SequenceNode
+ outputElement : ExpansionNaode + clause : Clause + isTestedFirst : Boolean

+ inputElement : ExpansionMode

Figure 10 : VIDE Activity

Figure 11 presents the detail of the Conditiona®agh important node to represent choice
and alternative in algorithms. A ConditionalNodes lmme or more Clause, each having two
ExecutableNode, one for the test (the ExecutableNsttbuld returns a Boolean value) and

-23 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

one for the body, which is executed if the testug. Otherwise the next clause in the ordered
clause association is executed.

0.1
ConditionalNode + clause| clause

0..1

ot body *
ExecutableNode
+ test

Figure 11 : Detail of ConditionalNode

Figure 12 details the metamodel for representingeptionHandler. ExeceptionHandler
protect an ExecutableNode (association protectedN@dhich is also the owner of the
ExceptionHandler, not shown in the figure). It lssexceptioninput (a parameter) which is
an ObjectNode that should conform to the exceptype] a Classifier. If the handler is
triggered, it executes its handlerBody, an instasfdexecutableNode.

& = % + protectediode | gxecutableNode
Classifier L : ExceptionHandler
+ exceptionType 1
1 + exceptioninput
ExecutableNode [ ObjectNode

+ handlerBody 1 1

Figure 12 : Exception Handler

34 Actions

An action is the fundamental unit of executablectionality. The execution of an action
represents some transformation or processing imthgelled system.

Figure 13 presents the detail of an action. An Action camehseveral input and output pins
which can be seen as data consumed and producte agtion. It is important to note that
InputPin can be associated with a ValueSpecifioatioat describes the content of the
InputPin and that description can be an OCL expmyassAn Action is executed inside a
context as shown by the association to Classifileis context will be an Activity.

-24 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Work Package 6 — Deliverable D6.1
Date 2008-04-15

Version 1.0
= NamedElement
+ wvisibility : VisibilityKind
+ name : String
=t
Pin B sEifior EPackageabieEIem ent
+ wisibility : visibilitykind
+ context| 0.1
= ETypedEfemenf
OutputPin InputPin
* 4+ output ¥+ input 1
Action
1
ValuePin + value ValueSpecification

1

Figure 13 : VIDE Action metamodel

Figure 14 present€allOperationActionand related actions. This action is useful to aall
operation in amctivity. ReplyActiorntriggers the return of the curre@perationand is able to
return optionally multiple valuesRaiseExceptionActiors used to trigger an exception. All
these actions rely on input and output port tdee& and produce values.

© Copyright by VIDE Consortium

-25 -



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
1 Action 1
ReplyAction
#*| 4 input 0.1 + DUtpUt *
+ rephyvalue
. ;
- =T 1 g
InputPin | InvocationAction OutputPin

+ argument

1

1 ;
+ exception Bt RaiseExceptionAction

+ target
* | + result

CallAction 1

1

CallOperationAction Operation

+ operation | 4 isQuery : Boolean

Figure 14 : Invocation Actionsin VIDE Metamodel

Figure 15 presents the actions that create antedabgects.

InputPin * 1 | Action 1 * OutputPin
+ input + output!
1 | 4+ target + result; 1
0.1 Dl
DestroyObjectAction CreateObjectAction

e
+ classifier 1

EC fassifier

Figure 15 : Object Actionsin VIDE Metamodel

Figure 16 presents actions that allow represemtiagipulation of properties (class attributes)
generalized aStructuralFeature.
- 26 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
L i 1 *
| Action OutputPin
+ output
% = input
; 1 0.1 : "
InputPin - StructuralFeatureAction i 1 StructuralFeature
+ object '
7o + structuralFeature
+ value
+ insertht

WriteStructuralFeatureAction ClearStructuralFeatureAction

0.1 addstructuralFeatureValueAction RemoveStructuralFeatureValueAction

L+ isReplaceall ; Boolean + isRemoveDuplicates : Boolean

Figure 16 : Structural featuresactionsin VIDE Metamodel

Figure 17 presents actions that allow represemtiagipulation ofAssociation

-27 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 6 — Deliverable D6.1
Date 2008-04-15

Action 1

* + input
1 o5
InputPin | + object | ClearAssociationAction
0.1
+ value

0.1
+ destroyat
0.1
+ insertAt

0.1 | LinkendData 2.

+ endData
ks
LinkEndCreationData
LT isReplaceall : Boolean
2.#4 endData
2”:+:

0.1 LinkEndDestructionData
| + isRemoveDuplicates : Boolean | + endData

1

CreateLinkAction

* OutputPin

+ output

LinkAction

+ association & L
Association

1
0.1 4 association
&
2 | + memberEnd
+ end & Property
1 + isReadCOnly : Boolean

+ isCompositePart : Boolean

WriteLinkAction

DestroyLinkAction

Figure17: Link Actionsin VIDE Metamodel

Figure 18 presents actions that allow representmgnipulation of Variable and

ValueSpecification.

-28 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Action + input InputPin

1
+ value 0.1 +insertat

0.1

+ removeAt
ValueSpecificationAction VariableAction
0.1

ClearVariableAction WriteVariableActon
0.1

L+ value
ValueSpecification 0.1

RemoveVariableValueAction

+ isRemoveDuplicates : Boolean
AddvariablevalueAction

+ isReplaceAll : Boolean 0.1

Figure 18 : Valueand Variable Actionsin VIDE Metamodel

3.5 Expressions

Expressions in VIDE are OCL expressions that cgreapat any place where the metaclass
ValueSpecification appears in the VIDE Metamodel.

Figure 19 presents the hierarchy of OCL expressasnwell as the connection with
ValueSpecification ExpressionInOclis the root of any OCL expression. It can have an
OclVariable that acts as thisis pseudo-variable.

-29 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

‘ TypedElement ‘

I

‘ ValueSpecification ‘
\

1
7# ExpressionInOcl ‘

OpaqueExpression ‘

contextVariable [0..1

bodyExpression,|, 1

initExpression initializedElemen

‘ OclExpression i

t
OclVariable
0.1 0.1

0..1 | referredVariable

referringExp

LiteralExp IfExp ‘ CallExp ‘ ‘ VariableExp

A *

‘ FeatureCallExp ‘ LoopExp

‘ NavigationCallExp ‘ IteratorExp IterateExp

/\

OperationCallExp ‘ ‘ PropertyCallExp ‘

Figure19: OCL expressionsand their connection to ValueSpecification in VIDE
metamodel

Figure 20 presents the detail of thieeralExp OCL expression.

bl Property
LiteralExp & isReadonly : Boolean
£§ isCompositePart : Boolean

+ attribute
0.1
0.1
EnumlLiteralExp CollectionLiteralExp NullLiteralExp PrimitiveLiteralExp TupleLiteralExp
+ tupleliteralexp
+ collectionliteralexp + tupleliteralpart
*
+ part ; o - 0.1
CollectionLiteralPart _p BooleanLiteralExp NumericLiteralExp StringLiteralExp + part :
+ kind : CollectionKind * TypleLiteralPart
Collectionitem IntegerLiteralExp RealLiteralExp UnlimitedMaturalLiteralExp
Figure20: Literal Expression in VIDE metamodel

© Copyright by VIDE Consortium



Work Package 6 — Deliverable D6.1
Date 2008-04-15

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Figure 21 presents the conditional and loop OClestants. The one to one multiplicity of
elseExpressioproperty betweelfExp and OclExpressionndicates that the else clause of a
well formed OCL expression is required.

+ initializedElement . 0.1
Oclvariable
+ result
0.1
0.1
+ iterator
0.1 _
+ initExpression
+ body + loopBodyOwner
| OclExpression 1 1
+ thenExpression 1
+ loopExp
1 + condition ECApERR r
1
+ elseExpression
+ elseOwner
0.1 1
0.1 + ifOwner IteratorExp IterateExp "
IfExp 4 baseExp
+ thenOwner B

Figure 21 : Conditional and Iterator expression in VIDE metamodel

-31-
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Callexp

FeatureCallExp OclExpression

+ argurnent
*
*| + gualifier

OperationCallExp 0.1
+ parentCall

MNavigationCallExp
0.1  + parentMav
D3l

+ navigationSource

Property

+ defaultvalue : ValueSpecification
+ isReadOnly : Boolean
+ isCompositePart : Boolean

q..1| + referedProperty

PropertyCallExp | | referringExp
#

Figure22: OCL Operation call in VIDE M etamodel

-32 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

4 Choices behind the VIDE metamodel design and
guery language selection

VIDE PIM level language used to express source fsoie the model compilers specified
here consists of UML 2.1 and OCL 2.0 subsets. Ascdeed in [VIDE2007c], the main
elements and their responsibilities are as follows:

* UML Static Structure (Classes, Packages) for spegfthe model structure and data

schema,

» UML Actions unit for representing atomic steps pphcation behaviour,

» UML Structured Activities, for representing the tah flow inside methods,

* OCL, to cover all kinds of expressions in VIDE misgéncluding complex queries.

The choice of UML, including its action semantiegs made already at the stage of project
proposal and results from consortia interest intrdoumting to existing modelling standards
and investigating the actual potential of the MO#oeach that is based on them.

The features of object-oriented design providedJML allow for using various OO patterns
in modelling with VIDE, and seem to provide an adste level of abstraction from the point
of view of subsequent transformation into popul& @Qrogramming language code.

While the features of UML behaviour to be used ao¢ very mature, and the reuse of
existing, ready model compilers cannot be assuitwesjmportant motivating factors for its
choice can be indicated:

* The popularity of UML structural modelling consttsie- that can provide a well
known, platform neutral object model for precisedeiting. The constructs are
familiar to developers and moreover, can be readifyported by existing UML
modelling tools.

* The presence of standard-compliant UML and OCL rhoefgository implementations
and related infrastructure at the Eclipse platforimanks to it, the project results can
be potentially reusable within the community. Thpasitory format and modelling
frameworks handling it, radically simplify not ontlge editor tools development, but
especially — provide necessary means for modelgssicg (within PIM level, e.g. for
aspect-oriented composition, as well as in modeig@tion and execution — e.g.
code generation).

With the above factors in mind, the remaining chpiegarding the expression language for
VIDE was significantly constrained. Depending ore thasic means provided by UML
Actions for data read does not satisfy the needamgfuage expressiveness. Firstly, it would
undermine modelling productivity when processingnptex data structures; secondly — this
would cause a problematic situation where the nliodetonstructs are at a lower level of
abstraction compared to target platform languagéufes available. In this case one of two
approaches could be followed:
» Developing a query language for UML from scratehtérms of specifying its
semantics, metamodel, concrete syntax, librarytions etc.). Note that a potential

choice of using some existing query language &QJ., OQL or XML Query) would

-33-
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

involve similar effort — as it would need to be pt#al to a different data model

(UML) than originally assumed. The way of handlswgch language constructs inside
model repository would also need to be addresseéslirhportant to note that
following too close the solutions known from platfespecific solutions (e.g. query
languages and persistency frameworks) would coictrtte expected benefits of
uniform, platform independent language. For exameng the object-relational
mappings actually forces the developer to depen8@h (that is, the means
comparable in terms of expressiveness with SQLad@#)to be aware of all the
relational database details — hence only some tsptthe infamous “impedance
mismatch” problem are removed in that case.

» Using an existing UML-compliant expression languageamely — OMG OCL 2.0.
This choice resolves the problems of data modelptiamce, metamodel definition
(including several aspects of integration into UMinpdel repository implementation
and concrete syntax. However, at the same timeneeds to face shortcomings of
OCL serving as a query language (the role thatawasidered at least secondary
during its design).

With additional consideration of the ease of adwpin the modelling community, the latter

path was chosen. This resulted in several refinégsnathe original specification, in terms of

its integration with UML behaviour, as well as @bt extension of the OCL standard library
functions. Obviously, the resulting language canmeatch in terms of overall maturity the

existing industrial solutions originally designed guery languages. However, it offers
analogous expressive power. A certain usabilityplemms results from OCL syntax, which is

rather complex and less friendly than other quanguages. This is especially visible in a
very complicated way a join expression (foundatidoaquery languages) can be achieved in
OCL. The visual solution for building OCL expressibas been designed to relieve this
problem.

-34 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

5  Target Platforms

51  J2EE Reference Application

The Java 2 Platform, Enterprise Edition (J2EE) de$ the standard for developing multitier
enterprise applications. The J2EE platform simeéifenterprise applications by basing them
on standardized, modular components, by providingomplete set of services to those
components, and by handling many details of apfdinabehaviour automatically, without
complex programming.

The J2EE platform takes advantage of many featofethe Java 2 Platform, Standard
Edition (J2SE), such as "Write Once, Run Anywhea'tability, JDBC API for database
access, CORBA technology for interaction with eagsenterprise resources, and a security
model that protects data even in internet applmasi Building on this base, the Java 2
Platform, Enterprise Edition adds full support fBnterprise JavaBeans components, Java
Servlets API, JavaServer Pages and XML technoldogg.J2EE standard includes complete
specifications and compliance tests to ensure pdity of applications across the wide
range of existing enterprise systems capable giauing the J2EE platform. In addition, the
J2EE specification now ensures Web services inesedylity through support for the WS-I
Basic Profile.

Figure 23 presents the latest version of Java pmser Architecture API in a typical multi-
tiers application.

A
Container

pplet
[ JzsE

Application Client |
Container

Application
Client

EJB Container

| Database

-Mawin.lavaEEE

Figure 23 : Java EE 5 Architecture Overview

J2EE provides many possibilities for system architee. Therefore, the target system
architecture for the J2EE Compiler needs to be emoSince VIDE programs focus on
business/behavioural logic that operate on aatabase and that are accessible Waeb

-35-
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Services the following APIs of the J2EE Platform have beewnsidered for the Java
Compiler:

1. Java Web Services (JAX-WS) for web services débiniand consumption

2. EnterpriseJavaBean (EFJB) that containing the lessitogic

3. Java Persistence API (JPA) to access to RDBMS WHdiE programs.

These APIs have been selected because they oftdegit services for modern service
oriented applications on typical information sysselmnd because VIDE is conceptually
designed to support these APIs.

52  SAP Application Server Variant

SAP NetWeaver Application Server [SAPAS] providescamplete infrastructure for
developing, deploying, and running enterprise aapibns. SAP NetWeaver Application
Server supports both Java technologies and ABARt ikshased on industry standards, SAP
Netweaver Application Server provides an open ptaifthat allows an easy integration of
applications and processes.

SAP NetWeaver Application Server 7.1 is a certiflava 5 Enterprise Edition application
server. It supports the latest Java EE 5 featuieb as Java API for XML Web Services
(JAX-WS 2.0), Java Persistence API (JPA 1.0), pmiee JavaBeans (EJB 3.0), Java Server
Faces (JSF 1.2), etc.

Since it is fully compliant with Java 5 EE, the posed solutions for handling Web Services
(based on JAX-WS 2.0) and persistence (based on 11BAiIn the Java compiler work
seamlessly with SAP Netweaver Application ServdratTis, the generated code with Java
annotations for Web Services and persistence rmngny Java 5E EE compliant server
including SAP Netweaver Application Server. Howesgarce SAP NetWeaver Application
Server requires a dedicated packaging format (SDAScftware Delivery Archive),
compilation of VIDE J2EE programs before their a@gphent is required.

5.3 ODRA

ODRA (Object Database for Rapid Application devetgmt) [ADHK2008] is an object-
oriented application development environment culyebeing constructed at the Polish-
Japanese Institute of Information Technology. The af the project is to design a next-
generation development tool for future databasdiagimn programmers. The tool is based
on the query language SBQL (Stack-Based Query Lage) a new, powerful and high level
object-oriented programming language tightly codpl@th query capabilities. The SBQL
execution environment consists of a virtual machiaemain memory DBMS and an
infrastructure supporting distributed computing.eTimain goal of the ODRA project is to
develop new paradigms of database application dpwednt, by increasing the level of
abstraction at which the programmer works. It idtrced a new, universal, declarative
programming language, together with its distribyutddtabase-oriented and object-oriented
execution environment. The intent is to provide clionality common to the variety of
popular technologies (such as relational/objectaludes, several types of middleware,
general purpose programming languages and theicugga environments) in a single
universal, easy to learn, interoperable and effectio use application programming
environment.

-36 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

ODRA consists of three closely integrated compagient
* Object Database Management System (ODBMS)

» Compiler and interpreter for object-oriented querygramming language SBQL
* Middleware with distributed communication facilgibased on the distributed
databases technologies.

The system is additionally equipped with a setoalld for integrating heterogeneous legacy
data sources. The continuously extended toolséidaes importers (filters) and/or wrappers
to XML, RDF, relational data, web services, etc.

Fig.1 presents a view on the architecture, whiclolves data structures (figures with dashed
lines) and program modules (grey boxes). The achite takes into account the subdivision
of the storage and processing between client an@rsestrong typing and query optimization
(by rewriting and by indices). The subdivision olemt and server is only for easier
explanation; actually, each ODRA installation caorkvas a client and as a server. Many
clients can be connected to a server and a clembe connected to many servers. Below we
present a short description of architectural elém&om Figure 24.

-
.'

Client Integrated Developmert :-S --------- .-f- ‘:
Environment(1IDE) [~ ___ " ?f“fc_i‘_*‘_”:‘?’_‘fr_”_gf?‘f‘_ _ :

‘ Lexer and parser | i

| Syntactictree of a querylprogram | | Bytevade of a querg/program & |

/ . -j-,f!-l-&-c -c- -e-e-lf -E-L 211:1-91-}.: E:um_g-:rflin;,_,\ - Bytecade of a quety/program ‘.' ;

Strong type Optitmization Optimization Cotpilet to Interpreter of i
checker by rewriting by indices bytecode bytecode i

e

b Static EMV3

o

_________________

_________________

1 ! 1]
' Server . S Object | Register | |
: ——————————— I o — : : I
i : Metabase of i RS 3 HINEE 3R i afmdmesﬁ: i
! ! petsistent.  « = J o~ 7T i
H i objects |
E SN ——— Processing petsistent abstractions E
: - x 7 B b CET T , (wiews, transactions, procedures, '
' . P =—=== ethods i
:1 #dministration i Per51stent (sha.redj i ] ,:
' ! objects ! '

Figure 24 : Architecture of ODRA

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

In the figure above it is worth to note the follogielements:

* Thestrong type checker takes a query/program syntactic tree and checksdnforms

to the declared types. Types are recorded withtheat local metabase and within the
metabase of persistent objects that is kept orséineer. The strong static type checker
simulates actual execution of a query during coenprthe. The type checker has several
other functions. In particular, it changes the gusyntactic tree by introducing new
nodes for automatic dereferences, automatic caescior typing literals, for resolving
elliptic queries and for dynamic type checks (dt&t checks are impossible). The type
checker introduces additional information to thele® of the query syntactic tree that is
necessary further for query optimization.

» Static ENVS - static environment stack. It is a compile timeumterpart of the
environment stack (call stack) known from almokpabgramming languages.

» Static QRES - static result stack. It is a compile time coupéet of the result stack
(arithmetic stack) known from almost all programglanguages.

» Optimization by rewriting - this is a program module that changes the syotaee that
is already annotated by the strong type checker.

» Compiler to bytecode. This module takes the strongly checked and optich&atactic
tree of a query/program and produces a bytecodec#timabe executed by the interpreter.
In the prototype implementation we developed oun dytecode format called Juliet. In
the future we consider the possibility to geneditectly the Java bytecode but it needs
further research.

» Updateable object views. ODRA offers a highly transparent mechanism for talle
object views that allows defining virtual objectstiwarbitrary, explicitly definable
update semantics. This feature is essential fargnating various data sources using
ODRA.

ODRA introduces a powerful query and programminigleage SBQL (Stack-Based Query
Language). It is precise with respect to the gmation of semantics. The pragmatic quality
of SBQL is achieved by orthogonality of introduadata/object constructors, orthogonality of
all the language constructs, object relativism,h@gbnal persistence, typing safety,
introducing all the classical and some new programgrabstractions (procedures, functions,
modules, types, classes, methods, views, etc.) folldwing commonly accepted
programming languages’ and software engineeringcjples.

