
© Copyright by VIDE Consortium 

 

 
 

 
SPECIFIC TARGETED RESEARCH PROJECT 
INFORMATION SOCIETY TECHNOLOGIES 

 
FP6-IST-2005-033606 

 
VIsualize all moDel drivEn programming 

VIDE 
 

 
WP 6 

 

 
Deliverable number D.6.1 

 
Model Compilers 

 
Project name: Visualize all model driven programming  

Start date of the project: 01 July 2006 

Duration of the project: 30 months 

Project coordinator: Polish-Japanese Institute of Information Technology 

Leading partner: SOFTEAM 

Due date of deliverable: 31.01.2008 

Actual submission date 15.04.2008 

Status  developed / draft / final  

Document type: Report 

Document acronym:  DEL 

Editor(s) François Jaouen, Anis Charfi, Piotr Habela, Krzysztof Stencel, 

Marcin Daczkowski  

Reviewer(s) François Jaouen, Piotr Habela, Anis Charfi 

Accepting Kazimierz Subieta 

Location www.vide-ist.eu 

Version 1.0 

Dissemination level PU/PP/RE/CO 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 2 - 
© Copyright by VIDE Consortium 

 

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 3 - 
© Copyright by VIDE Consortium 

 

Abstract: 

The VIDE project aims at a visual, Unified Modeling Language (UML) compliant action 
language, the VIDE language, suited to business applications. The language is to be used in 
the model driven software development process (which raises the requirements of its 
standard-compliance). Further development of the project also includes the integration of a 
business oriented modelling, aspect-oriented facilities, and means for quality assurance 
provided inside a powerful, platform-independent development toolset. 

This document specifies the mapping of the VIDE metamodel, which is compliant with UML 
and OCL metamodel to Java and ODRA prototype ODBMS with its innovative SBQL (Stack 
Based Query Language) developed by PJIIT. 

The mapping integrates advanced features like the declaration and the consumption of 
WSDL based Web Services and RDBMS queries. 

Finally this document will propose some ideas of improvement for the UML metamodel 
definition. 
 

 
The VIDE consortium: 
 
 

Polish-Japanese Institute of Information Technology 
(PJIIT) 

 

Coordinator 

 

Poland 

Rodan Systems S.A. Partner Poland 
Institute for Information Systems at the German Research 
Center for Artificial Intelligence 

Partner Germany 

Fraunhofer  Partner Germany 
Bournemouth University Partner United 

Kingdom 
SOFTEAM Partner France 

TNM Software GmbH Partner Germany 

SAP AG Partner Germany 

ALTEC Partner Greece 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 4 - 
© Copyright by VIDE Consortium 

 

History of changes 

 

Date Version Author Change description 

14.11.2007 0.1 F. Jaouen Document creation 

02.04.2008 0.2 F. Jaouen,  

A. Spriestersbach, 

A. Charfi 

VIDE Metamodel presentation, mapping action to Java, 

mapping activities to Java, edition. 

03.04.2008 0.3 F. Jaouen 

P. Habela 

Mapping VIDE to ODRA chapter incorporated, explanation 

of VIDE language design choices, edition 

04.04.2008 0.4 F. Jaouen,  

P. Habela,  

A. Charfi 

VIDE metamodel presentation, Study of implementation 

tools for Java compiler edition 

11.04.2008 0.5 F. Jaouen,  

P. Habela,  

A. Charfi 

ODRA presentation, mapping Activity to Java, edition 

14.04.2008 0.7 F. Jaouen,  

P. Habela,  

A. Charfi 

Mapping to JPA, mapping to web services, edition 

15.04.2008 1.0 F. Jaouen,  

P. Habela,  

A. Spriestersbach, 

A. Charfi 

Final editing 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 5 - 
© Copyright by VIDE Consortium 

 

Executive summary 

This document describes the mapping of VIDE language to two execution platforms: Java and 
ODRA. The first is a well known general purpose object oriented programming language 
while the other belongs to a new brand of object oriented programming language that 
integrates database query to its core and designated for rapid development of business 
intensive application. 
 
This work is based on WP1 that has collected requirements and WP2 that has defined the 
VIDE metamodel, the starting point of the mappings. 
 
The mapping to Java includes three steps: 

1. Mapping to plain Java presented metaclasses by metaclasses and structured around the 
4 packages: Structures, Activities, Actions and Expressions. 

2. Mapping to JPA to allow VIDE program to interact transparently with databases. This 
mapping integrates creation and deletion of persistent object as well as navigating 
through persistent object and define mapping for object queries based on JPQL. 

3. Mapping to web services, using the annotations defined in JAX-WS standard API. The 
mapping to web services is bidirectional: the compiler can generate code to produce 
web services as well as generating code to call externally defined web services. 

 
Mapping the SBQL language used in the ODRA system in turn, exemplifies a transformation 
to a more homogeneous target platform. ODRA is a purely object-oriented environment that 
provides a seamlessly integrated query and programming language. A similar approach is 
followed by the VIDE language, where the behavioural constructs of UML are integrated with 
the expression language part represented by OCL that provides a powerful querying 
capability. Development of that mapping has several purposes. Firstly, it prevents VIDE 
unintentional becoming a Java-only solution. Secondly, it will allow to check, what mapping 
problems are inherent to code generation in general, and what of them are rather related with 
the object-relational interaction complexity. Thirdly, by confronting common OMG 
modelling specifications with the concepts of this ODBMS prototype, it provides insight into 
the problem of specifying platform-neutral foundation for an object-oriented database 
management system standard. 
 
This document also contains a study of available tools to implement the mapping to Java. It 
concludes that OpenArchitectureWare is the best choice according to the requirements 
established in WP1 (integration to Eclipse, Xpand template based transformation tool). 
 