SBQL queries can be embedded within statementscrachange the database or program
state. Typical imperative constructs are creatintew object, deleting an object, assigning
new value to an object (updating) and insertinglaject into another object. Typical control
and loop statements such as if...then...else..., whitg@dpfor and for each iterators, and
others are also available. Some peculiarities anplied by queries that may return
collections; thus there are possibilities to gelmgamperative constructs according to this
new feature.

SBQL in ODRA project introduces also proceduresctions and methods. All procedural

abstractions of SBQL can be invoked from any pracadabstractions with no limitations

and can be recursive. SBQL programming abstractaer with parameters being any
gueries; thus corresponding parameter passing methre generalized to take collections
into account. The strict-call-by-value method hasrbimplemented, which makes it possible
to achieve the effects of call-by-value, call-byerence, and more.

-38 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

SBQL is a strongly typed language. Each databadepevgram entity has to be associated
with a type. However, types do not constraint sstnictured nature of the data. In particular,
types allow for optional elements (similar to nudllues known from relational systems, but
with different semantics) and collections with &y cardinality constraints. Strong typing

of SBQL is a prerequisite for developing powerfulegy optimization methods based on
guery rewriting and on indices.

For ODRA a generic gateway to Java libraries has limplemented. This facility allows one
to use calls to Java programs within SBQL prograiise facility is especially useful to
extend SBQL with GUI, with string operators, wittEE capabilities, etc.

From the point of view of VIDE project, ODRA hasdmechosen as one of the exemplary
target platforms to be supported by model compilerghis role it is intended to serve for
investigating the code generation issues at a p@We database and programming language
platform.

-39 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

6 VIDE to Java

6.1  Approach

In the following, we map VIDE to Java. The mappidgscription is divided into four
subsections: mapping structural aspects, mappiagb#havioural parts, mapping activity
diagram constructs, and finally mapping OCL exporss

6.2  Mapping Structural Parts

VIDE data structures are given by UML class diagsafirhis section is structured into three
subsections, each dealing with one specificatiob/MfL Type metaclassClass DataType
andAssociation Mapping these elements is the major task regagritia static part of VIDE,
providing the environment the mapped behaviourel\ywdl be embedded in. Moreover, types
are regularly used in VIDE modelling; in the coritexf properties within a classifier,
operation signatures (including parameters, reatnes and exceptions) and variables in the
behaviour modelling. Other aspects of VIDE struetuare addressed where applicable, e.g.
the package concept in the class subsection.

6.2.1 Datatypes

Instances oDataTypeare identified only by their value; typical usetasrepresent primitive
types (e.glnteger, Boolear) and variants of multi-valued types (eSequenceSe). In VIDE,
the required simple types are adopted from the ®@&knsion of UML. Other types used in
the VIDE PIM language (e.g. Date) are defined iibeary of types that may be imported to
any VIDE model.

6.2.1.1 Enumeration

Enumerationis a kind of data type that defines a finite setliterals. Enumerations are
mapped to Java enum types. The enum declaratianedet class implicitly extending
java.lang.EnumThe enumeration literals are translated intxediset of constant fields.

Example. Figure 25 show the mapping of an enumeration

=<enumeration== W1
Color
red '
. |oreen ; Color public enum {
- | blue : RED, GREEN, BLUE

Figure 25 : Enumeration mapping example

-40 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

6.2.1.2  TupleType

TupleTypas a metaclass adopted from OCL. Within instarxdéuple Typeseveral values of
different types can be combined. These tuples asxribed by their composition parts
(attributes); each part can be uniquely identifsdits name. As tuples are specified to be
immutable, instances GupleTypeand their values are created at the same timde3 upay
be compared based on their name and value ofdtighutes.

Directly mapping the metacla3sipleTypaequires some kind of lightweight data structure i
the target language, with similar value handlingas in Java primitive types. However there
IS no equivalent concept in Java. A working soluti® to implement tuples as instances of a
class nameduple This class controls access to an instangawaf.util. Map<String, Object>
that holds the names and values of the tuple atg#h The immutability of the map entries
can be ensured by making the mutator method d¥fthe protected.

Example. Listing 6.1 shows an OCL tuple. Applying the psepd mapping results in the
Java code fragment shown in Listing 6.2.

Tuple {name: String = ‘John’, age: Integer = 10}
Listing 6.1: Tuple mapping example (OCL statement input)

Tuple t1 = new Tuple(){{set("name”, "John"); set("a ge",

10):};
Listing 6.2: Tuple mapping example (output)

6.2.1.3 Primitivetypes

VIDE models use the primitive types provided by OGRCL defines four basic types
inheriting fromPrimitiveType Integer, Real Boolean andString Transferring these types to
equivalent Java constructs is straightforward; tbay be mapped directly to Java primitive
types, as shown in Table 2. However, there are eynel discrepancies as in OCL
everything is considered an object. This becompsarant in the context of collections — OCL
knows collections of basic types, whereas Javavallonly object reference collections. The
autoboxing feature in Java 5 hides this problemnahecessing and manipulating primitive
type collections. Nevertheless, the Java Wrapppe tgas to be used in the collection
declaration statement.

OCL basictype Javatype JavaWrapper type | Javadefault value
Boolean Boolean java.lang.Boolean false

Integer Int java.lang.Integer 0

Real Double java.lang.Double 0.0d

String String null

Table 2: Mapping of OCL basic types

-41 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

6.2.1.4  Collection types

Collection types are data types that can contaitiipiel elements of a specific type. Similar
to the basic types in the last section, collectigmes are obtained from the OCL standard
library. The library contains four implementatioosthe abstracCollectionTypeclass.Bag
instances may contain duplicates and have no agiesiSequencés an ordered bag; $etis

a bag without duplicates; and finally @mnderedSehas both unique and ordered elements.

There is an additional way to model collections.|] Aubclasses of the metaclass
MultipleElement(Property, Parameter and Variable) own the propertiesipper and lower
that specify the number of contained elements. #althlly, the mentioned metaclasses have
the propertiessUnique andisOrdered resulting in the four variants that are similarthe
listed subtypes of OCCollectionType

In Java, thgava.util.Collectionclasses can be used as equivalent counterpatis taatiants

of OCL CollectionType shown in Table 3, as well as for the mapping d¥iLlLU
MultipleElemerd, listed in Table 4. The tables provide suitadtistract declaration types and
additionally instantiation types that implement ttwlection interfaces used for declaration.
The instantiation types can be obtained from therigiined Java collection types with one
exception, as Java does not contain an adequatemofor ordered and unique multi-valued
types. Thelist interface can be used for declaration, as it piewithe necessary accessor and
mutator functionality. But the predefined implenamins ofList, e.g.java.util.ArrayList do
not ensure element uniquenegs/a.util. SortedSetnight be used in this contex@ortedSet
implements th&etinterface and additionally introduces element art®wever, this order is
strictly ascending as far as a comparator is coreckr ConsequentlySortedSetprovides
functionality to access the first and the last edatrof the ordering, but no direct access to
other positions. This mapping therefore introdume®wn implementationide.UniqueLisiof
thejava.util.Listinterface that ensures uniqueness when an elamadtied.

OCL Java

collection type  declaration type instantiation type

Bag(T) java.util.Collection(? extends T") java.#irayList(? extends T)
Sequence(T) java.util.List(? extends T) | java.utitadList(? extends T)
Set(T) java.util.Set(? extends T) | java.util. HasliBektends T)
OrderedSet(T) java.util.List(? extends T) | vide.Uragist(? extends T)

Table 3: Mapping of OCL collection types

-42 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
UML Java
type ordered unique declaration type instantiation type
T false false java.util.Collection(? extends :T) gautil.ArrayList(? exrends T)
T true false java.util.List(? extends T) | java.étitayList(? extends T)
T false true java.util.Set(? extends T) | java.utilsHSet(? extends T)
T true true java.util.List(? extends T) | vide.Unitjist(? extends T)

Table 4: Mapping of UML multiple elements

6.2.2 Classes and packages

In UML, packages are used to group elements andde@ shared namespace. Packages are
the primary mean of UML for the decomposition ofrq@ex models. Among other subtypes
of PackageableElemenpackages can recursively own packages resuhirggtree structure.
Moreover, packages can own instances of the UMlaol@tsClass Classes are the blueprint
for objects that share the same features, contrand semantics. Therefore, classes have a
name and a set of properties and operations. Wdhard to the organisation of classes, an
important concept is the generalisation relatiomdtetween classes. It allows reusing the
characteristics of classes, as instances of Alass be viewed as instances of clBsss well,

if B is a generalisation oA. UML does not restrict classes to have only a lsing
generalisation.

Mapping UML packages and classes to Java is stfargfard, as Java also uses classes,
organised in packages. The names of the resuléimg gackages and classes are taken from
the modelled names. Though metaclass Interfaceissaed in the VIDE modelling
language, it is useful to translate abstract UMAssEs to Java interfaces, if they only contain
constants and operations that do not contain betavDther UML classes are mapped to
Java implementation classes and, additionallynteriaces named like the classes, but with a
preceding “I". These interfaces are used for vaeiaeclaration.

The UML generalisation semantics can be transfetoethe Java concept of inheritance.
However, Java supports multiple inheritance onlyhwiegard to interfaces, and not with
regard to implementation classes. VIDE allows rpigtinheritance, but treats any inheritance
conflict as an error. This simplifies the mappimg, e.g. haming conflicts or the diamond
problem are not relevant. Based on this, the mapgpirategy described in the following is
sufficient.

All generalisations of the clagsare listed in the associatisaperClassClassA may extend
one class (calledxtensioh and may inherit from a list of interfaces (caliaterfaceLis}. In
the following, the elements stiperClassare mapped to the extension and interfaces:

1. All elements ofsuperClassthat are mapped (only) to an interface are addetthe
interfaceList

2. From the remaining elementssifperClasghe first one is used axtension

3. For the remaining classes the corresponding irdesfdnamed as the modelled class
with a preceding “I”) are added to timterfaceList Additionally, the properties and
operations of these superclasses are added ttadselody ofp, if A does not contain
equally typed and named properties, respectivedyaipns with the same signature.

-43 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Example. Figure 26 shows an UML class hierarchy with cla&% and A2 being
generalisations of clasB. Both A1 and A2 are non-abstract. With the mapping provided
above, this class hierarchy is transferred to tleealchy in Figure 27. Listing 3 shows the
Java output for clads.

...............................................

==|nterfaces== W1
: 1A2
> +doThatf)
A1 A2 L A1 A2
+edaThis) +cloThat) : +coThig) +daThat()
B B
. +claThat()
Figure 26 : Class inheritance mapping Figure 27 : Class inheritance mappin
example (input) example (transformed)

public class B extends Al implements A2 {
public void doThat(){

}

Listing 3: Class inheritance (output of class B)

6.2.3 Association

An association is a relationship that can occuwbeh typed instances. It has at least two
endsrepresented by properties, each of which is cdedeo the type of thend Instances of
association are called links. Associations are afitbe major abstraction concepts in object-
oriented modelling. However, there is no equivaleomhcept in Java language. Therefore,
mapping the association structures and semantickta must be transferred to adequate
classes, attributes and methods. VIDE modellingguage only makes use of binary
associations and excludes qualified associationd a@ssociation classes. The two end
properties are therefore mapped to attributes agitessor and mutator functionality in the
involved classes, if the opposiend is navigable. In the bi-directional case, the rarta
methods must ensure the synchrony of the oppaskehd.

6.24  Property

In UML, a property may occur as an attribute oflass as well as aend of an association.
Properties have mame, which is directly adopted by the Java attribate] atype. The UML
type can be ®ataType(cf. Section 6.1.1) or a class contained in thel@holf the upper
characteristic is greater than one, the Java tgdeianally depends on thaultiplicity of the
property. The resulting Java type is then a gereilection, as defined in Table 4, with the
mapped property type as element type.

-44 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Mapping the fouwisibility modifiers (public, protected, private, packageJJML Properties

to Java is straightforward, as Java has the sanesscontrol levels for attributes with almost
the same generated semantics. Nevertheless, pespente always mapped to private
attributes to support data encapsulation. If tlsgbuity of the property is not private, accessor
and mutator methods are produced as describedsisebtion. The access modifier of these
methods is mapped from the visibility of the praperAdditionally, there is a restriction
concerning the visibility used in bi-directionalsasiations — mutator methods of involved
endsare public as they must be accessible from thesifgside for synchronisation.

The property may be declareeadOnly andisStatic, which is mapped to thinal andstatic
modifiers in Java.

The following tables define a common interface ofessor and mutator method signatures
for properties. As several actions deal with adogsand manipulating properties and
associations this interface abstracts from thesgfit variants of properties.

Short name Method signature and description

ObjectGet +getProp() : T

Returns the value gifrop.

ObjectSet +setProp(T newValue) : void

Sets the attribute tamewValue If the mapped property is
memberEndof a bi-directional association, both old and new
values have to be synchronised. In case of a mallted
property, this update has to be performed for leinents of the
old and new collection.

Table 5: Basic field accessor and mutator methods

Table 5 lists the accessors and mutators that @mergted for all properties. The method
signatures assume that the property is identifeedrap and its type is mapped to the Java
typeT.

If the propertyprop is multi-valued, additional methods should be pitl as described in
Table 6. It is assumed that the UML type of therelets ofprop can be mapped to Java type
E.

Short name Method signature and description

ObjectAdd +addToProp(E value) : boolean

Tries to addvalue to the attribute. The return value indicates,
whether or not the addition was successful. In aafsa bi-
directional association, both old and new valuesehto be
synchronised.

ObjectRemove +removeFromProp(E value) : boolean

Tries to removeralue from the attribute. Returns whether or not

- 45 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

the removal was successful. In case of a bi-doaati
association, the involved instances must be updated

RemoveAll +removeAllFromProp() : void

Removes all elements from the attribute and updaedinks in
case of a bi-directional association.

HaslIn +hasInProp(E value) : boolean

Checks, if value is an element of the attribute.

IteratorOf +iteratorOfProp() : java.util.lterator<T>

Returns arterator over all elements of the attribute.

SizeOf +sizeOfProp() : int

Returns the number of elements of the attribute.

Table 6: Additional accessor and mutator methods for mudtited fields

Furthermore, if the multi-valued properprop is ordered, the methods listed in Table 7
should be generated additionally.

Short name Method signature and description

PositionGet +getProp(int position) : E

Returns the element gbsition from theprop collection. If this
element is not an instance DiataType the result depends on
whether or not the element is declared as destroyed
isDestroyed(of the element returns true, the element is remhove
from the list and PositionGet returns null. Othessyia referenc
to the element is returned.

(9%

PositionAdd +addAtindexToProp(int position, T newValue) : void

Adds newValueto the multi-valued attribute gbosition and
updates the links in case of a bi-directional asdor.

PositionRemove +removeAtindexFromProp(int position) : void

Removes element at position i from the attributecdse of a bi-
directional association, the removed instance bdsetupdated,
too.

Table 7: Additional mutator methods for multi-valued, ordéfeelds

The methods listed in Table 8 are not part of tbmmon accessor and mutator interface.
They are only generated in the context of ordes=s@ation ends to support the link actions
CreateLinkActiorandDestroyLinkAction

-46 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Short name Method signature and description

" +addAtindexToProp(int posl, T newValue, int pos2) :
DoublePositionAdd void
Adds newValueto the own association end attribute at position
posland causes theewValueinstance to add the calling object
to its association end attributepats2

DoublePositionRemov¢ +removeAtindexFromProp(int pos1, int pos2) : void

Removes element at positipeslfrom the own association end
attribute and causes this element to remove tigettabject from
its own association end attribute at posifppms2

Table 8: Additional mutator methods for multi-valued, ordggessociation ends

6.25 Operation

An operation is a behavioural feature of a classifhat specifies the name, type, parameters,
and constraints for invoking an associated behavidiiL operations are mapped to method
declarations in Java. The method body is derivethfthe associated activity. Mapping the
visibility of the operation to an equivalent Java accessfrapd straightforward, as shown
in the last section. Though VIDE does not adopt id#bstract characteristic of UML,
operations are mappedabstract method calls, if the class is modelled to be alostand no
activity is linked to the operation. The methwame is derived from th@ameproperty of the
UML operation; however it has to be checked if thethod has the same signature as the
accessor and mutator methods defined in the lasiose Conflicts should be resolved by
adapting the method’s name, e.g. by appending thegS'Modelled”. If the name of the
operation is equal to the name of the class thgoping this operation results in a Java class
constructor.

The method return type as well as the method argtsndepend on thearameters
contained in the operation. Parameters have fawdskof directionin, inout, out, andreturn.

A single parameter may be distinguished as a rgitarameter. The type and multiplicity of
this parameter are mapped to the Java return typbeomethod. The parameters with
direction kindin are translated to the method arguments. HoweVermetis no direct
conceptual counterpart for the remaining two patamdirectionsinout and out, as Java
method may not have multiple return types. To owere this limitation, this mapping
introduces additional attributes in the class @f ¢iperation. In case of directiamout, these
attributes are initialised with the argument valhat is to be passed into the method. After
method execution, the manipulated attribute is@aadn case of directioaut, only the latter
step is performed.

Example. Figure 28 shows the a claaxi with an operationrive() and a parameter of each
direction kind. Listing 4 shows the resulting ditries and methods in the Java clbasi, and
Listing 5 provides exemplary code that is usedalbtbe methodirive().

W1
: Taxi
. [+drivelinout location : Location | in passengers: Set<P erson=, retum reachedT arget : Boolean, out price : Money)
Figure 28 : Operation mapping example (input)
-47 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

private Location location;

public int getLocation() { return location; }

public void setLocation(double newValue) { location =
newValue; }

private double price;

public Money getPrice() { return price; }

public boolean drive(Set<Person> passengers)...}

Listing 4: Operation mapping example (output — attributesragthods)

aTaxi.setLocation(someLocation);

Boolean arrived = aTaxi.drive(setOfPersons);
someLocation = aTaxi.getLocation();

Money price = aCar.getPrice();

Listing 5: Operation mapping example (output — method calls)

6.3  Mapping Actionsto Java

This section defines how the UML actions that ar@uded in the VIDE metamodel [Ref.
D2.1] can be mapped to Java statements. The defisibf the different actions were taken
from D2.1 but they were extended to also show itdebrattributes and associations as these
are relevant for mapping the actions to Java sextésn

6.3.1 Sampleinput model for Actions

To exemplarily demonstrate the code fragments tiaguirom the specified actions mapping,
the following sample input model is introduced:

-48 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

package sxample )

Student
+ studentsCount : Integer
+ name : Skring
+ matricMumber : Integer
+ listOfExams : Inkeger[*] { ordered }

+ getstudentsCount() : Integer

* | +students

1 | +professor

Professor
+ setiofAssistants @ String[*] { unique b
+ collectionOfTitles : Stringl*]
+ unigueListOfPublications : Publication[*] { ardered, unique }
+ printStudents (includeMame @ Boolean, includeMatricMumber @ Boolean;
+ getFublicationByTitle (tithe : String) : Publication

Figure 29 : Example model

The multiplicity types of the structural features @hosen to cover all potential combinations
of the properties isUnique and isOrdered. The rggtof these structural features can be
determined by the prefix of their name:

Prefix isOrdered isUnique
collectionOf False false
listOf True false
setOf False true
uniqueListOf True true

Table9: Multiplicity table of the example

If for demonstration purposes multiple-valued logaliables or parameters are introduced,
they are named accordingly.

6.3.2 General Concepts

6.3.2.1 Action

As Action is an abstract class, no direct mappmdeava code is provided. The mapping of the
subclasses inheriting from the metaclass Actiodeiscribed in the following subsections of

this chapter.

-49 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

6.3.22  Object Flow

In an activity, objects can be passed between dhtmed actions using output pins, object
flows and input pins. The mapping rules of objdowf are relevant for many Actions.
Therefore, we define in the following a mappin@stgy for pins and object flows.

Mapping of InputPins, ObjectFlows and OutputPins

To reflect the flow of objects in the generatedalawde, a table is used to keep track of the
objects that are made accessible via object flotgeviraversing an action graph. This table
contains a map of each object flow contained inaittevity to a reference to the object flow’s
object.

Initialization of the object flow table:

The table is created when the UML Actions to Jagaegator enters an activity. All object
flows found in the activity are added to the table “empty” flows (respective object
references are set to null). Additionally, for &lttivityParameterNodes contained in the
activity the outgoing object flows are updated le tist to have a reference to the object
specified in the ActivityParameterNode.

Reading the object flow table (InputPins):

If the generator traverses an Action with InputPine referenced object can be accessed
using the object flow table. The incoming propesfythe InputPin specifies the object flow
entry in the table. The corresponding object refeeds used as input object for the Action.
(ValuePins are accessed in another way; see “MgpydivaluePins” section)

Updating the object flow table (OutputPins):

If there are OutputPins contained in the traver&etion, the object flows specified in the
outgoing property of the OutputPin are updated \aitteference to the object that is defined
as output object in the Action specification.

Mapping of ValuePins

A ValuePin is treated differently from other Inpui®, as this Pin is used to integrate an
expression in the code. This expression is of typkieSpecification and appears in two
different (subclass-)variants in VIDE: OpaqueExpi@s and ExpressioninOCL.

OpagueExpression:

In case of an OpaqueExpression the body propersaid, which is a list of Strings. The first
list element is used as value of the ValuePin & tlhde generation process. Additional
elements of the body property are discarded.

ExpressionInOCL.:

An ExpressionInOCL is the root element for an espien specified with OCL model
elements. This subtree has to be traversed to @entre Java String corresponding to the
expression. This String is integrated in the cogleegation process as value of the ValuePin.

6.3.3 Invocation Actions

-850 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

6.3.3.1  CallOperationAction

The generator takes the nameof the Operation associated to thallOperationActionand
uses it in an operation call statement in Java.

If the Operation is static then the name of thehoeétcall statement should include the name

of the class where the method is defined. The mé&bion on whether an operation is static or

not is available using the attribuigStatic The name of the class where a static method is
defined can be accessed using the association &etlve metaclass€@perationandClass

If the Operation is not static, the name of thgeaobject instance has to be included in the
generated Java method call statement. The nambecget from the target input pin of the
action (cf. Chapter 1.1.2).

For each argument input pin contained in the argurhist of the action the name of the
referenced object has to be included as paramreteeigenerated Java method call statement.

If the Operation has a return type (determinedheyexistence of a contained parameter with
direction set taeturn) then a new temporary variable is declared (captér 1.1.4) and the
method call statement in Java is generated asgheside of an assignment statement to that
new variable. Additionally, a reference to the iesibject is stored in the outputPin (cf.
chapter 1.1.2).

Examples (based on the sample model introducegperdix A):

1) A CallOperationAction of the operatigetStudentsCountontaining a result outputpin:

CallOperationAction

operation := getStudentsAccol

resul

The static OperatiogetStudentsCounsg contained in the Clasgudentand has a parameter
of type integer and directionreturn. Therefore, the CallOperationAction results in the
following Java code fragment:

int var__1 = Student. get St udent sCount ();

2) A CallOperationAction of the operatigmintStudentscontaining a target InputPin and two
argument InputPins.

-51-
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

| | |

[ targe | [argumer] [argumer]
CallOperationAction

operation :=printsStudent

The operatiorprintStudentdgs not static and has no Parameter of directiturme Assuming,
that via target InputPin an instance of clRssfessorwith identifier professorAis accessible
and both argument InputPins can be resolved tdhtmdean valudrue, the following code
fragment will be generated:

professorA.printStudents( true , true );

6.3.3.2  ReplyAction

A return statement in Java (“return”) is generdtedh this action and the statement generated
for the first replyValue statement is appendedJasa does not support multiple return values
in a return statement, only the first reply valsi¢aken into account. The others are discarded.

Example (based on the sample model introduced peiglix A):

reply value

ReplyAction

ReplyAction containing a reply value InputPin:

Assuming, that the reply value InputPin can belvesbto an object with the identifiealue
the following code is generated:

return value;

6.3.4  Object Creation Actions

6.34.1  CreateObjectAction

-52 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

This action is mapped to a constructor call statenmeJava. The name of class (which is also
the name of the constructor method in Java) is ssigle through the association to the
metaclass Classifier. According to the definitidritos action, no parameters can be passed.

Similarly to method calls with return values a neariable that has the same type as the
constructor class (i.e., the classifier referenicethe action) is declared and an assignment
statement is generated so that the constructostedéiment is assigned to that new variable. A
unique identifier that is not already used in thedeis is used for that new variable (cf.
Section 1.1.4).

Example :

A CreateObjectAction with its classifier set to tBkss Publication:

CreateObjectAction

classifie := Publicatior

resul

Assuming, that the name property of the result Qi is set taesult the following Java
code is generated:

Publication result = new Publication();

6.3.4.2  DestroyObjectAction

Java does not provide destructors. The garbagectotlautomatically determines, what data
objects are no longer accessed and reclaims tberces used by these objects. Therefore, a
DestroyObjectAction is mapped to an assignmenudfta the object reference specified with
the target InputPin.

Example :

A DestroyObjectAction containing a target InputPin:

targe

DestroyObjectAction

-B3 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

If the target InputPin can be resolved to an objet#rence namedar, the following code
will be generated:

var= null ;

6.3.5 StructuralFeature Actions

Figure 3 shows the structural feature actions inLl2Mn the following, we will describe the
mapping of the actions to Java.

The structural feature specified in these actioas be a property of the object or an
association end. With the interface of accessormanthtor methods defined in section 1.1.3,
there is no need to distinguish between these tnaskof structural features. If one of these
methods is referenced in the following subsectidhs,short name defined in the tables of
sections 1.1.3 will be used (e.g. “Getter”, “Obfemove”).

6.35.1 AddStructuralFeatureValueAction

This action is mapped to an assignment statemedava. To generate the left side of the
assignment the object input pin is used for gemagathe object reference string and the
structural feature name is used for generatingttrdoute name in Java. The right-side of the
assignment is generated using the value inputhbinvever, the generated code depends on
the multiplicity of the structural feature (determad from its “Upper” value). If the feature is
multi-valued, several cases have to be differesdidtased on the structural feature’s attribute
“isOrdered” and the action features “isReplaceAiltid “insertAt”:

* Non-multiple Structural Feature: a normal assignmea Setter method is generated.
(example 1)
* Multiple Structural Feature:
o replaceAll = true: generates a replacement vieeSetethod. (example 2)
o replaceAll = false:
»= not ordered: generates an insertion using the @jlecmethod. (example
3)
= ordered:
* insertAt = null: generates an insertion at the efthe list using the
ObjectAdd method. (generated output is equivaletxample 3)
* insertAt =pos generates an insertion at positrsusing the
PositionAdd method. (example 4)

Example :

1) An AddSructuralFeatureAction with a non-multigkeuctural feature:

-54 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

[ objec | [ value |
AddStructuralFeatureAction

structuralFeature := name
isReplaceAll := (ignored)

Assuming that the object InputPin can be resoled tStudenstudentXYand the value
InputPin can be resolved to the Strignton” , the generated code is then:

studentXY.setName("Anton");

2) An AddStructuralFeatureAction with a multiplehved structural feature and the property
isReplaceAll set to true:

[ obiec | [ value |
AddStructuralFeatureAction

structuralFeature := listOfExams
isReplaceAll ;= true

Assuming that the object InputPin can be resoled tStudenstudentXYand the value
InputPin resolves to a list of ExamIBemeExamListhe generated code is:

studentXY .setListOfExams(someExamList);

3) An AddStructuralFeatureAction with a multiplelved structural feature and the property
isReplaceAll set to false. Additionally, the Actiocantains an insertAt InputPin:

[ objec | [ value |
AddStructuralFeatureAction

structuralFeature := setOfAssistants
isReplaceAll := false

Assuming that:
- the object InputPin can be resolved to a ProfgssmiessorXyY

- the value InputPin can be resolved to a String wiémtifier aString
The following code will be generated:

-55 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

professorXY.addToSetOfAssistants(aString);

4) An AddStructuralFeatureAction with a multiplehvad structural feature and the property
isReplaceAll set to false. Additionally, the Actiocantains an insertAt InputPin:

!

[ objec | [ value | [insertar |
AddStructuralFeatureAction

structuralFeature := listOfExams
isReplaceAll := false

Assuming that:
- the object InputPin resolves to a StudemdentXY
- the value InputPin resolves to an integeamID
- the insertAt InputPin resolves to an integetexPos
The following code is generated:

studentXY.addAtindexToListOfExams(indexPos, examID) ;

6.35.2 Clear Structural FeatureValueAction

The mapping of this action to Java depends on thi@éphcity of the structural feature. If it is
multi-valued, the methoemoveAllis called on the structural feature (example 1).

If not multiple valued, a Setter method call is geted, In the case of a non-primitive type
the attribute value is set to null (example 2). édtfise, the Java default value (given in the
table below) of the respective primitive type igds

Primitive Type Default Value
byte, short, int 0

long oL

float 0.0f

double 0.0d

char ‘\u0000’
boolean false
Example :

1) A ClearStructuralFeatureAction with a multiplehwed structural feature:

-56 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

objec

ClearStructuralFeatureAction

structuralFeature :=student

If the object can be resolved to a Professor imgtanith the identifierprofessorXy the
following code fragment is generated:

professorXY.removeAllFromStudents();

obiec

ClearStructuralFeatureAction

structuralFeatur := name

2) A ClearStructuralFeatureAction with a non-mu#tvalued structural feature:

If the object can be resolved to a Student instavittethe identifierstudentXYthe following
code fragment is generated:

studentXY.setName( null );
6.3.5.3  RemoveStructural FeatureValueAction

If the structural feature is not multi-valued (uppe= 1), this action is treated similarly to
ClearStructuralFeatureAction (see 1.4.2).

If the structural feature is multiple, four casem wccur depending on the values of the
properties isUnique and isOrdered:

1) unique and ordered (Unique List):
isRemoveDuplicates is ignored because the Lidtésdy unique.

a) removeAt = i; a PositionRemove method call imegated. An object possibly
specified as value of the value input pin is igaofexample 1).

b) removeAt = null: an ObjectRemove method cafjeserated (example 2).
2) unique and unordered (Set):

iIsRemoveDuplicates is ignored because the Setaadl unique.

removeAt is ignored because the Set is unordered.

An ObjectRemove method call is generated (anal@axémple 2)
3) not unique and ordered (List):

a) removeAt =i

-57-
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

l. isRemoveDuplicates = true: First, a new, tempovariable (cf. chapter 1.1.4)
of the same type as the structural feature elemerdeclared and initialized
with the structural feature element at position oeeit. Afterwards, a
PositionRemove-method call is generated, as astesément in an empty
while loop. The new variable serves as parametehefremove method. An
object possibly specified as value of the valuaiirgn is ignored. (example 3)
Il. isRemoveDuplicates = false: A PositionRemovethund call is generated
(analog to example 1). An object possibly speciisdralue of the object input
pin is ignored.
b) removeAt = null
|. isRemoveDuplicates = true: An ObjectRemove-méth® called as a test
statement in an empty while loop. The object spettivith the value InputPin
is the parameter of this method. (example 4)
Il. isRemoveDuplicates = false: an ObjectRemove haett call is generated
(analog to example 2)
4) not unique and unordered (Collection):
removeAt is ignored because the Collection is ued.

Comparable to case 3b.

a) isRemoveDuplicates = true: An ObjectRemove-nttiBaalled as a test statement
in an empty while loop. The object specified withetvalue InputPin is the
parameter of this method. (analog to example 4).

b) isRemoveDuplicates = false: an ObjectRemove oaetall is generated (analog to
example 2).

Example :

1) A RemoveStructuralFeatureAction with a uniqu-lkind of structural feature and a
contained removeAt InputPin:

objec removeA

RemoveStructuralFeatureAction

structuralFeature := uniqueListOfPublications
isRemoveDuplicates := (ignored)

Assumptions:
- the object InputPin can be resolved to a ProfgssmfessorXyY

- the removeAt InputPin resolves to an InteigelexPos
The following code is generated:

professorXY.removeAtindexFromUniquelistOfPublicatio ns(indexPos);

- 58 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

objec value

RemoveStructuralFeatureAction

structuralFeature := uniqueListOfPublications
isRemoveDuplicates := (ignhored)

2) A RemoveStructuralFeatureAction with a uniquet-kind of structural feature, without
removeAt InputPin:

Assumptions:
- the object InputPin can be resolved to a ProfgssgiessorXyY
- the value InputPin can be resolved to a Publica®uablication
The following code is generated:

professorXY.removeFromUniquelistOfPublications(aPub lication);

3) A RemoveStructuralFeatureAction with a non-ueidkind of structural feature and a
removeAt InputPin, isRemoveDuplicates set to true:

objec removeA

RemoveStructuralFeatureAction

structuralFeature := uniqueListOfPublications
isRemoveDuplicates := true

Assumptions:
- the object InputPin can be resolved to a ProfgssagiessorXyY
- the removeAt InputPin can be resolvedto

The following code is generated:

Publicationvar_1 =
professorXY.getUniqueListOfPublications().get(7);
while (professorXY.removeFromUniqueListOfPublications (v ar__1){}

4) A RemoveStructuralFeatureAction with a non-ueiqind of structural feature,
isRemoveDuplicates set to true:

-59 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

objec value

RemoveStructuralFeatureAction

structuralFeature := collectionOfTitles
isRemoveDuplicates := true

Assumptions:
- the object InputPin can be resolved to a ProfgssagiessorXyY
- the value InputPin can be resolved to a Stamgle.

The following code is generated:

while (professorXY.removeFromCollectionOfTitles(aTitle)) {}

6.3.6 Link Actions

Link actions are only used in the context of asstomns. As the interface of accessor and
mutator methods defined in section 1.1.3 are géeeror both properties and association
ends, this functionality can be used in the follegvimapping rules (referenced by the short
name defined in the tables of sections 1.1.3).

6.3.6.1 Clear AssociationAction

ClearAssociationAction is mapped to RemoveAll metlmalls on the object passed to the
action via the object InputPin.

Associations contained in VIDE models are limitecatmaximum of 2 navigable association
ends, which are listed in the association’s navef@ivnedEnd property. To determine the
respective association end for the object input thi@ type of that object is compared with the
type of both association ends found in navigableéEnd. For each type match, the
elements associated with the input pin object ateted by generating a call to the respective
RemoveAll method. Note, that the input pin objest e a member of both ends in case of a
looping association is looping.

Example :

A ClearAssociationAction with an object InputPin:

-60 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Associaton 0 F---»
name :=ProfessorStudents l_obiiec

navigableOwnedEnds 7 E ClearAssociationAction

(students, professor)

----- » associatio := ProfessorStuder

Assumptions:
- the object InputPin can be resolved to a ProfgssufessorXyY
This is mapped to the following code fragment:

professorXY.removeAllFromStudents();

6.3.6.2 CreatelLinkAction

The mapping of a CreatelLinkAction depends on th®rmation given with the two
associated LinkEndCreationData (in the followinezhA and B) elements.

If the properties specified by A and B are non-iiplé{ the CreateLinkAction is mapped to a
Setter method call with the value InputPins of Al @& respectively as target and parameter
(example 1).

If the properties specified by A and B are multipldued and isOrdered is set to false, the
insertAt InputPin is ignored (the “insertAt = nulléase is described in the following

mapping).

Moreover, the property isReplaceAll of A and B ahdir optional insertAt InputPin have to
be taken into account:
- isReplaceAll = false for both:
- insertAt = null for both:
An ObjectAdd method call is generated. The target parameter of this method is
specified by the value InputPins of A and B (exaai).
- insertAt not null for A, insertAt = null for B
A PositionAdd method call is generated. The targapecified by the value InputPin
of B, the position parameter by the insertAt Inpatéf A, the object parameter by the
value InputPin of A (example 3).
- insertAt = null for A, insertAt not null for B
(symmetric to the last case)
- insertAt not null for both
A DoublePositionAdd method call is generated. Téugedt is specified by the value
InputPin of B, the first position parameter by iheertAt InputPin of A, the object
parameter by the value InputPin of A, the seconsitipm parameter by the insertAt
InputPin of B (example 4).
- isReplaceAll = true for A, isReplaceAll = false Br
(insertAt of A is ignored)
- insertAt = null for B

-61-
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

A RemoveAll method call is generated with the vala@utPin of B as target.
Afterwards, the AddObject method call is generataking the two objects specified
by the value InputPins as target and parametenypbea5).
- insertAt not null for B
A RemoveAll method call is generated with the vala@utPin of B as target.
Afterwards, a PositionAdd method call is generafBde target is specified by the
value InputPin of A, the position parameter by itertAt InputPin of B, the object
parameter by the value InputPin of B (example 6).
- isReplaceAll = false for A, isReplaceAll = true Br
(symmetric to the last case).
- isReplaceAll = true for both.
(insertAt is ignored for both)
For both objects specified by the value InputPiha and B, a RemoveAll method call is
called. Then, the AddObject method call is genekaizking the two objects specified by
the value InputPins as target and parameter. (ebeamp

Examples:

1) A CreateLinkAction dealing with two single-vatliproperties:

value value

LinkEndCreationData LinkEndCreationData
name := A name := B

property := singleAttrA property := singleAttrB
isReplaceAll := (ignored) isReplaceAll := (ignored)

CreateLinkAction

e » LinkEndCreationDat := (A, B €-----

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
This is mapped to the following Java code fragment:

objectB.setSingleAttrA(objectA);

2) A CreateObjectAction dealing with multiple-vatlje ordered properties. For both
LinkEndCreationDatas, isReplaceAll is set to fasd no insertAt InputPin is contained:

-62 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
value value
LinkEndCreationData LinkEndCreationData
name .= A name ;=B
property := listOfAs property := listOfBs
isReplaceAll := false isReplaceAll := false

CreateLinkAction

e » LinkEndCreationDat := (A, B €-----

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
This is mapped to the following code fragment:

objectB.addToListOfAs(objectA);
3) Same setting as example 2, but A has an inserpAtPin.

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
- the insertAt InputPin of A can be resolved to 3.
This is mapped to the following code fragment:

objectB.addAtindexToListOfAs(3, objectA);
4) Same setting as example 2, but both LinkEndDizd&e an insertAt InputPin.

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
- the insertAt InputPin of A can be resolved to 3.
- the insertAt InputPin of B can be resolved to 5.
This is mapped to the following code fragment:

objectB.addAtindexToListOfAs(3, objectA, 5);
5) Same setting as example 2, but isReplaceAll &f get to true.

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
This is mapped to the following code fragment:

-63 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

objectB.removeAllFromListOfAs();
objectB.addToListOfAs(objectA);

6) Same setting as example 2, but isReplaceAll of det to true and B contains an insertAt
InputPin.

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
- The insertAt InputPin of B can be resolved to 3.
This is mapped to the following code fragment:

objectB.removeAllFromListOfAs();
objectA.addToListOfBs(3, objectB);

7) Same setting as example 2, but isReplaceAétisostrue for both A and B:

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
This is mapped to the following code fragment:

objectA.removeAllFromListOfBs();
objectB.removeAllFromListOfAs();
objectA.addToListOfBs(objectB);

6.3.6.3  DestroyLinkAction

The mapping of a DestroyLinkAction depends on the associated LinkEndDestructionData
elements (in the following called A and B).

If the properties specified by A and B are non-iipldt the DestroyLinkAction is mapped to a
Setter method call with the value InputPins of Ataxget and null as parameter (see example
1). This setter method will set the respective propof B to null.

If the properties specified by A and B are multipldued and isOrdered is set to false, the
destroyAt InputPin is ignored (the “destroyAt = utase is addressed in the following

mappings).

If the properties specified by A and B are multipldued and isUnique is set to false, the
property isRemoveDuplicates is ignored (the “isReemuplicates = false” case is addressed
in the following mappings).

Moreover, the property isRemoveDuplicates of A Brahd their optional destroyAt InputPin
have to be taken into account:
- isRemoveDuplicates = false for both:
- destroyAt = null for both:
An ObjectRemove method call is generated. The tagd parameter of this method
is specified by the value InputPins of A and B (sgample 2).
-64 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

- destroyAt not null for A, destroyAt = null for B
A PositionRemove method call is generated. Theetarg specified by the value
InputPin of B, the position parameter by the dggitdnputPin of A (see example 3).
- destroyAt = null for A, destroyAt not null for B
(symmetric to the last case)
- destroyAt not null for both:
A DoublePositionRemove method call is generatece Tdrget is specified by the
value InputPin of B, the first position parametgrthe insertAt InputPin of A, the
second position parameter by the insertAt Input?iB (example 4).
- isDestroyDuplicates = true for A.
(destroyAt of A and isDestroyDuplicates and desitogf B are ignored, as all Links
between A and B are destroyed.)
An empty while loop with an ObjectRemove method eal test statement is generated.
The target of the method call is specified by thkig InputPin of B, the parameter by the
value InputPin of A. (example 5)
- Other Combinations: Similar to the last case.