One goal of the study is propose some enhancements of the UML metamodel. This is done in 
the last chapter of this document. 
 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 6 - 
© Copyright by VIDE Consortium 

 

Table of Contents 

Abstract: ................................................................................................................................ - 3 - 

History of changes ................................................................................................................. - 4 - 

Executive summary ............................................................................................................... - 5 - 

Table of Contents .................................................................................................................. - 6 - 

List of Tables ......................................................................................................................... - 9 - 

List of Figures ..................................................................................................................... - 10 - 

1 Introduction and Overview ........................................................................................... - 11 - 
2 Requirement refinement ............................................................................................... - 13 - 
3 Source Model ................................................................................................................ - 18 - 

3.1 Global view ......................................................................................................... - 18 - 
3.2 Structures ............................................................................................................. - 18 - 

3.3 Activities ............................................................................................................. - 22 - 

3.4 Actions ................................................................................................................ - 24 - 

3.5 Expressions .......................................................................................................... - 29 - 
4 Choices behind the VIDE metamodel design and query language selection ............... - 33 - 

5 Target Platforms ........................................................................................................... - 35 - 

5.1 J2EE Reference Application ............................................................................... - 35 - 
5.2 SAP Application Server Variant ......................................................................... - 36 - 
5.3 ODRA .................................................................................................................. - 36 - 

6 VIDE to Java ................................................................................................................ - 40 - 

6.1 Approach ............................................................................................................. - 40 - 
6.2 Mapping Structural Parts ..................................................................................... - 40 - 

6.2.1 Data types ........................................................................................................ - 40 - 
6.2.2 Classes and packages ...................................................................................... - 43 - 
6.2.3 Association ...................................................................................................... - 44 - 
6.2.4 Property ........................................................................................................... - 44 - 
6.2.5 Operation ......................................................................................................... - 47 - 

6.3 Mapping Actions to Java ..................................................................................... - 48 - 
6.3.1 Sample input model for Actions ...................................................................... - 48 - 
6.3.2 General Concepts ............................................................................................ - 49 - 
6.3.3 Invocation Actions .......................................................................................... - 50 - 
6.3.4 Object Creation Actions .................................................................................. - 52 - 
6.3.5 StructuralFeature Actions ................................................................................ - 54 - 
6.3.6 Link Actions .................................................................................................... - 60 - 
6.3.7 ValueProcessingActions .................................................................................. - 67 - 
6.3.8 Variable Actions .............................................................................................. - 67 - 

6.4 Mapping of Activities to Java ............................................................................. - 72 - 
6.4.1 Activity ............................................................................................................ - 72 - 
6.4.2 ActivityEdge .................................................................................................... - 72 - 
6.4.3 ActivityNode ................................................................................................... - 72 - 
6.4.4 Behavior .......................................................................................................... - 72 - 
6.4.5 ConditionalNode & Clause ............................................................................. - 72 - 
6.4.6 ControlFlow .................................................................................................... - 73 - 
6.4.7 ExpansionRegion, ExpansionNode ................................................................. - 74 - 

6.4.8 ForkNode ......................................................................................................... - 74 - 
6.4.9 LoopNode ........................................................................................................ - 75 - 
6.4.10 ObjectFlow .................................................................................................. - 76 - 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 7 - 
© Copyright by VIDE Consortium 

 

6.4.11 ObjectNode .................................................................................................. - 76 - 
6.4.12 SequenceNode ............................................................................................. - 76 - 
6.4.13 StructuredActivityNode .............................................................................. - 77 - 
6.4.14 Variable ....................................................................................................... - 77 - 

6.5 Expressions .......................................................................................................... - 78 - 
6.5.1 CallExp ............................................................................................................ - 78 - 
6.5.2 FeatureCallExp ................................................................................................ - 78 - 
6.5.3 IfExp ................................................................................................................ - 78 - 
6.5.4 IterateExp ........................................................................................................ - 79 - 
6.5.5 IteratorExp ....................................................................................................... - 79 - 
6.5.6 LiteralExp ........................................................................................................ - 81 - 
6.5.7 LoopExp .......................................................................................................... - 82 - 
6.5.8 NavigationCallExp .......................................................................................... - 82 - 
6.5.9 OclExpression ................................................................................................. - 82 - 
6.5.10 OclVariable ................................................................................................. - 82 - 
6.5.11 OpaqueExpression ....................................................................................... - 82 - 
6.5.12 OperationCallExp ........................................................................................ - 82 - 
6.5.13 PropertyCallExp .......................................................................................... - 83 - 
6.5.14 VariableExp ................................................................................................. - 83 - 
6.5.15 ExpressionInOcl .......................................................................................... - 83 - 

7 VIDE to J2EE ............................................................................................................... - 84 - 

7.1 Java Persistence API ........................................................................................... - 84 - 
7.1.1 Presentation of JPA ......................................................................................... - 84 - 
7.1.2 VIDE Mapping to JPA .................................................................................... - 84 - 

7.2 Web services ....................................................................................................... - 90 - 
7.2.1 VIDE Web Services Profile ............................................................................ - 90 - 
7.2.2 Java Web Service annotations ......................................................................... - 91 - 
7.2.3 Publishing a VIDE class as a Web Service ..................................................... - 92 - 

7.2.4 Consuming an External Web Service .............................................................. - 92 - 

8 The model compiler to ODRA ..................................................................................... - 94 - 
8.1 Introduction ......................................................................................................... - 94 - 
8.2 Structures ............................................................................................................. - 94 - 

8.2.1 Mapping .......................................................................................................... - 94 - 
8.3 Actions .............................................................................................................. - 100 - 

8.3.1 Mapping ........................................................................................................ - 100 - 
8.4 Activities ........................................................................................................... - 104 - 

8.4.1 Mapping ........................................................................................................ - 104 - 
8.5 Expressions ........................................................................................................ - 107 - 

8.5.1 Mapping ........................................................................................................ - 107 - 
8.6 VIDE Web services compilation rules for ODRA platform ............................. - 110 - 