Examples:

1) A DestroyLinkAction dealing with simple-valuedgn-multiple) properties:

value value

LinkEndDestructionData LinkEndDestructionData

name ;= A name ;=B

property := simpleAttrA property := simpleAttrB

isRemoveDuplicates := (ignored) isRemoveDuplicates := (ignored)
! DestroyLinkAction E

oo o » LinkEndDestrutionDate := (A, B’ *----- !

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
This is mapped to the following code fragment:

objectB.setSimpleAttrA( null );

2) A DestroyLinkAction dealing with multiple-valugdrdered properties. The property
isDuplicatesRemove is set to false for both A andd@destroyAt InputPins are contained:

- 65 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
value value
LinkEndDestructionData LinkEndDestructionData
name .= A name =B
property := listOfAs property := listOfBs
isRemoveDuplicates := false isRemoveDuplicates := false
E DestroyLinkAction E
leee o » LinkEndDestrutionDatz := (A, B’ €----- '

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
This is mapped to the following code fragment:

objectB.removeFromListOfAs(objectA);
3) Same setting as example 2, but A has a destriopitPin.

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
- The destroyAt InputPin of A can be resolved to 3.
This is mapped to the following code fragment:

objectB.removeAtindexFromListOfAs(3);
4) Same setting as example 2, but both A and B halestroyAt InputPin.

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
- The destroyAt InputPin of A can be resolved to 3.
- The destroyAt InputPin of B can be resolved to 4.
This is mapped to the following code fragment:

objectB.removeAtindexFromListOfAs(3, 4);
5) Same setting as example 2, but isDuplicatesRensoset to true for A.

Assumptions:
- the value InputPin of A can be resolved to objectA.
- the value InputPin of B can be resolved to objectB.
This is mapped to the following code fragment:
- 66 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

while (objectB.removeFromListOfAs(objectA){}

6.3.7 ValueProcessingActions

6.3.7.1  ValueSpecificationAction

A ValueSpecificationAction is only used in the ocexit of a Clause (as part of a
ConditionalNode) and a LoopNode. In both casespthrpose is to introduce the expression
used as test criterion. The generated code foratttisn is the Java code generated from the
OCLExpression of the contained value input pin.

6.3.7.2  ValueSpecification

In Vide, ValueSpecifications are only used indineas superclass of OpaqueExpression,
which is again a superclass of ExpressioninOcl.réfoee, it is sufficient to only focus on
code generation for OpaqueExpression and for EgmesOCL. If we have an
OpaqueExpression, then the generated code wouldebleody. The generation of java code
from OCL expressions is completely covered by irdggn of an external OCL Compiler,
consequently we will not address it here.

6.3.8 VariableActions
6.3.8.1 AddVariableValueAction

The mapping of this action is very similar to theapping of the action
AddStructuralFeatureValueAction. In the simple ca$ea non multiple-value variable this
action is mapped to an assignment statement in(@axample L The name of the variable is
used in the left side of the assignment. The vaipat pin is used to generate the expression
value at the right side of the assignment. In thgecof a multi-value variable several cases
have to be differentiated as explained below:

» isReplaceAll = true: generates a replacement asggh(analog to example 1).
* isReplaceAll = false:
0 not ordered: generates an insertion (call to tlieradthod of the Java collection
interface List, example 2).
0 ordered:
= insertAt = null: generates an insertion at the ehithe list using the add
method of the Java collection interface List, (agab example 2).
= insertAt not null: generates an insertion at thsifmn specified by insertAt
using the add method of the List interface tha¢sak position and a value
(example 3).

Examples :
1) An AddVariableValueAction with a non-multiple nable:

-67 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
Variable  L_______ .
name := publ X
type := Publication | i
upper:=1 ! value
E AddVariableValueAction
R variable := publ

ASsumption:
- the value InputPin can be resolved to a Publica®uablicatian
The following code is generated:

| publ = aPublication; |

2) An AddVariableValueAction with a multiple-valuedot ordered variable and the property
replaceAll is set to false:

Variable — L___,

name := setOfAssistants E ’_l_‘
type := String ! value
upper = * ! AddVariableValueAction

isOrdered :=false | . ____ » variable:= setOfAssistants

isReplaceAll := false

Assumption:
- the value InputPin can be resolved to a Sttig Best”
The following code is generated:

setOfAssistants.add( "Dr. Best" );

3) An AddVariableValueAction with a multiple-valuedrdered variable and the property
replaceAll set to false. Additionally, it contaias insertAt InputPin:

Variable | _.__.

]

. 1

name := listOfExams ' ’_l_‘ ’_l_‘

! value insertAi
1
1
1
1
1

type := Integer
upper = * AddVariableValueAction

isOrdered := true

----- » variable:= listOfExams
isReplaceAll := false

Assumption:
- the value InputPin can be resolved to an IntégeamID”
- the insertAt InputPin can be resolved to an IntégelexPos”
The following code is generated:
- 68 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

listOfExams.add(indexPos, examID);

6.3.8.2 ClearVariableValueAction

If case of a single-value variable that has a nomipve type an assignment of the variable to
null is generated (var = null;). In case of a ptiv@ type, the variable is set to the default
value (see table in section ClearStructuralFeatctieA). In the case of a multi-value variable
the methoctlear of the Java collection classes is called to dedéitealues contained in the
variable.

Example (based on the sample model introduced peiglix A):

A ClearVariableAction with a multiple-valued varlab

Variable —  |___,

name := listOfExams E
type := Integer !

upper = * ClearVariableValueAction

isOrdered := true

————— » variable := listOfExam

The following code is generated:

listOfExams.clear();

6.3.8.3 RemoveVariableValueAction

If the Variable is not multi-valued (upper == 1Jid action is treated similarly to
ClearVariableAction: for primitive types the variabs set to the default value, otherwise the
variable is set to null.

If the variable is multi-valued, four cases canuwatepending on the properties isUnique and
isOrdered:

1) unique and ordered (UniqueList):
isRemoveDuplicates is ignored because the lidteady unique.

a) removeAt not null: remove(int)-method of claasg.util.List is called. An object
possibly specified as value of the value inputipiignored (see example 1).

b) removeAt = null: remove(Object)-method of clgasa.util.List is called (see
example 2).

2) unique and unordered (Set):
iIsRemoveDuplicates is ignored because the Setaadl unique.
removeAt is ignored because the Set is unordered.
remove(Object)-method of class java.util.Set isech{analog to example 2).

-69 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

3) not unique and ordered (List):
a) removeAt not null

l. isRemoveDuplicates = true: first, a new, tempprariable (cf. chapter 1.1.4)
of the same type as the variable elements is detland initialized with the
variable element at position removeAt. Afterwandsnove(Object)-method of
class java.util.List is called as a test statentean empty while loop. The new
variable serves as parameter of the remove metAod.object possibly
specified as value of the value input pin is igaoiexample 3)

Il. isRemoveDuplicates = false: remove(int)-methofl class java.util.List is
called. An object possibly specified as value @& ¢fject input pin is ignored
(analog to example 1).

b) removeAt = null

l. isRemoveDuplicates = true: A remove(Object)-roetiof class java.util.List
with the is called as a test statement in an emytie loop. The object
specified with the value InputPin is the paramefehis method. (example 4)

Il. isRemoveDuplicates = false: remove(Object)-moétf the class java.util.List
is called (analog to example 2).

4) not unique and unordered (Collection):
removeAt is ignored because the Collection is ued.
(Comparable to case 3b).

a) isRemoveDuplicates = true: A remove(Object)-radtbf class java.util.Collection
with the is called as a test statement in an empiye loop. The object specified
with the value InputPin is the parameter of thighrod. (analog to example 4).

b) isRemoveDuplicates = false: remove(Object)-methiothe class java.util.Collection
is called (analog to example 2).

Examples :

Variable F--s
!

name :=uniqueListOfPublicationg | !ﬁ%ﬁ\
|

type = Publications RemoveVariableValueAction

upper :=*
?sOr(-jered =true | te---- » variable:= uniqueListOfPublications
isUnique := true isRemoveDuplicates := (ignored)

1) RemoveVariableValueAction with an ordered anajue variable. A removeAt InputPin is
contained.

Assumption:

- the removeAt InputPin can be resolved to an IntégeamID”
The following code is generated:

uniqueListOfPublications.remove(indexPos);

-70 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

2) RemoveVariableValueAction with an ordered andjue variable. A value InputPin, but
no removeAt InputPin is contained.

Variabe —  F----
name :=uniqueListOfPublicationg !T*ue_\

type := Publications E

upper := * RemoveVariableValueAction

?sOrqlered =true | e---- » variable:= uniqueListOfPublications

isUnique := true isRemoveDuplicates := (ignored)
Assumption:

- the value InputPin can be resolved to a Publicd{poil”
The following code is generated:

uniqueListOfPublications.remove(publ);

3) RemoveVariableValueAction with an ordered and-naique variable. The property
isRemoveDuplicates is set to true.

Variabe —  F----
name :=listOfExams removeA

type := Integer E

upper = * RemoveVariableValueAction

?sOrqlered =true | te---- » variable:= listOfExams

isUnique := false isRemoveDuplicates := true
Assumption:

- the removeAt InputPin can be resolved to an IntégeexPos”
The following code is generated:

I nt var__1 = listOfExams.get(indexPos);
while (listOfExams.remove(var__1)){}

4) RemoveVariableValueAction with an ordered and-naique variable. The property
isRemoveDuplicates is set to true.

Variable r=-3
name :=listOfExams

type = In:eger RemoveVariableValueAction
upper :=

isOrdered := true ---» variable:= listOfExams
isUnique := false isRemoveDuplicates := true

-71 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Assumption:
- the value InputPin can be resolved to an IntégeamID”
The following code is generated:

while (listOfExams.remove(examID)){}

6.4  Mapping of Activitiesto Java

This section presents the mapping of metaclasdeseden the activity package.

The notation used to present mapping is:
* Courier font stands for literal expressions
» Italic font stands for VIDE metamodel terms (classes, gmogs)
* map word stands for : apply the mapping of theofeihg metamodel term.

6.4.1 Activity

Activities can be mapped to Java method declaraiging their name and their parameter.
But this information is more formally specified Hye owning operation. Therefore, there is
no direct mapping of activities to Java.

6.4.2 ActivityEdge
This is an abstract class and there is no direpipimg to Java.
6.4.3 ActivityNode

This is an abstract class and there is no direpiping to Java.

6.4.4 Behavior

Although this class is not abstract, there is nedliinstance of it. So there is no direct
mapping to Java

6.4.5 ConditionalNode & Clause

For the first clause, generate &@n statement, for other clauses, generakse if
statements.

-72 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

The last clause has an always ttestassociation by construction so there is no neeadbto
specific mapping for it.

For each clauses, itsstassociation is used to generate the Java test.

The order, the clauses are generated, is givehdsuccessorClausandpredecessorClause
associations of th€lausemetaclass.

Example :

if ( map 1%test clausp{
map 1st body clause
}

else if ( map 2nd test claugg
map2nd body clause
}

else if (true) {

maplast body clause
}

Remarks:

It is assumed that the ExecutableNode inltbdy association are ordered in their sequential
execution position.

It is assumed that the ExecutableNode in tést association have an emphandler
association.

It is assumed thaestassociation contains only oB&ecutableNode

VIDE Switch statement are transformedfielse if expressions in Java

6.46 ControlFlow

ControlFlow is not mapped to specific Java statdrbahit is important to generate statement
in the appropriate sequential order.

6.46.1.1.1 ControlNode

This is an abstract class and there is no direpiping to Java.

6.4.6.1.1.2 ExceptionHandler

-73-
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

It is mapped to Java with the following pattern :

try {

}

catch ( mapexceptionType[Ofnapexceptioninpu} {
map handlerBody

}

mapprotectedNode

catch ( mapexceptionType[nmmapexceptioninpuj {
maphandlerBody
}

remarks protectedNodes the back pointer ohandlerassociation in ExecutableNode

6.4.6.1.1.3 ExecutableNode

This is an abstract class and there is no direpiping to Java.
Handlerassociation is checked to map ExceptionHandler.
6.4.7 ExpansionRegion, ExpansionNode

It is mapped to Java 5 with the following pattern:

for(  Aa: mapinputElement[0])
{

}

mapStructuredActivityNode
WhereA is mapped frontype association ofinputElementType should be a collectioA,is
the type of elements in the collection.
VIDE doesn’t support returning elements fr&xpansionRegiomvocation.

If Expansionregionhas more than oneputElement the loop is duplicated for every
inputElement

6.4.8 ForkNode

It is mapped to a Java thread creation. The ouggfbinv is generated inside tmen method
of the thread and the method is finished when tmeespondingloinNodeis encountered.

-74 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Figure 30 : Example of Forknode
The mapping of the example presented Figure 1 is :

map |
Thread t1 = new Thread() {
public void run() {
map A
} /I the JoinNode is reached
}.start();
Thread t2 = new Tread() {
public void run() {
map B
} /I the JoinNode is reached
}.start();
I/ wait for both threads to finish
t1.join();
t2.join();
map C

6.4.9 LoopNode

It is mapped towhile or do while  statement depending of the valueisfestedFirst
attribute.

The whole Java loop expression is embedded inck litbconceatetupPartvariables inside
the loop perimeter.

* If isTestedFirsts true :

{
mapsetupParfo]

r.riépsetupPar[m]
while( maptes{o] ) {
mapbodyPart[0]

-75 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

+ If isTestedFirsts false :

mapsetupPariO]

mapsetupParjn]
do {
mapbodyPar{0]
} while( maptes{0] )
}
Remarks
It is assumed thaestassociation contains only oB&ecutableNode

It is assumed thdtodyPartassociation contains only oB&ecutableNode

Vide for loops are generated as Jawdle loops.
6.4.10 ObjectFlow
There is no direct mapping of ObjectFlow to Javhje©tFlow are followed to find variable
or parameter to be passed to method invocatiossigmment statements.
6.4.11 ObjectNode
This is an abstract class and there is no direppmg to Java.
6.4.12 SequenceNode
It is mapped to a block with variable declarati@ml executable node taken respectively
from variable andexecutableNodassociations
mapvariable[0]

ﬁ'{apvariable[n]
mapexecutableNode[0]

;r.l.apexecutableNode[n]

-76 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

6.4.13 StructuredActivityNode

This is an abstract class and there is no direpipimg to Java.

6.4.14 Variable

Modeled Variables:

If a Variable is contained in a StructuredActivitydke (e.g. SequenceNode) it is mapped to a
variable declaration at the beginning of the geieeraode block. The reason for this is that
the variables are not contained in a special ofdermentioned in the ordered list of
ExecutableNodes).

The variable is mapped to Java variable declarasofollows :

maptypemapname= mapdefaultValue

Wheretypeassociation indicates the type of the variabladrited from TypeElementhame
is an attribute ofvariable (inherited from NamedElement) ardkfaultValueassociation
indicates an optional default value.

If defaultValueassociation is null, variable is initialised wahdefault value according to its
type, as described in Table 2.

Temporary Variables:

Additionally, the mappings described in the follogi chapters suggest to introduce
temporary (not modelled) variables at certain mifthese variables are used to store the
results of the actions.

The type of the temporary variables can be detexdchinom the result specification of the
action. The identifier can be determined from taena of the OutputPin. If the name property
is not set, a unique identifier has to be chosémerwise name conflicts could appear. To
ensure the uniqueness of the chosen identifiergémerator has to check, whether or not an
identifier called “var__ (i)” (with (i) being the tager value of an counter) is already used in
the actual context. The check has to take locahbkes, parameters and fields of the class
into account. If a conflict is detected, the counseincremented and the check is repeated
with “var__ (i+1)". Otherwise *“var__(i)” is chosensaidentifier and the counter is
incremented. The counter is reinitialized when eng¢eanother activity.

Example (based on the sample model introduced peAgix A):

In this example, the result of the Operation gelieationByTitle contained in class Professor
is to be assigned to the Variable publ. This is elled by introducing the variable publ itself
and two ExecutableNodes in sequence:

-77 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
targe argumer

Variable CallOperationAction

name := publ operation := gePublicationByTitl¢

type := Publication [~~~ """ ! resul
|
, v
! value
E AddVariableValueAction
t----» variable = publ

The variablepubl of type Publication is mapped to a correspondiaugable declaration at the

beginning of the code generated for the Sequenceiad contains that variable:

Publication publ;

As already explained in this chapter, a newly decaemporary variable with the
namevar__1is used to map the object flow between the twmast:

Publication var__1 =
professorXY.getPublicationByTitle(title);
publ =var__1;

6.5  Expressions

This section presents the mapping of the VIDE metih expression package
metaclass comes from the OCL metamodel. They alwaysn a value.

The notation used to present mapping is:
* Courier font stands for literal expressions
» ltalic font stands for VIDE metamodel terms (classes, gmogs)
* map word stands for : apply the mapping of theofeihg metamodel term.

6.5.1 CallExp
This is an abstract class and there is no direpiping to Java.

6.5.2 FeatureCallExp
This is an abstract class and there is no direpipimg to Java.

6.5.3 IfExp
It is mapped to the Java ternary opera®or

( mapCondition) ? mapthenExpression mapelseExpression

unique

. These

-78 -

© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

6.54 IterateExp

It is generated as an instantiation of an anonynetass. This generation pattern allows using
a return statement instead of an assignmentesfilt The context is made available as
arguments of the evaluating method.

ResultType is the mapping of the type oésult

(new Object() {
public  mapresult.typeeval(  mapsource.typePar,
mapcontextVariable.typself,
mapparameterVariable.type
parameterVariable.nan)e

{
mapresult
for ( mapiterator : Par)
{
mapbody;

}

return mapresult.name
}

bh.eval( mapsource this,
mapparameterVariable.representedParameter.ngme

6.55 IteratorExp

This class represents all the predefined VIDE dpesahat apply on elements of a set. A lot
of operators are meaningful for checking the camsts of a model but less useful for
processing business logic. Therefore, only the nmgppf the more relevant operators is
described. In all mappings, the context is madalada as arguments of the evaluating
method.

e collect

It is mapped to a specialized version of iterateBMpere the results dfodyare added to the
result. Note that it is assumed that the body esgioa refers to thigerator.

(new Object() {
public  mapresult.typeeval(  mapsource.typePar,
map contextVariable.typself,
map parameterVariable.type
parameterVariable.nan)e

mapresult
for ( mapiterator : Par)

{

-79 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

mapresult.nameadd( mapbody);

}

return mapresult.name

}

D.eval( mapsource this,
map parameterVariable.representedParameter.ngme

* sortedBy

It is mapped to an anonymous class that calls @va 3ort primitive defined on Collection
and return the List. The comparator required bysthre primitive is also an anonymous class.

(new Object() {
public  mapresult.typeeval(  mapsource.typePar,
mapcontextVariable.typself,
mapparameterVariable.type
parameterVariable.nan)e

{
Collection.sort(Par, new Comparator< source.type.elementTyp@ {
public int compare( source.type.elementTypé,
source.type.elementTyp@) {
if (01. mapbody< 02. mapbody)
return -1;
else if ol. mapbody=02. mapbody)
return O;
else
return 1;
D
return Par;
}).eval( mapsource this,
map parameterVariable.representedParameter.ngme
* select

It is mapped to a specialized version of iterateBxpere elements that satisfy the body are
added to the result. Note that it is assumed tiebbdy expression is boolean and refers to
theiterator.

(new Object() {
public  mapresult.typeeval(  mapsource.typePar,
mapcontextVariable.typself,
mapparameterVariable.type
parameterVariable.nan)e

{
mapresult
for ( mapiterator : Par)
{
if ( mapbody) mapresult.namedd( mapiterator.name;

-80 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
return mapresult.name
}).eval( mapsource this,
map parameterVariable.representedParameter.ngme
* exists

It is mapped to a specialized version of iterateEMpere as soon as an element sati$foaty
true is returned andhlse if no element satisfies it. Note that it is assdrtigat thebody
expression is boolean and refers toitbeator.

(new Object() {
public  mapresult.typeeval(  mapsource.typePar,
mapcontextVariable.typself,
mapparameterVariable.type
parameterVariable.nan)e

{ for ( mapiterator : Par)
{if( mapbody) return true;
ieturn false;
}i.eval( mapsource this,
map parameterVariable.representedParameter.ngme
» forAll

It is mapped to a specialized version of iterateBxpere as soon as an element doesn't
satisfybodyfalse is returned andrue if all elements satisfy it. Note that it is assuime
that thebodyexpression is boolean and refers toitbeator.

(new Object() {
public  mapresult.typeeval(  mapsource.typePar,
mapcontextVariable.typself,
mapparameterVariable.type
parameterVariable.nan)e

{ for ( mapiterator : Par)
{if (! mapbody) return false;
ieturn true;

}i.eval( mapsource this,

map parameterVariable.representedParameter.ngme

-81-
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

6.5.6 LiteralExp

It is directly mapped to its name, inherited frdlamedElement.

name

6.5.7 LoopExp
Although not formally abstract class, this class ha direct mapping to Java.

6.5.8 NavigationCallExp

NavigationCallExp is a reference to a Propertychigal to an Association. It's mapping will
differ if it's qualifier is empty or not.

No qualifier: it is mapped to the name ofnsvigationSourceRroperty

navigationSource.name

With qualifier: the mapping of the qualifier is ngal at the beginning using a dot to separate.
map qualifier navigationSource.name

6.5.9  OclExpression
This is an abstract class and there is no direppmg to Java.

6.5.10 OclVariable

OclVariables are mapped using VariableExps

name

6.5.11 OpaqueExpression

It is assumed that OpaqueExpression contains @vig dode and it is mapped directly to its
body

Body[1]

6.5.12 OperationCallExp

OperationCallExps used to represent unary operator (not, unabyinrary operators (+, -,*, /,
<, >, =, <>, <=, >=, or, xor, and) or user defirgggbration call. Its mapping depend on that.

Unary Operator

-82 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

referredOperation.nammapsource

Binary Operator

mapsource referredOperation.nameapargument[1]

User defined operator
mapsource. referredOperation.nanienapargument[}, ... mapargument[n])

6.5.13 PropertyCallExp

PropertyCallExp is used to get the value of arilaite. It is map to the according syntax in
java, a dot notation.

mapsource. referredProperty.name

6.5.14 VariableExp

VariableExpis used to get the value of a variable. It is noaghe name of the variable.
referredVariable.name

6.5.15 ExpressioninOcl
ExpressionIinOcis the root of an Ocl expression, it is mappeiistbodyExpression

mapbodyExpression

-83 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

I VIDE to J2EE

This section describes the mapping of VIDE to twBI\defined in Java EE 5, the last
version of J2EE presented section 5.1. These ARIs a

» Java Persistence API (JPA)

» Java Web Services (JAX-WS)

Note : SAP Web Application Server is fully compatikith both JPA and JAX-WS, therefore
there is no particularities for this platform inithdocument. Nevertheless, the Java compiler
will be validated on this platform to ensure intpenability of the mapping and the developed
compiler.

7.1 Java Persistence API

This chapter presents the mapping of VIDE to thea Rersistence API (JPA). It started with
a little presentation of JPA, then, the stereotyrasniired for JPA are defined before the
definition of the mapping for structure, action ae#lpression where mapping to Java
Persistence Query Language (JPQL) is presented.

711 Presentation of JPA

JPA (Java Persistence API) defines an interfaqeetsist normal Java objects (or POJO's in
some people terminology) to a datastore. JPA eltigoupled to RDBMS datastores. JPA is
a standardapproved in June 2006 as part of "EJB3" thoughbsansed outside of the J2EE
container. JPA defines the interface that an implaiation has to implement. It replaces JDO
the previous persistent API specified by Sun.

JPA defines persistent property of the Java clagseagh the use of Java annotations. This is
a clear advantage for generating JPA code from Vjidégram because there is no need to
generate an xml file like JDO.

JPA defines also a query language JPQL that lakksSQL but work in the name space of
the Java program, not in the database name space.

7.1.2 VIDE Mappingto JPA

JPA provides more than 10 Java annotations to leetalilefine complex mappings between
Java classes and databases. For this first mappindpDE to JPA, we modestly stay at the
level of the proof of concept and we only consigienple Java to database mapping, where
each table is represented as a class and eachrcakian attribute or a foreign key to another
table.

The notation used to present mapping is:
* Courier font stands for literal expressions
» ltalic font stands for VIDE metamodel terms (classes, gntigs)
* map word stands for : apply the mapping of theofeihg metamodel term.

-84 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

7121 VIDE Profilefor JPA

With the introduction of persistency, it is essahtd be able to distinguish between classes
whose instances will be store and retrieve in tialshse and classes whose instances will be
transient.

Therefore the stereotype Rersistent>> defined on classes will indicate classes that
should be annotated for JPA persistence.

JPA also require that every persistent class defipgmary key. To deal with this constraint,
the stereotype 4d>> on attribute is defined.

7.1.2.2 Structure

This section defines the Java annotations genetatede JPA for the structure part of the
VIDE metamodel.

71221 Class

If a class is stereotyped Persistent, then the danatation@Entity is generated before the
class declaration.

@Entity
public class Student {

If the persistent class extends an abstract ctassannotation@MappedSuperclass is
added to the super class.

@MappedSuperclass
public abstract class Person {

@Entity
Class Student extends Person {

7.1.2.22 Property (Attribute)

If a Property that acts as an attribute of a dsssereotyped Id, then the Java annotafwid
is generated before the attribute declaration.

@Entity
public class Student {

-85 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

@Id
public int id;

}

7.1.2.2.3 Property (Association)

The annotations generated depend on the multipbeitl the nature of the association.

Figure 31 : Simple composition
The simple composition as presented Figure 31geitierate:

@Entity
public class A {

@OneToOne(cascade=CascadeType.ALL, fetch=FetchType. LAZY)
public B b;

The annotation and its property indicates that wleem is saved or destroyed, its
corresponding B should be (CascadeType.ALL) andHstpe says that B should be loaded
from the data store only when the attribotes read.

Figure 32 : Composition to many
The case presented Figure 32 will generate:

@Entity
public class A {

@OneToMany(cascade=CascadeType.ALL, fetch=FetchType .LAZY)
public B b;
The annotation becomes OneToMany. The properties thee same meaning than previously.

- 86 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Figure 33 : Association Many to One
The case presented Figure 33 will generate:

@Entity
public class A {

@ManyToOne(fetch=FetchType.LAZY)
public B b;

The annotation is ManyToOne because several A edimked to the same B. The cascading
is useless because the association is not a coioposi

If b multiplicity is* then the annotation ManyToMany with the same property.

Figure 34 : Bidirectional association

The case presented Figure 34 will generate:

@Entity
public class A {

@ManyToOne(fetch=FetchType.LAZY)
public B b;

@Entity
public class B {

@OneToMany(mappedBy=A.b)
public A a;

There is no modification in A class, but in class BappedBy property tells that the
association ‘belongs’ to class A and thadttribute will be loaded correctly.

-87 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

7123  Activity

Mapping VIDE to JPA doesn't affect the Activity naetasses but some code to declare the
entity manager and transactions is required toJ&#e For this first version, we propose to
declare the entity manager as a global singlet@htangather all database operations as a
single transaction. This code is added inrttaen operation.

public class VIDEEntityManager {
public static EntityManager em;
public static EntityManager getEM()

{

if (em == null)

em=
Persistence.createEntityManagerFactory(“default”).c reateEntityManager();

}

return em;

}
}

public class VIDEApp {
public static void main (String[] args){

VIDEEntityManager.getEM().getTransaction.beg in();

/I generated code here

VIDEEntityManager.getEM().getTransaction.com mit();
}

}

7124 Actions

Only CreateObjectActiomndDestroyObjectActiomre impacted.

7.1.24.1 CreateObjectAction

Apart from creating the new object, it has to baelenpersistent, the generated code is :

Professor p = new Professor();
VIDEEntityManager.getEM().persist(p);

71242 DestroyObjectAction
The object should be deleted in the database.

VIDEEnNtityManager.getEM().remove(p);
P = null;

- 88 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

7.1.25  Expression

JPA give us the opportunity to use OCL expressiomake queries on the database.
How to decide to generate a query or a simple mapgescribed chapter 6.5 ?

If the sourceof an OCL expression refer to a classifier (VIDbwaks to skip thellinstances
primitive of OCL) then it is a query, if it is a guerty or a variable then it is a simple

mapping.

In the following sectionemis used foVIDEEnNtityManager.getEM()

7.1.251 Trivial mapping

This mapping consists to retrieve all the persistastances of a class without any selection
criterion and pass this list to the following exgs®n.

em.createQuery(“from sourcé).getResultList()

This mapping is used fagxist andforall . collect , sortedBy andselect can
take more advantages of JPQL.

7.1.25.2 Mapping collect to JPA query
Thebodyassociation is used in tkelect clause.

em.createQuery(“select map iterator. mapbodyfrom source map
iterator”).getResultList()

7.1.25.3 Mapping sortedBy to JPA query
Thebodyassociation is used in tkertby clause.

em.createQuery(“from source map iteratorgroup by  map
body).getResultList()

This mapping requires thabdyis aPropertyCallExp becausgroup by clause is defined
only on attribute in JPQL. If not, a trivial mapgishould be generated.

71254 Mapping select to JPA query
Thebodyassociation is used in tivhere clause.

em.createQuery(“from source map iterator wher e mapbody).getResultList()

-89 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

7.2 Web services

This chapter describes the mapping of the VIDE \8elvices profile to J2EE and focuses on
the implementation of that mapping in the contéxhe Java/J2EE model compiler. Thereby,
two use cases are considered. In the first, ontD& \¢lass is published as a Web Service an
appropriate Java code should be generated whemetiseisecond case an external Web
Service is consumed from within VIDE class.

The main idea in the first case is to generate A¥afor XML Web Services (JAX-WS)
annotations in the Java code. Since, the implertientaf the consumed Web Service
operation is not available; the model compiler dticgenerate code that calls appropriate
client-side Web Service proxies rather then gemeggatava code from UML actions.

The structure of this document is as follows. ®#c#.2.1 presents the VIDE profile for Web
Services. Section 7.2.2 presents the Web Seruvigpost in the target platform and mainly
the JAX-WS annotations. Section 7.2.3 explains how/IDE model compiler to J2EE
implements the publishing of a VIDE class as a \@ebvice and Section 7.2.4 explains how
it implements the consumption of an external WelviSe.

721 VIDE Web Services Profile

In the following, the stereotypes of the VIDE Wedr8ce profile are described.

» Stereotype ConsumedService

This stereotype designates that a class will beoaypto a remote web service conforming to

a certain WSDL contract. The operations of thasslare associated to remote calls to the
operations of a given web service. Because of #latments marked with this stereotype

cannot be attached any OCL code to their body.

This metaclass does not exist in UML metamodelianohplemented as a stereotype applied
to Class.

Generalizations

Class

Attributes

URL:String[1] — WSDL contract address
portType:String[1] — represented interface

» Stereotype PublishedService

Applicable to class without any attributes defindthis stereotype indicates that a class
should be exposed as a web service endpoint. Tdresassumed to be automatically started
at the beginning of model execution.

Generalizations
Class
Attributes

-90 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Namespace:String[1] - defaults to (filtered) conitag package global name

» Stereotype PublishedOperation

Marks those operations, which should be availalsleoperations of the published Web
Service. They can be applied only when the comgiclass is marked with publishedService.
All types used as input or output parameters symdrations are mapped to XSD types
definition of types WSDL section.

Generalizations
Class

7.2.2 JavaWeb Service annotations

Fortunately, Web Services in the J2EE platform &sdad on annotations, which makes
mapping VIDE PIM stereotypes to J2EE simple as pprapriate annotation has to be
generated (and not methods).

In the following, we present the JAX-WS annotatitimst are relevant for mapping the VIDE
Web Service profile to J2EE.

* javax.jws.WebService The purpose of this annotation is to mark an emdpoi
implementation as implementing a web service omgrk that a service endpoint
interface as defining a web service interface.

Properties:

name The name of thevsdl:portType

targetNamespacdhe XML namespace of the WSDL and some of the XML
elements generated from this web service. Most@MML elements will be in
in the namespace according to the JAXB mappingrule

serviceNameThe Service name of the web serviesdl:service)
endpointinterfaceThe qualified name of the service endpoint intesfac
portName: Thewsdl:portName

* javax.jws.WebMethod The purpose of this annotation is to expose a ndefsoa
web service operation.

Properties:

operationName: The name of twedl:operation matching this method.
action: The XML namespace of the WSDL and som&éeMML elements
generated from this web service.

exclude: Used to exclude a method from the Webi&erv

These two annotations are the most relevant onenémping VIDE Web Services profile to
Java. The annotationavax.jws.WebParam andWebResult are also related to our work
but they are not necessarily needed.

-91 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

7.2.3 Publishinga VIDE classasaWeb Service

The user may take a state-of-the-art UML classrdiag editor and load the VIDE profiles
for Web Services. Then, he can add the stereotypeltishedService>> to the classes that
should be exposed in the Web Service. To seledifsgpenethods for exposition in the Web
Service, the user may use the stereotype <<puldhdéthod>>.

The model compiler from VIDE to J2EE takes the ppedf model and generates JAX-WS
annotations in the Java class accordingly. The rgéee source code files have then to be
compiled by the user and deployed to a J2EE apjgicaerver.

An example of the code generated by the VIDE maodeipiler to make a class exposed as a
web service is shown below. The java class is atedtwith the JAX-WS annotation
@WebService

@WebService
public class Opportunity

{
public float getValue (String curr)

return this.value();

}
}

To configure which methods of the Java class shbeldexposed in the Web Service the
annotation @WebMethod is generated. This annotation has properties such as
operationNamewhich can be use to give the Web Service operaialifferent name than
that of the class method

@WebService(name="OpportunityService")
public class Opportunity{

@WebMethod(operationName="getOpportunityValue")
public float getValue (String currency)

return this.value();

}
}

The deployment process is beyond the scope ofittement and will be described in D9.2.

7.24  Consuming an External Web Service

PJIIT is working on WSDL to VIDE import. That ishey will provide a tool for text-to-
Model transformation that generates a VIDE modelafihe WSDL file. This tool creates a
proxy class in the VIDE model for the Web Servicedamarks it with the
<<consumedService>> stereotype.

The stereotype <<consumedService>> has a stringepno called URL, which stores the
URL of the WSDL file of the consumed Web Servicar feach such class, the model

-92 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

compiler generates a Java class, whose method®aedil calls to operations of the Java
Web Service proxy class. For example, assume that class with the stereotype
<<consumedService>> has a method calledperation . The Java method generated by
the model compiler gets a reference to the Web iSergroxy class (in the example
ServiceMyPortTypeand then call the same operation on that proxlypasses its parameters
to it as shown below.

Public int wsoperation (int param1, int parm 2)

{
/lget reference to the local WS port proxy
ServiceMyPortType port = new Service.getMyPort() ;
/Iredirect the call and return result if applicabl e
return port.wsoperation(paraml,param2);
}

The generated code will only work correctly if tleent-side Web Service proxy is available.
For that reason, the model compiler uses thewsohportand passes tHéRL property of the
<<consumedService>> stereotype as parameter.

wsimport http://company.com/OpportunityService?wsdl

-93 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

8 The model compiler to ODRA

This chapter presents the specification of the nmgpfpom VIDE metamodel to ODRA code.

8.1 I ntroduction

The model compiler to ODRA is specified as a fumttlap2ODRA which maps instances
of VIDE metamodel to textual code in SBQL to be@xed by the ODRA database system.
The definition of this function uses the structumtursion, i.e. the mapping of each kind of
nodes is described using the mapping of its subatdikinds. Fragments of the textual output
are marked withred colourto additionally distinguish them from the mappingndtion
invocations.

We will also use a generalization of the functiddap2ODRAwhich will apply to a sequence
a items. The functioMap20ODRA*has two arguments: a node and an optional sepaidter
result of Map20ODRAfseq sep is the concatenation of the results of the fuoncti
Map20ODRAapplied to all elements of the sequesegseparated by the separasep The
result ofMap20ODRAfseq is just the concatenation of the results of thecfionMap20ODRA
applied to all elements of the sequeseq

8.2 Structures
821 Mapping

8211 Typehierarchy

82111 BagType

BagType is mapped to the ODRA system as declaratfomultiple elements with
cardinality [0..*]. The attributeelementType is inherited by the BagType from its
generalization CollectionType.

Mapped node x Mapping result Map20ODRA(X)
BagType Map20ODRAXx.elementType)O..*|

82112 Classifier

In VIDE classifier is just an abstract super-clémsdata type, association and class.
The mapping of a Classifier is defined by its cetersubclasses.

82113 Class
Class is mapped to ODRA class whose name is obtéipadding thelasssuffix:

Mapped node x Mapping result Map20ODRA(X)
Class X.nameclass

For class declaration — see the section “Featdrelsasses” below.

82114 CollectionType
The mapping of a CollectionType is defined by iecrete subclasses.

-94 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 6 — Deliverable D6.1
Date 2008-04-15

82115 DataType
The mapping of a DataType is defined by its corcsetbclasses.

82116 Enumeration

An enumeration is a data type whose values are erated in the model as
enumeration literals. The enumerations are notemphted in ODRA. Thus, Enumeration is
mapped to string.

Mapped node x
Enumeration

Mapping result Map20ODRA(X)
string

8.21.1.7 OrderedSetType

OrderedSetType is a collection type constructor dlegcribes a set of elements where
each distinct element occurs only once in the 3é&e ordered set is currently not
implemented in ODRA. The OrderedSetType is mappedame way as BagType.

Mapped node x Mapping result Map20ODRA(X)
OrderedSetType Map20ODRAXx.elementType)O..*|
8.2.1.1.8 PrimitiveType

The PrimitiveType is mapped simply to its name:

Mapped node x Mapping result Map20ODRA(X)
PrimitiveType X.name
8.21.19 SequenceType

SequenceType is a collection type constructor dleatribes a list of elements where
each element may occur multiple times in the secgleifhe sequence is currently not
implemented in ODRA. The SequenceType is mappedahee way as BagType.

Mapped node x Mapping result Map20ODRA(X)
SequenceType Map20ODRAXx.elementType)O..*]
8.2.1.1.10 SetType

SetType is a collection type constructor that dbsesra set of elements where each
distinct element occurs only once in the set. Téteisscurrently not implemented in ODRA.
The SequenceType is mapped the same way as BagType.

Mapped node x Mapping result Map20ODRA(X)
SetType Map20ODRAX.elementType)O..*]
821111 TupleType

TupleType (informally known as record type or styaombines different types into a
single aggregate type. The parts of a TupleTypealaseribed by its attributes, each having a
name and a type. TupleType is mapped to an OBRArd

Mapped node x

Mapping result Map20ODRA(X)

TupleType

record {
Map2ODRA{x.ownedProperty,)

-95 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

821112 Type
The mapping of a Type is defined by its concreteckasses.

8.21.1.13 VoidType

VoidType represents a type that conforms to alesyprhe void type is mapped to an
empty string.

Mapped node x Mapping result Map20ODRA(X)
VoidType Empty string

8.21.2  Featuresof classes

Each declared class is mapped to an ODRA declaraticclass. Together with this
declaration a variable holding the extent of thasSlis created. The ODRA class name has
suffix Class . The extent however has the same name as the ®H3E.

Mapped node x Mapping result Map20ODRA(X)
classx.nameClass extendMap20ODRAfx.superClass) {
instancex.name{
Map20DRAfx.ownedAttribute;) ;

Class }
(declaration) Map20ODRAfx.ownedOperation)

}

x.name: x.namelass[0..*]

If the list of super-classes is empty, the phgendds omitted.

There is also a special case: when the mappedldasthe «module» stereotype, then
it has to have the name as the owning packager(agesan error is reported). In this case,
the content of such a class is mapped as direathed by the ODRA module.