8.6.1 Web Services profile ..................................................................................... - 110 - 
8.6.2 Generic Web Services compilation schema notes ......................................... - 111 - 

8.6.3 The model compiler to ODRA ...................................................................... - 112 - 
9 Transformation frameworks ....................................................................................... - 117 - 

9.1 Evaluation Criteria ............................................................................................ - 117 - 
9.1.1 Requirements defined by VIDE specification ............................................... - 117 - 

9.1.2 Other Criteria ................................................................................................. - 118 - 
9.2 Tool Evaluation ................................................................................................. - 119 - 

9.2.1 Overview ....................................................................................................... - 119 - 
9.2.2 AndroMDA ................................................................................................... - 119 - 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 8 - 
© Copyright by VIDE Consortium 

 

9.2.3 OpenArchitectureWare .................................................................................. - 120 - 
9.3 Evaluation Results ............................................................................................. - 121 - 

10 UML Metamodel evolution propositions .............................................................. - 123 - 
11 Conclusion ............................................................................................................. - 125 - 

12 Glossary ................................................................................................................. - 126 - 

13 References ............................................................................................................. - 129 - 

Disclaimer of SAP AG ...................................................................................................... - 130 - 

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 9 - 
© Copyright by VIDE Consortium 

 

List of Tables 

Table 1: Summary of the relevant requirements identified during the WP1 work ............. - 17 - 

Table 2: Mapping of OCL basic types ................................................................................ - 41 - 
Table 3: Mapping of OCL collection types ......................................................................... - 42 - 
Table 4: Mapping of UML multiple elements .................................................................... - 43 - 
Table 5: Basic field accessor and mutator methods ............................................................ - 45 - 
Table 6: Additional accessor and mutator methods for multi-valued fields ....................... - 46 - 

Table 7: Additional mutator methods for multi-valued, ordered fields .............................. - 46 - 
Table 8: Additional mutator methods for multi-valued, ordered association ends ............. - 47 - 

Table 9: Multiplicity table of the example .......................................................................... - 49 - 
Table 10: Mapping OCL iterator operations to ODRA SBQL ......................................... - 108 - 
Table 11: VIDE-WSDL naming conventions ................................................................... - 111 - 
Table 12: AndrMDA vs. oAW comparison table ............................................................. - 121 - 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 10 - 
© Copyright by VIDE Consortium 

 

List of Figures 

Figure 1 : Deliverable D6.1 in the overall project context .................................................. - 11 - 
Figure 2 : Work package 6 in the overall project work flow .............................................. - 12 - 
Figure 3 : VIDE metamodel main packages ....................................................................... - 18 - 
Figure 4 : VIDE class model ............................................................................................... - 19 - 

Figure 5 : VIDE Feature Model .......................................................................................... - 20 - 

Figure 6 : VIDE Package and Import .................................................................................. - 21 - 
Figure 7 : VIDE Type hierarchy ......................................................................................... - 22 - 

Figure 8 : VIDE Datatypes .................................................................................................. - 22 - 

Figure 9 :  Relationship between Operation and Activity in VIDE Metamodel ................. - 23 - 

Figure 10 : VIDE Activity ................................................................................................... - 23 - 

Figure 11 : Detail of ConditionalNode ................................................................................ - 24 - 
Figure 12 : Exception Handler ............................................................................................ - 24 - 

Figure 13 : VIDE Action metamodel .................................................................................. - 25 - 
Figure 14 : Invocation Actions in VIDE Metamodel .......................................................... - 26 - 
Figure 15 : Object Actions in VIDE Metamodel ................................................................ - 26 - 
Figure 16 : Structural features actions in VIDE Metamodel ............................................... - 27 - 
Figure 17 : Link Actions in VIDE Metamodel ................................................................... - 28 - 
Figure 18 : Value and Variable Actions in VIDE Metamodel ............................................ - 29 - 
Figure 19 : OCL expressions and their connection to ValueSpecification in VIDE metamodel . 
 ............................................................................................................................................. - 30 - 

Figure 20 : Literal Expression in VIDE metamodel ........................................................... - 30 - 
Figure 21 : Conditional and Iterator expression in VIDE metamodel ................................ - 31 - 
Figure 22 : OCL Operation call in VIDE Metamodel ......................................................... - 32 - 
Figure 23 : Java EE 5 Architecture Overview ..................................................................... - 35 - 
Figure 24 : Architecture of ODRA ...................................................................................... - 37 - 
Figure 25 : Enumeration mapping example ........................................................................ - 40 - 
Figure 26 : Class inheritance mapping example (input) ..................................................... - 44 - 
Figure 27 : Class inheritance mapping example (transformed) .......................................... - 44 - 
Figure 28 : Operation mapping example (input) ................................................................. - 47 - 
Figure 29 : Example model ................................................................................................. - 49 - 

Figure 30 : Example of Forknode ....................................................................................... - 75 - 
Figure 31 : Simple composition .......................................................................................... - 86 - 

Figure 32 : Composition to many ........................................................................................ - 86 - 

Figure 33 : Association Many to One ................................................................................. - 87 - 
Figure 34 : Bidirectional association ................................................................................... - 87 - 

Figure 35 : Example for consumed service mapping into ODRA .................................... - 113 - 

Figure 36 : Example for published service mapping into ODRA ..................................... - 116 - 
Figure 37 : Activity ownership in UML Metamodel ........................................................ - 123 - 
Figure 38 : Activity ownership proposition ...................................................................... - 123 - 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 11 - 
© Copyright by VIDE Consortium 

 

1 Introduction and Overview 

This deliverable builds onto the UML 2.1 and OCL 2.0 metamodels and their underlying 
semantics (as defined in standard specifications and refined in [VIDE2007c]). It is intended to 
specify rules of transforming VIDE-created UML models into executable code on chosen 
exemplary target platforms. One of them – Java – was chosen so as to investigate and develop 
VIDE support for highly automated development of code for popular industrially used 
platforms. This unit of work also considers Java-based application server platforms and 
related J2EE technologies. Because the focus of VIDE are business application involving 
databases, a data persistence framework base on JPA (Java Persistence API) is addressed by 
the mapping. The other platform – ODRA (Object Database for Rapid Application 
development), presented in detail later in this report, is intended to allow investigating the 
opportunities and limitations of code generation for a more homogenous, object-oriented 
environment. It also serves for supporting the research on extending OMG specifications 
towards the area of object-oriented database management systems. To this extent, unification 
between UML semantics and ODRA’s underlying Stack Based Architecture is attempted. The 
mappings for both platforms also cover the Web service based connectivity, so that the 
abstract services being specified in VIDE can have their direct, executable, but also fairly 
platform-independent counterparts. 
 