Mapped node x Mapping result Map20ODRA(X)
Class
(«module» with the Map2ODRAf{x.ownedAttribute;) ;
same name as its Map20ODRA{x.ownedOperation)
owning package)

82121 Association

An Association is not directly mapped to ODRA. # mapped indirectly through the
properties owned by classes.

82122 BehavioralFeature

A behavioural feature specifies that an instanca ofassifier will respond to a designated
request by invoking a behaviour. It is mapped to RBD method declaration. The
raisedExceptions are not mapped since this part of a method haadest implemented in
ODRA.

Mapped node x Mapping result Map2ODRA(X)
. x.name( Map20ODRA{x.ownedParametey) ) {
BehavioralFeature Map20DRAx.method)

(none of ownerParameter is return)}

-96 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
BehavioralFeature x.name( Map20ODRA{x.ownedParametey) ) :
(one of ownerParameter is return; Map20ODRA(x.ownerParamatdiftype)
say tha-th is a return; {
the type of this return parameter is not Map2ODRAx.method)
a class) }
BehavioralFeature x.name( Map20ODRA{x.ownedParametey) ) :
(one of ownerParameter is return; ref Map20ODRA(x.ownerParamatsaiftype)
say tha-th is a return; {
the type of this return parameterisa Map20ODRAx.method)
class) }

82123 Constraint

A constraint is a condition or restriction expres$e natural language text or in a
machine readable language for the purpose of deglahe contract of an element. A
Constraint is mapped to an empty ODRA string, sihbas nothing to do with execution.

Mapped node x Mapping result Map20ODRA(X)
Constraint Empty string

82124 Element
The mapping of an Element is defined by its comcsetbclasses.

8.2.1.25 Feature
The mapping of &eature is defined by its concrete subclasses.

8.2.1.2.6 MultiplicityElement

A MultiplicityElement is an abstract metaclass timaiudes attributes for defining the
bounds of a multiplicity. It is mapped to ODRA ciuality declaration. Other attributes are
not mapped since ODRA does not implement set aresesg yet.

Mapped node x Mapping result Map20ODRA(X)
MultiplicityElement [ x.lower .. x.upper]

8.2.1.2.7 NamedElement
The mapping of &eature is defined by its concrete subclasses.

82128 Namespace
The mapping of &eature is defined by its concrete subclasses.

8.21.29 Operation
An operation inherits its mapping from Behavioraittee.

8.2.1.2.10 Package

A package is used to group elements, and providesnamon namespace for the
grouped elements. A package is mapped onto an OD&Aule:

Mapped node x Mapping result Map20ODRA(X)
add modulex.name{
Package Map20DRAfx.ownedType)
Map20ODRAXx.nestedPackage)

-97 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15

}

821211 PackageableElement

The mapping of a PackageableElement is definetslgoncrete subclasses.

8.2.1.2.12 Packagel mport

A package import is a relationship that allows tise of unqualified names to refer to
package members from other namespaces. A packggetim directly mapped to ODRA
module import.

Mapped node x Mapping result Map20ODRA(X)

Packagelmport import x.importedPackage.name

8.21.2.13 Parameter

A parameter specifies how arguments are passedomtaut of an invocation of an
operation. Each Parameter is mapped to an ODRA adglarameter. Parameters of class

types are always mapped to call-by-reference. Retes1of non-class types are mapped to

call-by-reference if they areut or inout. Otherwise, they are mapped to call-by-value. The
return output parameter is mapped in a special way E@enapping of BehavioralFeature),
so here its is mapped to an empty string.

Mapped node x Mapping result Map20ODRA(X)

Parameter
(class type, x.name: ref x.type.name€lass
direction# return)

Parameter
(non class type, x.name: Map20DRA(xype)
direction =in)

Parameter
(non class type, x.name: ref Map20ODRA(xype)
direction{ inout, out})

Parameter
(direction =return)

Empty string

8.2.1.2.14 Par ameter DirectionKind

ParameterDirectionKind is not mapped directly.ritapping is quite indirect defined above
together with the mapping of a Parameter. LiterdlgrameterDirectionKind is mapped to an
empty string.

8.2.1.2.15 Property

A Property is a structural feature. It is mappetbcan ODRA field declaration. The
mapping is different for bi-directional associati@mds. In this case, the ODRA field
declaration contains the indication of the reveesationship.

Mapped node x Mapping result Map20ODRA(X)
Property
(association not set, x.name: Map20ODRA(xype);
default value not set)
Property x.name: Map20DRA(Xype):=
(association not set, Map2ODRA (xdefaultValue)

- 908 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

default value set)
Property
(association set but x.name: ref Map20ODRA(Xype);
unidirectional)

x.name: ref x.type.name
reverse
x.association.memberEnd->selgftfx).name;

Property
(bi-directional association set)

8.21.2.16 RedefinableElement
The mapping of a RedefinableElement is defineddgancrete subclasses.

8.2.1.2.17 Relationship
The mapping of a Relationship is defined by itsarete subclasses.

8.21.2.18 StructuralFeature
The mapping of a StructuralFeature is defined $gancrete subclasses.

8.2.1.2.19 TypedElement
The mapping of a TypedElement is defined by itscoete subclasses.

8.2.1.2.20 VisibilityKind

A VisibilityKind is mapped to an empty ODRA string, since visil@$tiare not
implemented in ODRA.

Mapped node x Mapping result Map20ODRA(X)
VisibilityKind Empty string

8.2.1.3 Services

In order to include Web Services definition andges&om the level of VIDE models we
extend the metamodel with three metaclasses. How&leb services are not anyhow marked
distinct in ODRA database schema. Therefore allnthées described above are mapped as
ordinary ODRA objects.

The actual deployment of published service int&a$aand consumed service proxies is
performed with additional commands that are deedrib- together with some general
considerations on Web service mapping in sectién 8.

8214 Module

Module is a class that is a specialization of amarClass but has one important difference. It
is immediately instantiated after the system starta singleton object. Module-stereotyped
class is required to have the same name as itainorg package and is not allowed to be a
member of associations. A Modutds mapped almost the same way as its generalestio
i.e. Class (see the Class mapping section forékergbtion of this special case).

-99 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

8.3 Actions
831 Mapping

8.3.11 General Concepts

83111 Action

An action is a named element that is the fundanemtid of executable functionality. The
mapping of an Action is defined by its concretecasses.

83112 InputPin

An input pin is a pin that holds input values todemsumed by an action. The mapping of an
InputPin is either defined by one of its subclasghé InputPin in fact belongs to a subclass)
or is equal to mapping of an OutputPin which is sbarce of an ObjectFlow whose target is
this InputPin.

8.3.113 OutputPin

An output pin is a pin that holds output valuesdu@ed by an action. The mapping of an
OutputPin is defined by the action who owns thigpitPin.

83114 Pin

A pin is a typed element and multiplicity elemematt provides values to actions and accepts
result values from them. The mapping of a Pin f;ned by its concrete subclasses.

8.3.1.15 ValuePin

A value pin is an input pin that provides a valoeanh action that does not come from an
incoming object flow edge. The mapping of a ValueRi just the mapping of the provided
ValueSpecification.

Mapped node x Mapping result Map20ODRA(X)
ValuePin Map20ODRAX.value)

8.3.1.2 I nvocation Actions

83121 I nvocationAction

Invocation is an abstract class for the variousastthat invoke behaviour. The mapping of a
InvocationAction is defined by its concrete subsks.

83122 CallAction

CallAction is an abstract class for actions thabke behaviour and receive return values.
The mapping of a CallAction is defined by its caate subclasses.

8.3.1.2.3 CallOperationAction

CallOperationAction is an action that transmitsogeration call request to the target object,
where it may cause the invocation of associateé@webr. It is mapped an ODRA method
call on the target of CallOperationAction.

Mapped node x Mapping result Map20ODRA(X)
CallOperationAction Map20ODRAX.target)

- 100 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

x.operation.nam@&{ap2ODRA{x.argument), )

8.3.1.24 RaiseExceptionAction

RaiseExceptionAction is an action that causes aemon to occur. It is mapped to an
ODRA throw statement.

Mapped node x Mapping result Map20ODRA(X)
RaiseExceptionAction throw Map2ODRAXx.exception)

8.3.1.25 ReplyAction

ReplyAction is an action that accepts a set ofrretialues. It is mapped to an ODRA return
statement.

Mapped node x Mapping result Map20ODRA(X)
ReplyAction return Map2ODRAX.replyValue);

8.3.1.3  Object Actions

83131 CreateObjectAction

CreateObjectAction is an action that creates aerablihat conforms to a statically specified
classifier and puts it on an output pin at runtithés mapped to the ODRA create statement.

Mapped node x Mapping result Map20ODRA(X)
CreateObjectAction create x.classifier.name) ;

8.3.1.3.2 DestroyObjectAction

This action destroys the object on its input pimetdtime. It is mapped to the ODRA create
statement.

Mapped node x Mapping result Map20ODRA(X)
DestroyObjectAction delete Map2ODRAX.target);

8314 Structural Feature Actions

83141 AddStructural FeatureValueAction

AddStructuralFeatureValueAction is a write struatuieature action for adding values to a
structural feature. It is mapped to an ODRA assigmnstatement (if isReplaceAll=true) or to
an ODRA insert-copy statement (if isReplaceAll=8ls

Mapped node x Mapping result Map20ODRA(X)
AddStructuralFeatureValueAction x.object. x.structuralFeature.name
(isReplaceAll=true; =
x.structuralFeature is not of class type) x.value;
AddStructuralFeatureValueAction x.object. x.structuralFeature.name
(isReplaceAll=true; =
x.structuralFeature is of class type) ref( x.value);
AddStructuralFeatureValueAction X.object
(isReplaceAll=false; <<
x.structuralFeature is not of class type) (x.valueas x.structuralFeature.name
AddStructuralFeatureValueAction X.object

- 101 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

(isReplaceAll=false; <
x.structuralFeature is of class type) ref(x.value ;

83142 Clear StructuralFeatureValueAction

ClearStructuralFeatureAction is a structural feataction that removes all values of a
structural feature. It is mapped to the ODRA destédement.

Mapped node x Mapping result Map2ODRA(X)

ClearStructuralFeatureAction delete x.object. x.structuralFeature.name

8.3.1.4.3 RemoveStructural Featur eValueAction

RemoveStructuralFeatureValueAction is a write $tmad feature action that removes values
from structural features. It is mapped to the ODdRAete statement.

Mapped node x Mapping result Map2ODRA(X)

delete

RemoveStructuralFeatureValueAction x.object. x.structuralFeature.narmeremoveAt;

83144 StructuralFeatureAction

StructuralFeatureAction is an abstract class fostalictural feature actions. The mapping of
StructuralFeatureAction to ODRA is defined by itscrete subclasses.

83.145 WriteStructur alFeatur eAction

WriteStructuralFeatureAction is an abstract clamsstructural feature actions that change
structural feature values. The mapping of WriteGtralFeatureAction to ODRA is defined
by its concrete subclasses.

8.3.15 Link Actions

83151 Clear AssociationAction

ClearAssociationAction is an action that destroylslinks of an association in which a
particular object participates. It is mapped to @BRA delete statement. The endData is
inherited from LinkAction.

Mapped node x Mapping result Map2ODRA(X)

ClearAssociationAction delete x.object. x.endData.name

83.15.2 CreatelLinkAction

This action can be used to create links and linkaib. CreateLinkAction is mapped to the
ODRA insert-copy statement.

Mapped node x Mapping result Map2ODRA(X)
x.inputValue [1]
CreateLinkAction <<
(ref(x.inputValue[2) as x.endData[1].property.name

8.3.1.53 DestroyL inkAction
This action destroys a link. DestroyLinkAction ispped to the ODRA delete statement.

Mapped node x Mapping result Map20ODRA(X)

DestroyLinkAction delete

- 102 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

(x.inputValue [1]. x.endData[1].property.namee FreshVar
where
FreshVar= x.inputValue[2) ;

FreshVaris a new (fresh) variable name generated in suebaw that it does not occur
anywhere in the generated code.

83.154 LinkAction

LinkAction is an abstract class for all link actgothat identify their links by the objects at the
ends of the links and by the qualifiers at endshef links. The mapping of LinkAction to
ODRA is defined by its concrete subclasses.

8.3.155 LinkEndCreationData

LinkEndCreationData is not an action. It is notedity mapped to ODRA code. It is used in
the mapping of owning LinkAction.

8.3.1.5.6 LinkEndData

LinkEndData is not an action. It is an element fidentifies links. It identifies one end of a
link to be read or written by the children of Link#on. It is not directly mapped to ODRA
code. It is used in the mapping of owning LinkAcatio

8.3.15.7 LinkEndDestructionData

LinkEndDestructionData is not an action. It is &n@ent that identifies links. It identifies one
end of a link to be destroyed by DestroyLinkActitins not directly mapped to ODRA code.
It is used in the mapping of owning LinkAction.

8.3.1.5.8 WriteLinkAction

WriteLinkAction is an abstract class for link actgthat create and destroy links. The
mapping of LinkAction to ODRA is defined by its aoete subclasses. The mapping of
WriteLinkAction to ODRA is defined by its concretabclasses.

8.3.1.6  ValueProcessing Actions

8.3.16.1 ValueSpecification

A value specification is the specification of agpibly empty) set of instances, including both
objects and data values. Its mapping is definettisbgoncrete subclasses.

8.3.1.6.2 ValueSpecificationAction

ValueSpecificationAction is an action that evalsate value specification. Its mapping to
ODRA code is equivalent to the mapping of the dptivalue.

Mapped node x Mapping result Map2ODRA(X)

ValueSpecificationAction Map20ODRAXx.value)

The mapping of its output pmesultis the same as mapping of the action.

8317 Variable Actions

83171 AddVariableValueAction
AddVariableValueAction is a write variable actioar fadding values to a variable. It is
mapped to an ODRA assignment statement (if isRepliietrue) or to an ODRAcreate

- 103 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

temporalstatement (if isReplaceAll=false).

Mapped node x Mapping result Map20ODRA(X)
AddVariableValueAction x.variable.name= x.value;
(isReplaceAll=true)
AddVariableValueAction createtemporal x.variable.naméx.value ;
(isReplaceAll=false)

8.3.1.7.2 ClearVariableAction

ClearVariableAction is a variable action that rem®all values of a variable. It is mapped to
the ODRA delete statement.

Mapped node x Mapping result Map2ODRA(X)

ClearVariableAction delete x.variable.name

83.1.7.3 RemoveVariableValueAction
RemoveVariableValueAction is a write variable actthat removes values from variables.
It is mapped to the ODRA delete statement.

Mapped node x Mapping result Map2ODRA(X)

RemoveVariableValueAction delete x.variable.naméx.removeAf;

8.3.1.74 VariableAction

VariableAction is an abstract class for actiong thizerate on a statically specified variable.
Its mapping to ODRA code is defined by its conceetbclasses.

8.3.1.75 WriteVariableAction

WriteVariableAction is an abstract class for valeahctions that change variable values. Its
mapping to ODRA code is defined by its concreteclagses.

8.3.1.8 Variable

Variables are elements for passing data betweeanacindirectly. A local variable stores

values shared by the actions within a structurdét/igcgroup but not accessible outside it.
VIDE variables are mapped to ODRA variable declarastatements. If the type of a VIDE

variable is a class, an ODRA variable of a refegetype is created. Otherwise, a non-
reference type is used.

Mapped node x Mapping result Map20ODRA(X)
Variable _ _
(class type) x.name: ref x.type.name€lass|[ x.lower.. x.upper];
Variable

(non class type) x.name: Map20DRA(xype)[ x.lower .. x.upper];

8.4 Activities

84.1 Mapping

84.1.11 Activity
An activity is the specification of parameterisegh@viour as the coordinated sequencing of
subordinate units whose individual elements aréomast The mapping of an Activity to

- 104 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

ODRA is the sequential execution of owned nodes.

Mapped node x Mapping result Map2ODRA(X)

{
Activity Map2ODRAf{x.node,;)

}

84.1.1.2 ActivityEdge

ActivityEdge is an abstract class for the connedi@long which tokens flow between
activity nodes. Its mapping to ODRA is defined tsydoncrete subclasses.

84.1.13 ActivityGroup

An activity group is an abstract class for definsegs of nodes and edges in an activity. Its
mapping to ODRA code is defined by its concreteclagses.

8.4.1.1.4 ActivityNode

An activity node is an abstract class for points in the flow of an activity connected by
edges. Its mapping to ODRA code is defined by its conceethclasses.

84.1.15 ActivityParameter Node

An activity parameter node is an object node fguis and outputs to activities. It is just
mapped to the result of mapping its parameter.

Mapped node x Mapping result Map2ODRA(X)

ActivityParameterNode Map2ODRAX.parameter)

84.1.16 Behavior

Behavior is a specification of how its context siéier changes state over time. In VIDE, the
mapping is available for one concrete subclassebfaBior — namely, Activity.

84117 Clause

A clause is an element that represents a singlechraf a conditional construct, including a
test and a body section. It is mapped to the ODB&Aditional statement.

Mapped node x Mapping result Map2ODRA(X)

Clause if (Map20ODRAX.test)) Map20ODRAX.body);

84.1.1.8 ConditionalNode

A conditional node is a structured activity nodatthepresents an exclusive choice among
some number of alternatives. It is mapped to ODRAaacascade of if-else statements
obtained by appropriate concatenation of mappifgsoaditionalNode’s Clauses.

Mapped node x Mapping result Map2ODRA(X)

ConditionalNode Map20ODRAfx.clauseglse)

84.1.19 ControlFlow

A control flow is an edge that starts an activipde after the previous one is finished. It is
mapped to ODRA composition of commands (in faotéans juxtaposition).

Mapped node x Mapping result Map2ODRA(X)

ControlFlow Map20ODRAX.incoming)Map2ODRAX.outgoing)

- 105 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

8.4.1.1.10 ControlNode

A control node is an abstract activity node thairdmates flows in an activity. In VIDE it is
used only for the ForkNode. Its mapping to ODRAé$ined by its concrete subclasses.

84.1.111 ExceptionHandler

An exception handler is an element that specifid®dy to execute in case the specified
exception occurs during the execution of the ptettoode. ExceptionHandler is mapped to
an ODRA try-catch statement.

Mapped node x Mapping result Map2ODRA(X)

try
{
Map20ODRAX.protectedNode)

- }
ExceptlonHandIercatCh (Map20ODRAXx.exceptioninput) Map2ODRAXx.exceptionType)

{
}

Map20DRAx.handlerNode)

841112 ExecutableNode

An executable node is an abstract class for agthodes that may be executed. Its mapping
ODRA code is defined by its concrete subclasses.

84.1.1.13 ExpansionNode

An expansion node is an object node used to inglieatflow across the boundary of an
expansion region. ExpansionNode inherits its mappnODRA from its generalization.

84.1.1.14 ExpansionRegion

An expansion region is a structured activity rediost executes multiple times corresponding
to elements of an input collection. It is mappeddieach statement. The attributeodyPart
is inherited from its generalization StructuredAittiNode.

Mapped node x Mapping result Map2ODRA(X)

foreach ( Map20ODRAX.inputElement) do {
ExpansionRegion Map2ODRAXx.bodyPart)

}

84.1.1.15 ForkNode

A fork node is a control node that splits a flovtoimultiple concurrent flows. Since ODRA
does not support parallel execution, the ForkN@tesnapped the same way as ControlFlow,
i.e. to sequential execution of nodes.

84.1.1.16 L oopNode

A loop node is a structured activity node that espnts a loop with setup, test, and body
sections. LoopNode is mapped to an ODRA while-dal{mwhile) statement preceded by the
mapping of the setupPart.

Mapped node x Mapping result Map20ODRA(X)
Map2ODRAX.setupPart)
LoopNode .
(isTestezFirst=true) while ( Map2ODRAX.test)) do {
Map20ODRAXx.bodyPart)

- 106 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

}

Map20ODRAX.setupPart)
LoopNode do{
(isTestedFirst=false) Map20ODRAXx.bodyPart)
while (Map20ODRAXx.test)) ;

84.1.1.17  ObjectFlow

An object flow is an activity edge that can havgeots or data passing along it. It is not
mapped directly to ODRA. It mapping amounts to gusig the integration of its inputPin
with its outputPin, i.e. the mapping of its inputPiecomes the mapping of its outputPin.