Since the source form for the model transformations specified in this document is VIDE 
metamodel, the relevant parts of the metamodel defined in [VIDE2007c] are summarized here 
mainly through UML static diagrams and followed with respective transformation rules. The 
transformations are specified in a generic way, however, where necessary, they are 
additionally illustrated with an example. 
 

 
 

Figure 1 : Deliverable D6.1 in the overall project context 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 12 - 
© Copyright by VIDE Consortium 

 

Work package 6 constitutes the latest step of the research phase of VIDE project. As shown in 
Figure 2, it directly interfaces with the following work packages: 

• WP1 – by addressing the assumptions and requirements specified in that work 
package, in the area covered by WP6. The description of how those requirements are 
addressed can be found in Chapter 2 of this document. 

• WP2 – by defining the VIDE PIM-level lanuage together with its metamodel, which 
consititutes the source for the mappings designed in the course of WP6. Some design 
decisions behind the VIDE PIM language are briefly explained in Chapter 4. 

• WP8 and WP9 – these work packages, being performed to some extent parallel to each 
other and iteratively, set the actual realization of the project’s research results, 
including the transformations defined in WP6. This work package defines the 
transformation to be used by the components: Java Model Compiler, ODRA Model 
Compiler and Model Execution Engine, specified in WP8 and being implemented in 
the course of WP9. 

 

 
Figure 2 : Work package 6 in the overall project work flow 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 13 - 
© Copyright by VIDE Consortium 

 

2 Requirement refinement 

We provide here a list of requirements with respect to the VIDE project, collected in the 
deliverable document D1.1 [VIDE2007b] (see that document for a detailed description of 
these requirements) and indicate those found relevant for the WP6 scope. In the column 
“comment” we provide the relation of each requirement to the VIDE language, which is the 
subject of this deliverable document. For clarification, we denote which topics are subject of 
other work packages. We also sketch how WP6 addresses the relevant goals. 
 
Requirement  
Number 

Name Priority Comment 

REQ – 
NonFunc 1 

Accessibility at the 
CIM level 

Should Outside D6.1 scope. Addressed by D7.1 and the 
CIM-to-PIM transition support functionality to be 
described in D5.1. 

REQ – 
NonFunc 2 

CIM level collaboration May Outside D6.1 scope. Supporting this requirement will 
be considered in the course of D9.3 development. 

REQ – 
NonFunc 3 

On-line support for 
CIM/PIM users 
 

Should Outside D6.1 scope. Addressed in D5.1 (in the area 
of CIM-PIM navigation. 

REQ – 
NonFunc 4 

Clear and unambiguous 
notation – VIDE should 
have clear, 
comprehensible and 
unambiguous semantic 
description suited to the 
users of the VIDE tools 
 

Should  Outside D6.1 scope. Addressed in D2.1 

REQ – 
NonFunc 5 

Model view saliency – 
VIDE models views 
must be user-oriented. 

Should  The compilers have a contribution to this requirement 
because they allow users to think and concentrate on 
a PIM view of their problem, VIDE model, without 
cluttering this view with PSM consideration that are 
automatically handled by the compilers. 

REQ – 
NonFunc 6 

Appropriate 
textual/graphical 
fidelity – VIDE must 
provide appropriate 
textual and graphical 
modalities for its users. 

Should  Outside D6.1 scope. Addressed in D2.1. 
CIM-related issues are subject of WP7 and WP5. 

REQ – 
NonFunc 7 

Timely feedback and 
constraints 

Should Outside D6.1 scope. Supporting the work of multiple 
users on a common model will be considered in the 
course of D8.1 and D9.1 development. 

REQ – 
NonFunc 8 

Runnable and testable 
VIDE prototypes 
 

Should D6.1, by defining mappings towards the executable 
platforms, lays a foundation for a systematic 
realization of this functionality. 
This requirement is more directly addressed in D9.0 
and to be further investigated for D9.3. 

REQ – 
NonFunc 9 

Scalability of proposed 
solution – the proposed 
solution must at least 
conceptually scale to 
enterprise level. 

Must  Regarding the large amounts of data, the use of JPQL 
queries and the support of generation for Web 
Services allow such scalability. 
J2EE system architecture for the Java compiler 
ensures enterprise scalability. 

REQ – User 1  Flexibility and 
interoperability of 
VIDE language and 
tools - The VIDE 
language and tools 
SHOULD have 

Should The choice of OpenArchitectureWare as the 
framework of the Java compiler implementation, 
mainly because of its integration within Eclipse 
contributes to this requirement. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 14 - 
© Copyright by VIDE Consortium 

 

flexibility and be 
interoperable with some 
existing tools. 
 

REQ – User 2 Reuse of UML 
Standard – end users 
are very sensitive to 
using standards. A key 
aspect is that the VIDE 
language reuses as 
much as possible the 
UML standard. 
 

Should Not strictly inside the scope of  D6.1. Nevertheless, it 
should be noted that as the input metamodel to the 
compilers is UML and OCL based, it ease the 
understanding of compilers transformation. 
 

REQ – 
Semantics 1   

Semantics of VIDE Inte
rnal Communication – a 
precise description of 
the semantics is needed 
sufficient for internal 
communication 
purposes within 
implementation 
stakeholders in the 
development of the 
VIDE tool.  
 

Should Thanks to the UML and OCL based metamodel, a 
clear semantic (although some interpretation variants 
are possible) is available that allows the definition of 
transformation rules to Java and ODRA. 

REQ – 
Semantics 2 

Simple VIDE semantics 
– after a first analysis it 
seems sufficient that the 
semantics of VIDE is 
described in natural 
language. 

 

Should No restriction on the metamodel has been found 
during the study of the mappings. 

REQ – Lang 
1 

Usage of UML2 
Behaviour (“Action 
Semantics”) – VIDE 
should use the 
behavioural model 
elements of UML2 
(earlier known as 
“UML Action 
Semantics”), unless 
proven insufficient. 
 

Should No restriction on the metamodel has been found 
during the study of the mappings. 

REQ – Lang 
2 

Simplified UML meta-
model – If it turns out 
that  
• the UML meta-

model is 
unnecessarily 
complex in a way 
that it blocks the 
creation of a 
sensible concrete 
syntax (see remarks 
on 
ConditionalNode),  

• not all of the UML 
meta-model can be 
covered 

May  No restriction on the metamodel has been found 
during the study of the mappings. 
 
Nevertheless some complexity, inherited from the 
UML metamodel, remains in the VIDE metamodel 
and leads to propose some modifications. See section 
10. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 15 - 
© Copyright by VIDE Consortium 

 

• elements are 
missing which are 
located in another 
needed language 
(like OCL) 

it may be changed. 
 

REQ – Lang 
3 

 User Language & 
Concepts – the VIDE 
language and VIDE 
tools presented to a 
certain user groups 
SHOULD employ the 
language that is 
understood by the user 
group.  

Should  Outside D6.1 scope. 

REQ – Lang 
4 

Compliance with 
Standards – VIDE 
should not compete 
with existing adopted 
modelling standards, 
especially those 
adopted by the OMG, 
such as UML or 
BPMN. 
 

Should  One of the 2 compilers proposed translate from VIDE 
to Java, a well known programming language widely 
used in the industry and well defined. 

REQ – Lang 
5 

Deviation from 
Standards – VIDE may 
deviate in parts from 
existing standards, if a 
standard-conformant 
way is provided as well 
and if there are good 
reasons with respect to 
the overall user 
requirements. 
 

May  No deviation from existing standards was made in 
D2.1. 

REQ – Lang 
6 

Modularisation and 
extensibility – it should 
be possible to replace 
parts of the language 
with different artefacts 
and add additional 
language constructs for 
special business 
specific patterns. This 
requires the language to 
be structured in 
modules. 
 

Should  Outside D6.1 scope. 

REQ – Lang 
7 

 Language for CIM, 
PIM, PSM modelling: 
1) VIDE SHOULD 
support requirements 
definition tasks and 
business process 
description with BPML 
2) VIDE SHOULD 
adopt action semantics 
for the modelling of 

Should  Ad. 1. Outside 62.1 scope. Addressed in D7.1. 
Ad. 2. Outside 62.1 scope. Addressed in D2.1. 
Ad. 3. Compilation to Java is described in D6.1, 
compilation to other mentioned language is also 
possible without restriction. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 16 - 
© Copyright by VIDE Consortium 

 

executable PIM models 
3) VIDE SHOULD 
provide support for 
target PSM 
environments e.g. Java, 
C++, or 
SmallTalk; VIDE 
should provide platform 
implementation 
mappings in PIMs or 
CIMs. 
 

REQ – Tool 1  Usage of industrially 
adopted tools – VIDE 
must use industrially 
adopted meta-
modelling standards 
where applicable. 
 

Must The compilers are integrated with Eclipse platform. 

REQ – Tool 2 Meta-modelling 
Framework – VIDE 
must use EMF as its 
modelling framework. 
 

Must  The compilers are defined on top of EMF modelling 
framework. Moreover OpenArchitectureWare, the 
framework selected for implementing the Java 
compiler is based on EMF. 

REQ – Tool 3 Meta-modelling 
Concepts – VIDE meta-
models should be 
constructed to be 
compatible with MOF 
concepts. 
 

Should  Outside D6.1 scope. Addressed by D2.1. 

REQ – Tool 4 M2M Transformation 
Technology (VIDE 
should use ATL as it’s 
transformation 
framework, unless it is 
proven insufficient) 
 

Should This technology has not been used because of the 
lack of operational metamodel and code mappings for 
Java and ODRA 

REQ – Tool 5 M2T Transformation 
Technology (VIDE 
should use XPAND as 
its M2T transformation 
language, unless proven 
insufficient.) 
 

Should This technology has been widely used for both 
compilers. 

REQ – Tool 6 T2M Transformation 
Technology (VIDE 
should use XText 
framework, unless 
proven insufficient. An 
alternative can be 
parsers generated with 
ANTLR or LPG.) 
 

Should Outside D6.1 scope. To be addressed in D9.3. 

REQ – Tool 7 Meta-modelling 
Framework (VIDE 
SHOULD use GMF as 
it’s graphical modelling 
framework) 
 

Should Outside D6.1 scope. To be addressed in D9.1 and 
D9.3. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 17 - 
© Copyright by VIDE Consortium 

 

REQ – Tool 8 Use of OCL – VIDE 
should re-use existing 
standards as UML 
(REQ – User 1), and in 
particular OC; the goal 
is to achieve a seamless 
integration with the 
concrete syntax of the 
action language to be 
developed. 
 

Should  Outside D6.1 scope. Addressed in D2.1. 

REQ – Tool 9 CIM modelling 
standards. 
 

May Outside D6.1 scope. Addressed in D7.1. 