8.4.1.1.18 ObjectNode

An object node is an abstract activity node thaiag of defining object flow in an activity.
The mapping of an ObjectNode to ODRA is inheritednf a proper subclass of the
TypedElement class.

84.1.1.19 SequenceNode

A sequence node is a structured activity nodedkatutes its actions in order. The mapping
of a SequenceNode to ODRA is just the sequenteduion of owned subnodes.

Mapped node x Mapping result Map2ODRA(X)

SequenceNode Map2ODRAfx.executableNode)

8.4.1.1.20 StructuredActivityNode

A structured activity node is an executable agtimibde that may have subordinate nodes. Its
mapping to ODRA is defined by its concrete sub@ass

85  Expressions

8.5.1 Mapping

85.1.1.1 CallExp

A CallExp is an expression that refers to a featopeeration, property) or to a predefined
iterator for collections. Its result value is theakiation of the corresponding feature. This is
an abstract metaclass. Its mapping to ODRA is gbseit concrete subclasses.

85.1.1.2 FeatureCallExp

A FeatureCallExp expression is an expression #fatg to a feature that is defined for
a Classifier in the UML model to which this expiessis attached. Its mapping to ODRA is
given by it concrete subclasses.

85.1.13 IfExp

An IfExp results in one of two alternative express depending on the evaluated value of a
condition. It is mapped to the ODRA if-then-elsgmssion.

Mapped node x Mapping result Map2ODRA(X)
if Map20ODRAXx.Condition)then
IfExp Map20DRAX.ThenExpression)
else

- 107 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 6 — Deliverable D6.1
Date 2008-04-15

Map20ODRAX.elseExpression) |

85114 IterateExp

An lterateExp is an expression that evaluates adybexpression for each element of a
collection. This is the construct with the most gdax mapping to ODRA. The ODRA
operationeaves byhas to be used:

Mapped node x Mapping result Map2ODRA(X)

(Map20ODRAXx.baseExp)roupas C).

(1 as counter, Map2ODRAX.setup)gr oupas Map20ODRAX.resuly)

leaves by
IterateExp ((C[counter] as Map20ODRAX.iterator).(counter + 1 as counter,
Map20DRAXx.body)groupas Map20ODRAX.result))
wher e counter <= count(C)
)
).Map20ODRAX.result)
85115 Iterator Exp

An lteratorExp is an expression that evaluatesdddy expression for each element of a
collection. It is mapped to a call to ODRA non-ddggc operator.

Mapped node x Mapping result Map2ODRA(X)
IteratorExp Map2ODRAX.iterator)Map2ODRAX.operatorMap2ODRAx.body)
The mapping of OCL operators to ODRA operators is presented in the following
table:
OCL operator ODRA operator
-> collect . (dot)
->sortedBy order by
-> select where
-> exists exists
->forAll forall
Table 10: Mapping OCL iterator operationsto ODRA SBQL
LiteralExp

A LiteralExp is an expression with no argumentpi®ng a value. In general the result
value is identical with the expression symbol. tateexpressions are mapped directly to
ODRA. One exception is the string which is hasuww@unded by double quotes in ODRA.

851.16 L oopEXxp

A LoopExp is an expression that represents a laostecuct over a collection. It mapping to
ODRA is defined by its concrete subclasses.

85.1.1.7 NavigationCallExp

A NavigationCallExp is a reference to a Propertfirsigl in a UML model. It mapped to a
call to ODRA dot operator.

- 108 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0 Date 2008-04-15
Mapped node x Mapping result Map2ODRA(X)
NavigationCallExp Map20ODRAXx.qualifier) . x.navigationSource.name

8.5.1.1.8 OclExpression

An OclExpression is an expression that can be ateduin a given environment.
OclExpression is the abstract superclass of aéragipressions in the metamodel. It mapping
to ODRA is given by its concrete subclasses.

85.1.19 OclVariable

Variables are typed elements for passing datapnessions. Its mapping to ODRA is just the
call to its name.

Mapped node x Mapping result Map2ODRA(X)

OclVariable X.name

8.5.1.1.10 OpaqueExpression

An opagque expression is an uninterpreted textagtistent that denotes a (possibly empty) set
of values when evaluated in a context. Its mappn@DRA is just its interpretation.

Mapped node x Mapping result Map2ODRA(X)

OpaqueExpression x.body

851111 OperationCallExp

An OperationCallExp refers to an operation perfatma build in OCL types that is mostly
operator calls such as: +, -,*, /, <, >, =, <>, &=, not, xor, and, or, unary -. User defined
operations are called by appropriate action. happed to ODRA function call or operator
call.

Mapped node x Mapping result Map20ODRA(X)
OperationCallExp Map20ODRAx.argument[1])
(referredOperatiors one of +, -,*, /, x.referredOperation.name
<, >, =, <>, <=, >= or, xor, and) Map20ODRAx.argument[2])
OperationCallExp x.referredOperation.name
(referredOperatiors one of not, Map20ODRAx.argument[1])

unary-)
OperationCallExp (all other MapZODRAx.argument[l])
possibilities) x.referredOperation.name
( Map20ODRA{x.argument[2-*],) )

8.5.1.1.12 PropertyCallExp

A PropertyCallExpression is a reference to an Bdtie of a Classifier defined in a UML
model. It is mapped to ODRA dot operator.

Mapped node x Mapping result Map20ODRA(X)

PropertyCallExpression Map20ODRAX.qualifier) . x.referredProperty.name

851.1.13  VariableExp

A VariableExp is an expression that consists aéfarence to a variable. It is mapped to the
variable name.

Mapped node x Mapping result Map2ODRA(X)

VariableExp x.referredVariable.name

- 109 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

85.1.1.14 ExpressionlnOcl

An expression in OCL is an expression that is emitin OCL. Because in the abstract syntax
OclExpression is defined recursively, the top o Hibstract syntax tree is represented by
ExpressionInOcl, and it is defined to be a subctdgbe ValueSpecification metaclass from

the UML core, as shown in. The ExpressioninOcl apped the same way as its owned
expression in OCL.

Mapped node x Mapping result Map2ODRA(X)

ExpressioninOcl Map20ODRAX.bodyExpression)

8.6 VIDE Web servicescompilation rulesfor ODRA platform

In this section we describe compilation rules foet\service elements from a VIDE model.
Additionally to generic (target platform indepentjemiew on the compilation process we
describe concrete compilation scenarios.

In Web Services profile subsection we describe VBebvice related VIDE UML profile
enhancements. Common compilation schema is subseatiere we provide generic rules
and best practices for Web services model compriatWe do not prescribe any particular
approach used at target platforms for handling \8etvices there. In the last subsection —
Compilation Scenarios — we go into ins and outd\Mab services compilation for ODRA
platform.

8.6.1 Web Servicesprofile

Web Service related classes can be marked inssddmdudel with«ConsumedService» and
«PublishedService» stereotypes.

«ConsumedService»

Designates that class will represent a proxy tootereb Service conforming to
certain WSDL contract. Its operations are assodisaaemote Web method calls
of given Web Service. Exact shape of this stereotypl be specified based on
the design decisions in model compilers developrimextDE.

Generalizations

Class

Attributes

URL:String[1] Address of Web Service contractidigion
port:String[1] name of Web Service port to use
service:String[1] name of Web Service to use
«PublishedService»

Tells system that class should be exposed as Weit&endpoint.

Generalizations
Class

Attributes
url:String[1]  points to URL where Web Service shiblbe installed
Namespace:String[1] - defaults to (filtered) conitag package global name

«PublishedOperation»

- 110 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

Marks those operations, which should be availaldeWseb methods of that
endpoint.

Generalizations
Operation

Additionally the following naming conventions argseal:

WSDL VIDE
Publishing and consuming

(encoded) target namespace  containing package names

Port type class name

operations names operations names

Publishing only

Service name Name of class suffixed with
“Service”

Port name Name of class suffixed wjth
“‘Port”

Table 11: VIDE-WSDL naming conventions

8.6.2 Generic Web Services compilation schema notes

Web services are represented as regular VIDE metkshents marked with certain
stereotypes. However because of their remote behwhey need to be treated in a special
way during compilation.

For example a consumed service is visible in editomormal class (and set of associated
types generated from WSDL) and hence can be céited any other package. However,
compiler needs to be aware of that fact and conipising dedicated procedure. All calls to
such remote proxy can still be compiled in standreagt. Possible problem here is to maintain
tight control over the way consumed service isizedlinside a target platform.

Importing service to model means generating acspatixy stub packaged with all necessary
types. Same procedure is usually done on targdopiss level. This is sufficient if system
creation starts from PSM and there is no alreadlgated web service information from PIM
level. However in our case, where such data alreadts, it should not be dismissed (i.e. by
deciphering again all information from WSDL contja®oing so affirms that all dependent
(on service proxy) model elements will have tha@llscworking correctly. Recreating proxy
from scratch can lead to inconsistencies betweeat WhDE user sees and what is being
executed (hence errors would be less descriptiedahugging more problematic).

We did not encountered this problem in our comjafascenarios, and hence
do not prescribe following this more laborious mapgppath here to prevent
them. However, we want to make developers awap®sdible implications of

proxy regeneration. We can imagine that for certesa cases this will be a
sufficient solution.

For published services similar discussion neecetonbde. In that case fortunately there is no
need to manage tight control over Web service airbecause no code generation occurs.
However what may be crucial to provide is to haxactly the same WSDL contract of

service being exposed for each target platformadiieve such effect, WSDL (at least some
part of it) should be generated before compiles g¢tirted. Instead of bare model, compiler
will be feed in additionally with such (partial) miwact. This requires usage of contract first

-111 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

approach toolset to create service stub. Suchtsketan then be filled with target platform
code.

In such approach compiler authors need to mange ¢ontrol over generated stub. This is
important since class being exposed can be usedladally. Building service as a black-
boxing wrapper on such local class is reasonalblgiso to follow.

This feature should be considered optional. Becawde its high
implementation complexity and no direct requiremientthis in neither of the
two currently supported target platforms, it witrbe implemented in VIDE
prototype. In future it may be realized as adddiokiveb Services VIDE
component common to all target compilers and regigbetween PIM and
PSM layers.

8.6.3 Themodd compiler to ODRA

8.6.3.1 Services

In order to include Web Services definition andges&rom the level of VIDE models we
extend the metamodel with two class stereotyped ¥éevices are compiled in similar way
to regular classes. However there are some exospftiom the standard compilation routine.
The exact compilation routines for consumed andligled services are described in the
following subsections.

86.3.1.1 ConsumedService

To achieve tight control over compiling, the congahservices proxy is not regenerated using
add module .. as proxy ODRA DDL command. Instead of that regular compilati
takes place (this also applies to containing paekatgl associated types). Thanks to that no
special handling for compilation of remote methodls is necessary. Finally compiled class
is promoted to constitute remote proxy using dadat@DL ODRA command.

Mapped node x Mapping result Map20ODRA(X)

(after x.package compiled cOd€)
cm Xx.package.name;
(port and service are taken from associated Webki&epptions file
section)
promotex.nameélassto proxy on Self.getValue(
Class marked with self.getAppliedStereotypes()->
«ConsumedService» select(hname='"ConsumedService')->asSequence()->atRl)' )"
stereotype with (

port="self.getValue( self.getAppliedStereotypes()->
select(name="ConsumedService')->asSequence()->atgit) ),
service="self.getValue( self.getAppliedStereotypes()->
select(name='ConsumedService')->asSequence()->ati)ice' )
cm ..

8.6.3.11.1 Example

Let's consider the following VIDE modetonsuming-example.uml taken from related
WP5 document chapter.

-112 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

package ConsumedTest )

org.example.shupl
Item
< <ConsumedService ==
SalePortTypeProxy
+ by (item : Them) 1 | +Harget
+ getltemns () : tems
1 g t+source

Items
+items : Ikem[1..*] { unique +

o
<<|mpon>}
I
-

-
<

Zomodule’ >
Test

+ main ()

Figure 35 : Examplefor consumed service mapping into ODRA

Main procedure from the above diagram has thevatig body:
context  Test::Test.main body

{
let serviceProxy : SalePortTypeProxy = create { };
if ( serviceProxy.getltems()-> size ()>0) {
let toBuy : Item = serviceProxy . getltems ()->first();
if ( toBuy . getPrice() < 100){
serviceProxy . buy (toBuy );
}
}
}

The result of compilation procedure described abalieoe:
add module org_shop_example {

class SalePortTypeProxyClass {

buy(item:ltem) { }

getlitems():Items { }

class Item{
/I attributes

}

class Items {
items:Item[1..*];

}
cd org_example_shop
promote ShopSalesPortTypeProxyClass to proxy on

"http://localhost:8080/Shop?wsdl" with (
port=" ShopSoapllPort ",
service=" ShopService "

I
cd

- 113 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

add module  Test {
import org_shop_example;
main () {
salePortTypeProxy:SalePortTypeProxyClass;
if ( count (salePortTypeProxy.getltems()) > 0) {
if (salePortTypeProxy[0].getPrice() < 100) {
salePortTypeProxy.buy(toBuy);

}
}
}
}

8.6.3.1.2 Publishing

Since ODRA does not support tbhentract firstapproach — the simple approach will be used
for publishing. Since exposed components are redgotanstrained) classes, their compilation
will be handled by standard mapping routine. Thawokthat no special handling is necessary
for compilation of local methods calls.

ODRA endpoint is not created on original classdiutts wrapper. The wrapper contains only
methods marked with PublishedService stereotypeaagls real execution to the underlying
class.

Finally dedicated ODRA DDL command is used to exptgeb Service. ODRA supports
only the wrapped document/literal service invoaatgtyle — if different one is requested,
compilation error is reported.

Mapped node x Mapping result Map20ODRA(X)

classx.namelass extendMap20ODRAfx.superClass) {
instancex.namef
Map20ODRAfx.ownedAttribute;) ;

}
Map20DRA{x.ownedOperation)

}
classx.naméVrapperClass extenasnamelass {
iInstancex.naméVrapper {
internak.nameClass;
}
for each x.ownedOperation marked wiRublishedOperatiom
stereotype

Class marked with :
x.ownedOperation.name(

«Publlfhed?er‘uce» Map20DRA%x. ownedOperation.ownedParametgj,
stereotype ‘Map20DRA(x.ownedOperation.ownerParamaiptype) {
internalx.ownedOperation.nanmperation(
Map20ODRA*(x.ownedOperation.owneditaeter.name,
));
}
}

(after x.package compiled cOde)

cm X.package.name;

(url, port and service are taken from associated\8ervice options

file section)

add endpoink.naméndpointon x.namé&\VrapperClass with (
state=STARTED,

- 114 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

path="felativePart(self.getValue( self.getAppliedSterpeiy()->
select(name='PublishedService')->asSequence())> QL' )))",

portType=X.namég,

port="%.namé’ort",

service=X.nameéervice",

ns='elf.getValue( self.getAppliedStereotypes()->
select(name="PublishedService')->asSequence())>atéinespace’
)"
)

cm ..

classx.naméVrapperClass extenddap20ODRAfx.superClass) {
instancex.namef

}
}
for each x.ownedOperation marked wiRublishedOperatiom
stereotype
Class marked with x.ownedOperation.nameOperation
«Module» and Map2ODRAfx. ownedOperation.ownedParametgi,
«PublishedService» ‘Map20DRA(x.ownedOperation.ownerParamaiktype) {
stereotype x.ownedOperation.nane
Map20DRA*(x.ownedOperation.ownediPaeter.name,
));
}
}

(after x.package compiled cOde)
(same as for the above case)

8.6.3.1.2.1 Example

Let's consider the following VIDE modglublishing-example.uml taken from related
WP5 document chapter.

- 115 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

package urg_shup.e}{ample)

««<Published3ervice ==
ShopSalePortType

+ checkffwailable{item : Trem) : Boolean
< <PublishedCperation =+ huy (item : Item)
< <PublishedOperation =+ getltems (i : Items

Items
+items : Item[1..*] { unique +

1 ¥ +source

1 | +arget

Item

Figure 36 : Examplefor published service mapping into ODRA
The result of compilation to ODRA using routine ci@sed above will be:

add module org_shop_example {
items:ltems;
class ShopSalePortTypeClass {
instance ShopSalePortType : { }
checklIfAvailable(item:ltem):boolean { ... }
buy(item:ltem) { ... }
getitems():ltem[0..*] { ... }

class Item {
/I attributes

class Items {

items:ltem[1..*];

}

class ShopSalePortTypeWrapperClass extends ShopSalePortTypeClass {
instance  ShopSalePortTypeWrapper {

internal:ShopSalePortTypeClass;

}

buy(item:ltem) { internal.buy(item); }
getltems():Item[0..*] { return internal.getltem sQ); }

}
}

cm org_shop_example

add endpoint ShopSalePortTypeEndpoint on ShopSalesPortTypeWrapperClass with
(STATE=STARTEDpath="/  Shop", portType=" ShopSalePortType 7,

port=" ShopSalePortTypePort " service=" ShopSalePortTypeService "

ns=" example.shop.org ");

- 116 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

9 Transformation frameworks

Following the MDA approach, models created by VIBditors are supposed to be platform
independent, whereas some model compiler geneagikdform specific model or even code
towards a specific target platform. In this coniext evaluated several MDA tools with
respect to their usability as underlying framewfankthe VIDE model compiler to Java.

In the following, we will present some evaluatianteria and especially VIDE-specific ones.
Then we give a brief overview and evaluation of ti@st promising MDA tools with respect
to the Java model compiler.

9.1 Evaluation Criteria

9.1.1 Requirementsdefined by VIDE specification

Generally, the underlying generator tool shouldpsupthe development of a model compiler
as described in [VIDE2007a] in the specificatiomairk package 6:
- The model compiler should‘exemplify the mapping of Action Semantics
representation into common application server platfs, thus allowing to verify
VIDE completeness and flexibility in the developmeéargeted onto typical
commercial software platform”.
- The model compiler should enable the developmetii@prototype (to be developed
in work package 9).

Consequently, compatibility to other VIDE modulsscrucial, especially with regard to the
development of an integrated prototype. To enshige the technology chosen for the model
compiler should be selected carefully and the meguents collected during work package 1
should be taken. These requirements are presantbd following.

9.1.1.1 Integration with the Eclipse

As pointed out in [VIDE2007a] and [VIDE2007b], thdDE system including the VIDE
prototype will be developed using the Eclipse frauoek, because Eclipse is considered as
being a successful, widely adopted Open Sourcesgtojrherefore, the MDA tool must
provide integration in the eclipse framework.

9.1.1.2  Compatibility with EMF

The VIDE partners decided to use EMF as VIDE's nllodg framework for the PIM
modelling with UML. For model storage and to beenoperable with existing UML
modelling tools, the Ecore-based UMLZ2 implementatiof MDT is used, as it nicely
integrates the OCL metamodel. UML2 export is noppsuted by many tools.

Therefore, the MDA tool used by the model compiherst accept UML2 models (serialized
in XMI) as input.

- 117 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

9.1.1.3  Supporting Multiple Target Platforms

Following the MDA approach, VIDE should support eodeneration for various target
environments.

Therefore, the MDA tool should not be limited tespecific target language and should be
extensible in regard to new target platforms.

9.1.14  Open Source

In [VIDE2007a], VIDE is specified to be an open anteroperable platform, that will be
compliant and build upon standards (UML/XMI) andcsessful open source platforms for
tool interoperability. The MDA tool used by the d& compiler to Java should also be Open
Source.

9.1.15 Using XPand as Model-to-Text transfor mation language

In the context of WP 1 [VIDE2007a] §7.4.4, sevavldel-to-text transformation standards
were compared. In particular we compared the Vglommplate Language, and XPand.
XPand has several advantages over Velocity asdinple and easy-to-learn (less than 10
commands), natively support MDSD as it takes readl@s as input, strongly typed and thus
supports syntax checking while editing.

Requirement Tool-5 in D1.1 states that XPand shob&l used for Model-to-text
transformation in VIDE.

9.1.2 Other Criteria

Additionally, there are some more common tool feeduto be mentioned, which are not
specific to the VIDE project. As the, they can oate the maturity and quality of the MDA
tool, they should be taken into consideration, too.