REQ – Tool 
10 

PIM, PSM modelling 
standards – VIDE 
SHOULD provide 
support for PIM 
modelling with UML 
and action semantics; 
the meta-modelling 
standard for VIDE 
should be Ecore. 
VIDE SHOULD 
support well known 
PSM modelling 
standards (e.g. XMI for 
model 
and meta-model 
interchange, JMI for 
Java based PSM). 
 

Should Outside D6.1 scope. Addressed in D2.1. 

REQ – Tool 
11 

Framework for CIM, 
PIM, PSM modelling 

Should The transformation technology for the Java compiler 
adopt the M2T paradigm. See section 9 for more 
details. 

REQ – Tool 
12 

VIDE extensibility Should Outside D6.1 scope. To be addressed by D9.3. 

REQ – Tool 
13 

 Integration and 
metadata interchange – 
VIDE should provide 
model and meta-data 
interchange capability 
by adopting the XMI 
standard. 
 

Should  Outside D6.1 scope. Addressed by D2.1 

REQ – Tool 
14 

Model driven approach 
The VIDE tool strictly 
follows a model driven 
approach as stipulated 
in figure 9 page 120 of 
the D.1.1 deliverable 

Must  The compilers bring their contribution to this 
requirement because they permit the transformation 
from PIM level in VIDE language to PSM level, 
either Java or ODRA. 

Table 1: Summary of the relevant requirements identified during the WP1 work 

 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 18 - 
© Copyright by VIDE Consortium 

 

3 Source Model 

3.1 Global view 
The source model from which translation to Java occurs is the VIDE metamodel defined in 
[VIDE2007c]. It is briefly presented hereafter. Figure 3 shows a high level view of the VIDE 
metamodel. While technically not structured with these packages, this decomposition is useful 
to structure the specification of the mapping to Java. 

Structures

Actions

Expressions

Activities

 
Figure 3 : VIDE metamodel main packages 

3.2 Structures 
This part describes the static structures (package, class, etc) of the VIDE metamodel as well 
as the base types and several high level classes derived in other packages. 
 
Figure 4 presents the static class model of VIDE. Classes, which are types, belong to 
Packages and have Attributes (named Properties in the metamodel), and Operations, which 
have Parameters. Classes have inheritance relationship (Subclass, Superclass). 
 
Association have two Property whose Type (not shown in the Figure) holds the linked classes. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 19 - 
© Copyright by VIDE Consortium 

 

 
Figure 4 : VIDE class model 

Figure 5 presents the Feature metaclass, which is derived into two main branches, 
BehavioralFeature from which Operation inherits and StructuralFeature to describes Property 
(attributes and association end). 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 20 - 
© Copyright by VIDE Consortium 

 

 
Figure 5 : VIDE Feature Model 

Figure 6 presents the Package classes. It contains Type, it can be nested (nestedPackage) and 
any Namespace (Package, Class) can import packages. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 21 - 
© Copyright by VIDE Consortium 

 

 
Figure 6 : VIDE Package and Import 

 
Figure 7 presents the Type hierarchy. Beside Class and Association, DataType is the root of a 
rich family of type with atomic ones like Enumeration, Primitive and VoidType and aggregate 
ones with Tuple and heir of CollectionType. TupleType, VoidType and the heir of 
CollectionType all come from the OCL metamodel and are modelled as instances of 
DataType, at M1 level in the categories of model defined by OMG. This is presented Figure 
8. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 22 - 
© Copyright by VIDE Consortium 

 

 
Figure 7 : VIDE Type hierarchy 

 

 
Figure 8 : VIDE Datatypes 

 

3.3 Activities 
This part describes activities. Activity is the element where actions and expressions are 
defined. It provides a context for the execution of these elements as well as a mean of 
ordering their sequences. 
 
Figure 9 shows how Activity is connected to Operation in VIDE metamodel. The property 
method defined on the association between abstract classes BehavioralFeature and Behaviour 
allows navigating from an Operation to its Activity. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 23 - 
© Copyright by VIDE Consortium 

 

*

1

ownedO peration

0 ..10 ..1

methodspec ific ation

Activity

BehaviourBehavioralFeature

Operation

Class

 
Figure 9 :  Relationship between Operation and Activity in VIDE Metamodel 

Figure 10 presents the metamodel of Activity. An Activity is composed of several 
ActivityNode, which can be ControlNode, ObjectNode or ExecutableNode. All these nodes 
are surrounded by ActivityEdge to define the sequence of execution. ExecutableNode is 
further refined in Action, the base class for all actions metaclasses, presented thereafter, and 
several nodes that allow a finer control of the execution flow: ExpansionRegion, 
ConditionalNode, LoopNode and SequenceNode. 
 

 
Figure 10 : VIDE Activity 

 
Figure 11 presents the detail of the ConditionalNode, an important node to represent choice 
and alternative in algorithms. A ConditionalNode has one or more Clause, each having two 
ExecutableNode, one for the test (the ExecutableNode should returns a Boolean value) and 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 24 - 
© Copyright by VIDE Consortium 

 

one for the body, which is executed if the test is true. Otherwise the next clause in the ordered 
clause association is executed. 

 
Figure 11 : Detail of ConditionalNode 

Figure 12 details the metamodel for representing ExceptionHandler. ExeceptionHandler 
protect an ExecutableNode (association protectedNode) (which is also the owner of the 
ExceptionHandler, not shown in the figure). It has an exceptionInput (a parameter) which is 
an ObjectNode that should conform to the exceptionType, a Classifier. If the handler is 
triggered, it executes its handlerBody, an instance of ExecutableNode. 

 
Figure 12 : Exception Handler 

3.4 Actions 
An action is the fundamental unit of executable functionality. The execution of an action 
represents some transformation or processing in the modelled system. 