9.1.21 Industrial Adopted Tool

The tool should be proven in real-world industpedjects.

9.1.2.2  Tool Documentation and Support

Comprehensive, up-to-date tool documentation shdaddavailable. The tool should be
sufficiently maintained or further developed. Suppa forum or e-mail should be available.

- 118 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

9.2 Tool Evaluation

921 Oveview

The general discussion about the possibilities applortunities which the Model Driven
Software Development potentially offers has lecatvide choice of MDA tools, which all
claim to support Model Driven Architecture.

Far more than 60 tools can be investigated incatpay at least one of the major aspects of
MDA:

- UML-based modelling

- Transformation between the application overall giesnodels and the models that are
specific to the underlying computing architecture

- Generation of code in a specific language

To be suitable for the specific task of WP6 in YA®E context, a model compiler should
support especially the third aspect, code generatio

On the other hand, the first aspect, UML-based iiadeis not in the specified scope, as the
model compiler should integrate with a VIDE editased on EMF (chapter 2.1.2). Therefore,
there is no need for an own graphical UML modellfagility. Consequently, these MDA
modelling suites are considered inappropriate.

Filtering the remaining selection for widely-use@ddd Source projects reveals that there are
only two candidates left: AndroMDA and openArchtteeWare. In the following sections,
these two will be shortly introduced and then weleate whether they are conform with the
remaining criteria specified in Section 2 and tlsugable as underlying MDA tool for the
VIDE model compiler.

9.22 AndroMDA

AndroMDA is described as extensible generator fraork, following the MDA paradigm.
AndroMDA takes a UML model from a CASE-tool as impand generates classes and
deployable components for all kinds of platforms.

AndroMDA comes with a big bundle of ready-to-usetamgodels and templates (cartridges),
making it easy to get started. There is a cartridgen UML to Java but it supports only the
structural part of UML (i.e., no action support).

The current stable version is AndroMDA 3.2.

9.22.1 Integration with Eclipse

There is currently no stable Eclipse IDE integnatith is pronounced that this will change in
the near future, as an integration project calledraid is on the edge of being released.

-119 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

9.22.2  Compatibility with EMF

Since the current version of AndroMDA (3.2), EMF WUR compatible XMI files are
supported.

9.2.2.3  Support of Multiple Target Platforms

AndroMDA can generate (textual) code for any tangetform. It comes with a bundle of
ready-to-use metamodels and templates, making\t teaget started with simple projects for
various platforms, e.g.: Struts, JSF, Spring, Hibe, EJB und jBPM. If these cartridges will
not fit the current requirements a new cartridge loa developed

9.224  Open Source

AndroMDA is Open Source.

9.2.25 Integration of XPand astransformation language

AndroMDA uses the open source-Framework VelocigyrfrApache Software Foundation as
template engine. An integration of XPand is notved.

9.22.6  Industrial Adopted Tool

AndroMDA is widely-used as several success staras be found (e.g. used by Lufthansa
Systems).

9.2.2.7  Tool Documentation and Support

AndroMDA provides some tool documentation but trecuimentation seems outdated at
some points. Support can be obtained at the forumch seems to be frequently read by a
large community.

9.2.3 OpenArchitectureWare

OpenArchitectureWare (0AW) is a modular MDA/MDD geator framework implemented
in Java. It supports parsing of arbitrary modet&| a language family to check and transform
models as well as generate code based on themo&ingpeditors are based on the Eclipse
platform.

At the core, there is a workflow engine allowing thefinition of generator/transformation
workflows. A number of pre-built workflow componentan be used for reading and
instantiating models, checking them for constraiioiations, transforming them into other
models and then finally, for generating code.

Current stable version is 0AW 4.2.

9231 Integration with Eclipse
0AW is a subproject of the Eclipse Modeling projéldterefore, it is smoothly integrated in
Eclipse.

- 120 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

9.23.2 Compatibility toEMF
OAW has strong support for EMF UML2-based or Edoased models but can also work

with other models, too (e.g. XML or simple JavaB®an
9.2.3.3  Support of Multiple Target Platforms

Any (textual) artifact can be generated using ti&aid generator. Therefore, multiple target
platforms are supported. Only a few cartridges dtandard platforms are ready-to-use
available. The developers describe 0AW as “tool Barding tools”; their goal is not to
develop generators but rather to provide the ugithgylframework, enabling the users to build
their own generator.

9.234  Open Source
0AW is Open Source.
9.2.35 Integration of XPand astransformation language

XPand is an integral part of oAW.

9.23.6 Industrial Adopted Tool

0AW is widely-used, several success stories cdouoed on the tool homepage.

9.2.3.7  Tool Documentation and Support

Parallel to the release of 0AWA4.2 the documentatias completely revised. A direct contact
to the oAW developer team is possible via the Ehglir German forum.

9.3 Evaluation Results

Comparing AndroMDA and oAW according to the choseteria, it is obvious that 0AW is
regarded as the favourite:

AndroMDA 0AW
Integration with Eclipse - +
Compatibility to EMF Not possible in version 3|1 +
Support of multiple target + Just a framework
platform
Open Source + +
Integration of XPand a&s - +
transformation language
Industrial Adopted Tool + +
Tool Documentation and not up-to-date, tutorials +
Support missing

Table 12: AndrMDA vs. )oAW comparison table

-121 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

AndroMDA fails at the Criterion of Eclipse and XRhimtegration.

Although it seems that AndroMDA can gather somensowith its ready-to-use cartridges for

all kinds of target platforms, this start-up adeay® is withdrawn in the context of the VIDE

model compiler as the peculiarities of VIDE (UMLtiaos and OCL expressions) would

result in the need for newly developed cartridgdwe procedure of developing a generator
from scratch is certainly better supported by oAd¥,the developer profits from the highly

advanced set of editors integrated in the oAW fraork.

Additionally, the oAW framework with its modularrattured architecture and
comprehensive set of languages (e.g., Xtend, Chetck,and the respective user-friendly
editors promises more flexibility with regard toethintegration in the overall VIDE
framework.

-122 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

10 UML Metamodel evolution propositions

As presented Figure 37, in UML, an Activity is mned by an Operation but by the Class to
which the Operation belongs. This model is diffidol understand and offer very little reuse
of the Activity because they depend heavily ongammeters of the Operation.

specification method

BehavioralFeature Behaviour

A 0.1 * A

w ownedElement * w
Operation Activity

ownedO peration *

-

® cClass €

Figure 37 : Activity ownership in UML Metamodel

Therefore, we propose the more understandable andgeable metamodel presented Figure
38, where an Activity that describes an Operat®owned by this Operation. Note that the
composition between Class and Behaviour still eixisthanage Activity defined at the class
level (it is not shown here to ease the understandof the modification). The
BehavioralFeature class, of little help, is remaved

ownedBehaviour

Operation @ Behaviour
1 * A\
ownedO peration * ]
Activity
1

— @ Class

Figure 38 : Activity ownership proposition

A number of minor issues have been identified ia #rea of the Activities unit and its
integration with the remaining part of UML. Thisrpaf specification is relatively new and is
seldom being implemented.

The most significant problems are related withmafieng to use OCL as a general purpose
guery language for UML (though the specificatiompleitly mentions this as one of the OCL
purposes). Namely, the following issues may needlveng in the further revisions of UML
and OCL specifications.

- 123 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

OCL cannot access UML'’s Variable element. Therenarappropriate expressions in the
standard. It can read value from a Property ofas€br a Parameter of an Operation but
cannot read values from a Variable defined in acdtiredActivityNode.

Unspecified conversion of OCL types to UML typedthAugh there is a conversion
specified from UML types to OCL types, there is explicit definition of the opposite
conversion. It is then formally impossible to comauOCL expression results in UML
actions and other UML constructs

Consuming of OCL collection types in UML actionsh€fe is an important problem of
correct and common interpretation of collectionetypin UML a collection is represented
by multiple values. OCL defined dedicated colleatiypes, which are containers for
stored values. When OCL expression is accessing WiMltiple value, it is converted to
appropriate OCL collection instance. On the othde sso OCL expression (or query)
may return multiple values, which are packed imkection type. However, from UML's
point of view, OCL collection is just a single val(of a collection, say Bag type). There
is no reverse mapping from OCL collections to UMultiple value variables. Because
of that, standard UML cannot treat OCL collectigmsperly and cannot handle them for
example in Expansion Regions. Such a conversian aanot be done implicitly when
consuming OCL results in ValueSpecificationActitiML specification says that type of
ValueSpecificationn this action must be the same as the type afitres the OutputPin
(JUML2007] p.302).

Finally, it should be noted that introducing theulyr seamless support for OCL
expressions for UML behaviour would make a numbér agtions redundant:
(ReadStructuralFeatureActioiReadSelfActionReadExtentActignReadLinkActioretc.)
thus contributing to the simplification of the oa#rmetamodel.

Moreover, the way OCL expressions can be embedded WML behaviour is rather
redundant for the purpose of realizing expressimsgde method bodies. The wrapping
provided byExpressionIinOctlass instance, constructing the expression’srenrient (e.g.
the self variable etc.) each time, even for the most trieipressions results in a very large
number of objects inside the model repository.

- 124 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

11 Conclusion

The aim of the “Model Compilers” work package isspmecify the mapping of VIDE language
to several languages and execution platforms.

This study has been done for two different targeiglages and execution platforms, the
Java/J2EE and ODRA SBQL languages. The first iselh known general purpose object
oriented programming language while the other Igdoto a new brand of object oriented
programming language that integrates database duoeitg core and designated for rapid
development of business intensive application.

The mapping to Java has been done in three steps:

1. Mapping to plain Java without any other consideratthan to find semantically
accurate and efficient translation schemas

2. Mapping to JPA to allow VIDE program to interadrisparently with databases. This
mapping integrate not only model navigation assitcommon in object oriented
paradigm, but also the support for limited but ukgtieries based on JPQL.

3. Mapping to web services, using the annotationsddfin JAX-WS standard API. The
mapping to web services is bidirectional: the cderptan generate code to produce
publish web services as well as generating codmaltcaccess externally defined web
services.

ODRA mapping provided a quite straightforward wdyachieving executable form of the

VIDE models. For this reason, the ODRA engine wassen to be adapted and provided with
the editor facilities in order to allow model ex@on at development time, directly from the

VIDE editor.

Through the point of view of the mapping, we hakeven the validity and the completeness
of the VIDE metamodel and pinpoint some simplificas of the underlying UML metamodel
to enhance its usability.

Beyond the specification of the mapping for Javeg available tools to implement that
mapping have been studied with respect of the reopgnts that come from WP1 work and
that prescribe the use of a Xpand template bassftnanation tool that is integrated with
Eclipse platform. OpenArchitectureWare has beersehdor that purpose.

The implementation of these mappings and the ustheofresulting tool will undoubtedly
make appear enhancements and optimizations of theemted work, as well as the
opportunity for the support of other platforms liIR¢ET.

- 125 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

12 Glossary

CIM — Computation Independent Model. A high level,tetzd model of a given problem
domain, focusing on requirements and environmeth@tystem.

DBMS — Data Base Management System. It is a suite offrams which support the
management and accessing of large structured $epersistent and shared data.
DBMSs are widely used in business applications.uftent DBMS is an extremely
complex set of software programs that controlsaifganization, storage and retrieval
of data (or objects) in a database. It also suppmany features related to data
management such as buffer management, authorizatioisers, granting privileges
for users, database schema and sub-schema manageseenrity, integrity,
consistency, privacy, client-server architecturaerg optimization and processing,
concurrent access to shared data (transaction gmiog, data abstractions such as
views, triggers and stored procedures, variougoptrability facilities, geographic
distribution of resources, and others. A DBMS frewfly equipped with additional
facilities such as Web interfaces, integrated mogning languages, graphical user
interfaces, data warehouses, report and form gemsyamultimedia management
(graphics, voice, video), and others. Currently ninest popular DBMSs are based on
the relational model and SQL as a query/programn@nguage. Other datamodels, in
particular, object-oriented and XML-oriented, atsoaconsidered as a basis for the
DBMS construction.

JPA — Java Persistence API. The Java PersistenceraiAtlps a POJO persistence model for
object-relational mapping. The Java Persistence wdd developed by the EJB 3.0
software expert group as part of JSR 220, butsesia not limited to EJB software
components. It can also be used directly by webiagimns and application clients,
and even outside the Java EE platform, for exampléava SE applications.

JPQL — Java Persistence Query Language. The Java Becgistjuery language defines
queries for entities and their persistent statee §hery language allows to write
portable queries that work regardless of the ugteyldata store.

MDA — Model Driven Architecture. It is an initiativerggmoted by OMG, assuming the
central role of models (in particular — platforrd@pendent models (PIM)) in the
software development process. Support for automatede! transformations plays an
important role for productive application of thision.

Metamodel extension — modification of the metamodel of existing mouhgll language to
provide it with additional or modified features ded for particular area of
application. Less intrusive ways of extension assudefining annotations or
stereotypes, while the more intrusive ones assutiditi@n or modification of the
metamodel classes.

MOF — Meta Object Facility. It is an OMG specificatitimat defines a meta-metamodel for
specification of various modelling languages intégams. It is intended to provide a
common foundation for those languages to suppat dbvelopment of common
frameworks for models construction and transforaregi which is essential for
realising the MDA postulates.

0AW — OpenArchitectureWare. openArchitectureWare (oAM/)a modular MDA/MDD
generator framework implemented in Java. It sugpoatsing of arbitrary models, and

- 126 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

a language family to check and transform modela/es as generate code based on
them.

OCL - Object Constraint Language. An OMG specifiedgleage being developed in
association with the UML. Its main purpose is sugipg the modelling and
metamodelling by specifying precise constraints éleir instances. Moreover, one of
the potential applications of OCL is providing gué&nguage functionality.

OMG - Object Management Group. Is a consortium estaddi to for setting standards in the
areas of object-oriented distributed systems aftdvace modelling. Significant OMG
initiatives or standard specifications include MDAYIL and CORBA.

PIM — Platform Independent Model. Is a model of sofenspecified in the way that avoids
dependency on particular technological platform.

Query language — The term is used in two contexts: (1) A languatiewing the users for
quick, ad hoc retrieval in large data resourceserdhare many such languages,
frequently based on natural language processimghigal tools or some forms. (2) A
language that is used as an application programmiagace to access databases, e.g.
SQL, OQL, OCL, SBQL, JPQL, XQuery, etc. It is uswahssumed that a query
language should possess the following propertiggt abstraction level, no involving
physical details of data, non-procedurality (deatiaity), macroscopic processing
(many-data-at-a-time), simplicity and naturalnessr fprogrammers, machine
efficiency for very large databases due to querymapation, universality (covering
majority of useful user requests), domain indepanédg interpreted rather than
compiled. Query languages, notably SQL, are consitiéhe main factor of the
spectacular success of the relational databab@ddgy. Queries are also building
blocks for programming and database abstractioct s$ views, triggers, stored
procedures and constraints.

Service Oriented Architecture — an approach to software architecture aimed werend
loose coupling between applications, postulatingduharisation in the form of
services, which are usually by degree of magnitudes course grained than in earlier
approaches to reuse and modularisation. To adputet changing requirements, the
services are intended to be easily composablesipiithcess obrchestration

UML - Unified Modeling Language. The language is desigfor broad area of application
in terms of various problem domains and levelsretigion. Recent versions provide
extended set of modelling constructs in order t&emapossible to realize with UML
the concept of executable modelling. Current phblis version is UML 2.1.1
[OMG2007b].

UML Action Semantics — a part of UML language included into its metaelad version 1.4
of the specification, in order to provide it withet means of specifying behavioural
details like reads, updates, collection processindg control flow. In subsequent
versions of UML the respective features have bedesigned and included in Actions
and Activities units.

UML Actions — a UML unit grouping elementary constructs of d&gbural specifications.
Those include particularly object and link readsdates, removals, variable reads and
updates, performing calls and sending signals.

UML Activities— a UML unit serving for behavioural modellings hotions allow describing
the sequence and conditions for executing loweell&ehaviours. The concepts of
control flow and object flow are emphasized. Ap&mdm them, the package

- 127 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1
Version 1.0 Date 2008-04-15

StructuredActivities introduces the elements faudured style modelling, which
allow for relatively straightforward definition ofconstructs found in typical
programming languages.

UML Classes — the foundational unit of the UML static strugumodelling notions. It
defines the elements and notation for class modets the model decomposition
mechanism using the notion of Package.

UML Components unit — a UML unit depending on UML Classes, designed fo
specification of logical and physical componentartieularly, its notions allow for
decomposition and definition of interfaces amorgaeeable software units.

Web services — middleware technology assuming reuse and intiegraof application
functionality by providing it with a form of courggrained services available through
standard protocols and reusing the WWW infrastmactu

- 128 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 6 — Deliverable D6.1

Version 1.0

Date 2008-04-15

13 References

[VIDE20074a]
[VIDE2007b]
[VIDE2007¢]
[SAPAS]

[SAPJPA]

[ADHK2008]

[BEAJPA]

[JAX]

[OMG2007]

Annex | - “Description of Work” (amentkent). 2007-04-24. VIDE Consortium
2007.

Deliverable number D.1.1: Standards, Technologacal Research-Base for the
VIDE Project, Project Evaluation Criteria and Udeequirements Definition.
VIDE Consortium 2007.

Deliverable number D.2.1: VIDE languadgfinition. VIDE Consortium 2007.
SAP Netweaver Application Server
http://www.sap.com/platform/netweaver/componentsliaptionserver/index.epx
Getting Started with Java Persistence gl SAP JPA 1.0
https://www.sdn.sap.com/irj/sdn/go/portal/prtrootzd/library/uuid/40ff8a3d-
065a-2910-2f84-a222e03d1f43

R. Adamus, M. Daczkowski, P. Habela, K. Kaczmar$kiKowalski, M.

Lentner, T. Pieciukiewicz, K. Stencel, K. Subid¥a, Trzaska, T. Wardziak, J.
Wislicki: Overview of the Project ODRA. 1st Internata Conference on
Object-Oriented Databases, Berlin 13-14 March 2008.

Documentation on JPA

http://edocs.bea.com/kodo/docs41/full/html/ejb3 roiev.html
JAX-WS Annotations
https://jax-ws.dev.java.net/jax-ws-ea3/docs/animtathtml

OMG: Unified Modeling Language Specifiicat (Superstructure and
Infrastructure) Version 2.1.2. November 2007
http://www.omg.org/spec/UML/2.1.2

- 129 -
© Copyright by VIDE Consortium



FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 6 — Deliverable D6.1
Date 2008-04-15

Disclaimer of SAPAG!

Copyright 2007 SAP AG, All Rights Reserved.

No part of this publication may be reproduced or tr
for any purpose without the express permission of S

The information in this document is proprietary to
document may be reproduced, copied, or transmitted
purpose without the express prior written permissio

This document is a preliminary version and not subj
agreement or any other agreement with SAP. This doc
intended strategies, developments, and functionalit

and is not intended to be binding upon SAP to any p
business, product strategy, and/or development. Ple
document is subject to change and may be changed by
notice.

SAP assumes no responsibility for errors or omissio

SAP does not warrant the accuracy or completeness o
graphics, links, or other items contained within th
document is provided without a warranty of any kind
implied, including but not Ilimited to the implied w
merchantability, fithess for a particular purpose,

SAP shall have no liability for damages of any kind
limitation direct, special, indirect, or consequent
result from the use of these materials. This limita

cases of intent or gross negligence.

The statutory liability for personal injury and def

affected. SAP has no control over the information t
through the use of hot links contained in these mat
endorse your use of third-party Web pages nor provi
whatsoever relating to third-party Web pages.

! Applies to Sections 6.2, 6.3, 7.2, and 9

© Copyright by VIDE Consortium

ansmitted in any form or
AP AG.

SAP AG. No part of this
in any form or for any
n of SAP AG.

ect to your license
ument contains only
ies of the SAP® product
articular course of
ase note that this
SAP at any time without

ns in this document.

f the information, text,
is material. This
, either express or
arranties of
or non-infringement.

including without
ial damages that may
tion shall not apply in

ective products is not
hat you may access
erials and does not
de any warranty

- 130 -