 

Figure 13 presents the detail of an action. An Action can have several input and output pins 
which can be seen as data consumed and produced by the action. It is important to note that 
InputPin can be associated with a ValueSpecification that describes the content of the 
InputPin and that description can be an OCL expression. An Action is executed inside a 
context as shown by the association to Classifier. This context will be an Activity. 

 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 25 - 
© Copyright by VIDE Consortium 

 

 
Figure 13 : VIDE Action metamodel 

 
Figure 14 presents CallOperationAction and related actions. This action is useful to call an 
operation in an Activity. ReplyAction triggers the return of the current Operation and is able to 
return optionally multiple values. RaiseExceptionAction is used to trigger an exception. All 
these actions rely on input and output port to retrieve and produce values. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 26 - 
© Copyright by VIDE Consortium 

 

 
Figure 14 : Invocation Actions in VIDE Metamodel 

 
Figure 15 presents the actions that create and delete objects. 
 

 
Figure 15 : Object Actions in VIDE Metamodel 

Figure 16 presents actions that allow representing manipulation of properties (class attributes) 
generalized as StructuralFeature. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 27 - 
© Copyright by VIDE Consortium 

 

 
Figure 16 : Structural features actions in VIDE Metamodel 

 
Figure 17 presents actions that allow representing manipulation of Association. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 28 - 
© Copyright by VIDE Consortium 

 

 
Figure 17 : Link Actions in VIDE Metamodel 

 
Figure 18 presents actions that allow representing manipulation of Variable and 
ValueSpecification. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 29 - 
© Copyright by VIDE Consortium 

 

 
Figure 18 : Value and Variable Actions in VIDE Metamodel 

3.5 Expressions 
Expressions in VIDE are OCL expressions that can appear at any place where the metaclass 
ValueSpecification appears in the VIDE Metamodel. 
 
Figure 19 presents the hierarchy of OCL expression as well as the connection with 
ValueSpecification. ExpressionInOcl is the root of any OCL expression. It can have an 
OclVariable that acts as the this pseudo-variable. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 30 - 
© Copyright by VIDE Consortium 

 

initializedE lementinitExpress ion

0 ..10..1

referringExp

referredV ariable

*

0 ..1

bodyExpress ion

1

1

contextV ariable 0..1

TypedElement

OclVariable

IterateExpIteratorExp

LoopExp

OperationCallExp PropertyCallExp

NavigationCallExp

FeatureCallExp

VariableExpIfExpLiteralExp CallExp

OclExpression

ValueSpecification

ExpressionInOclOpaqueExpression

 
Figure 19 : OCL expressions and their connection to ValueSpecification in VIDE 

metamodel 

Figure 20 presents the detail of the LiteralExp OCL expression. 

 
Figure 20 : Literal Expression in VIDE metamodel 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 31 - 
© Copyright by VIDE Consortium 

 

Figure 21 presents the conditional and loop OCL statements. The one to one multiplicity of 
elseExpression property between IfExp and OclExpression indicates that the else clause of a 
well formed OCL expression is required. 

 
Figure 21 : Conditional and Iterator expression in VIDE metamodel 

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 32 - 
© Copyright by VIDE Consortium 

 

 
Figure 22 : OCL Operation call in VIDE Metamodel 

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 33 - 
© Copyright by VIDE Consortium 

 

4 Choices behind the VIDE metamodel design and 
query language selection 

VIDE PIM level language used to express source models for the model compilers specified 
here consists of UML 2.1 and OCL 2.0 subsets. As described in [VIDE2007c], the main 
elements and their responsibilities are as follows: 

• UML Static Structure (Classes, Packages) for specifying the model structure and data 
schema, 

• UML Actions unit for representing atomic steps of application behaviour, 
• UML Structured Activities, for representing the control flow inside methods, 

• OCL, to cover all kinds of expressions in VIDE models, including complex queries. 

The choice of UML, including its action semantics, was made already at the stage of project 
proposal and results from consortia interest in contributing to existing modelling standards 
and investigating the actual potential of the MDA approach that is based on them. 
 
The features of object-oriented design provided by UML allow for using various OO patterns 
in modelling with VIDE, and seem to provide an adequate level of abstraction from the point 
of view of subsequent transformation into popular OO programming language code. 
 
While the features of UML behaviour to be used are not very mature, and the reuse of 
existing, ready model compilers cannot be assumed, two important motivating factors for its 
choice can be indicated: 

• The popularity of UML structural modelling constructs – that can provide a well 
known, platform neutral object model for precise modelling. The constructs are 
familiar to developers and moreover, can be readily supported by existing UML 
modelling tools. 

• The presence of standard-compliant UML and OCL model repository implementations 
and related infrastructure at the Eclipse platform. Thanks to it, the project results can 
be potentially reusable within the community. The repository format and modelling 
frameworks handling it, radically simplify not only the editor tools development, but 
especially – provide necessary means for model processing (within PIM level, e.g. for 
aspect-oriented composition, as well as in model compilation and execution – e.g. 
code generation). 

With the above factors in mind, the remaining choice, regarding the expression language for 
VIDE was significantly constrained. Depending on the basic means provided by UML 
Actions for data read does not satisfy the needs of language expressiveness. Firstly, it would 
undermine modelling productivity when processing complex data structures; secondly – this 
would cause a problematic situation where the modelling constructs are at a lower level of 
abstraction compared to target platform language features available. In this case one of two 
approaches could be followed: 

• Developing a query language for UML from scratch (in terms of specifying its 
semantics, metamodel, concrete syntax, library functions etc.). Note that a potential 
choice of using some existing query language (e.g. SQL, OQL or XML Query) would 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 34 - 
© Copyright by VIDE Consortium 

 

involve similar effort – as it would need to be adapted to a different data model 
(UML) than originally assumed. The way of handling such language constructs inside 
model repository would also need to be addressed. It is important to note that 
following too close the solutions known from platform-specific solutions (e.g. query 
languages and persistency frameworks) would contradict the expected benefits of 
uniform, platform independent language. For example, using the object-relational 
mappings actually forces the developer to depend on SQL (that is, the means 
comparable in terms of expressiveness with SQL-92) and to be aware of all the 
relational database details – hence only some aspects of the infamous “impedance 
mismatch” problem are removed in that case. 

• Using an existing UML-compliant expression language – namely – OMG OCL 2.0. 
This choice resolves the problems of data model compliance, metamodel definition 
(including several aspects of integration into UML), model repository implementation 
and concrete syntax. However, at the same time, one needs to face shortcomings of 
OCL serving as a query language (the role that was considered at least secondary 
during its design). 

With additional consideration of the ease of adoption in the modelling community, the latter 
path was chosen. This resulted in several refinements of the original specification, in terms of 
its integration with UML behaviour, as well as a slight extension of the OCL standard library 
functions. Obviously, the resulting language cannot match in terms of overall maturity the 
existing industrial solutions originally designed as query languages. However, it offers 
analogous expressive power. A certain usability problems results from OCL syntax, which is 
rather complex and less friendly than other query languages. This is especially visible in a 
very complicated way a join expression (foundational for query languages) can be achieved in 
OCL. The visual solution for building OCL expression has been designed to relieve this 
problem. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 35 - 
© Copyright by VIDE Consortium 

 

5 Target Platforms  

5.1 J2EE Reference Application 
 
The Java 2 Platform, Enterprise Edition (J2EE) defines the standard for developing multitier 
enterprise applications. The J2EE platform simplifies enterprise applications by basing them 
on standardized, modular components, by providing a complete set of services to those 
components, and by handling many details of application behaviour automatically, without 
complex programming.  
 
The J2EE platform takes advantage of many features of the Java 2 Platform, Standard 
Edition (J2SE), such as "Write Once, Run Anywhere" portability, JDBC API for database 
access, CORBA technology for interaction with existing enterprise resources, and a security 
model that protects data even in internet applications. Building on this base, the Java 2 
Platform, Enterprise Edition adds full support for Enterprise JavaBeans components, Java 
Servlets API, JavaServer Pages and XML technology. The J2EE standard includes complete 
specifications and compliance tests to ensure portability of applications across the wide 
range of existing enterprise systems capable of supporting the J2EE platform. In addition, the 
J2EE specification now ensures Web services interoperability through support for the WS-I 
Basic Profile. 
 
Figure 23 presents the latest version of Java Enterprise Architecture API in a typical multi-
tiers application. 
 

 
Figure 23 : Java EE 5 Architecture Overview 

 
J2EE provides many possibilities for system architecture. Therefore, the target system 
architecture for the J2EE Compiler needs to be chosen. Since VIDE programs focus on 
business/behavioural logic that operate on a database and that are accessible via Web 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 36 - 
© Copyright by VIDE Consortium 

 

Services the following APIs of the J2EE Platform have been considered for the Java 
Compiler: 

1. Java Web Services (JAX-WS) for web services definition and consumption 
2. EnterpriseJavaBean (EFJB) that containing the business logic  
3. Java Persistence API (JPA) to access to RDBMS from VIDE programs. 

 
These APIs have been selected because they offer strategic services for modern service 
oriented applications on typical information systems and because VIDE is conceptually 
designed to support these APIs.  
  

5.2 SAP Application Server Variant 
SAP NetWeaver Application Server [SAPAS] provides a complete infrastructure for 
developing, deploying, and running enterprise applications. SAP NetWeaver Application 
Server supports both Java technologies and ABAP. As it is based on industry standards, SAP 
Netweaver Application Server provides an open platform that allows an easy integration of 
applications and processes. 
 
SAP NetWeaver Application Server 7.1 is a certified Java 5 Enterprise Edition application 
server. It supports the latest Java EE 5 features such as Java API for XML Web Services 
(JAX-WS 2.0), Java Persistence API (JPA 1.0), Enterprise JavaBeans (EJB 3.0), Java Server 
Faces (JSF 1.2), etc. 
 
Since it is fully compliant with Java 5 EE, the proposed solutions for handling Web Services 
(based on JAX-WS 2.0) and persistence (based on JPA 1.0) in the Java compiler work 
seamlessly with SAP Netweaver Application Server. That is, the generated code with Java 
annotations for Web Services and persistence runs on any Java 5E EE compliant server 
including SAP Netweaver Application Server. However since SAP NetWeaver Application 
Server requires a dedicated packaging format (SDA – Software Delivery Archive), 
compilation of VIDE J2EE programs before their deployment is required. 

5.3 ODRA  
ODRA (Object Database for Rapid Application development) [ADHK2008] is an object-
oriented application development environment currently being constructed at the Polish-
Japanese Institute of Information Technology. The aim of the project is to design a next-
generation development tool for future database application programmers. The tool is based 
on the query language SBQL (Stack-Based Query Language), a new, powerful and high level 
object-oriented programming language tightly coupled with query capabilities. The SBQL 
execution environment consists of a virtual machine, a main memory DBMS and an 
infrastructure supporting distributed computing. The main goal of the ODRA project is to 
develop new paradigms of database application development, by increasing the level of 
abstraction at which the programmer works. It introduced a new, universal, declarative 
programming language, together with its distributed, database-oriented and object-oriented 
execution environment. The intent is to provide functionality common to the variety of 
popular technologies (such as relational/object databases, several types of middleware, 
general purpose programming languages and their execution environments) in a single 
universal, easy to learn, interoperable and effective to use application programming 
environment. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 37 - 
© Copyright by VIDE Consortium 

 

 
ODRA consists of three closely integrated components: 

• Object Database Management System (ODBMS) 

• Compiler and interpreter for object-oriented query programming language SBQL 
• Middleware with distributed communication facilities based on the distributed 

databases technologies. 

The system is additionally equipped with a set of tools for integrating heterogeneous legacy 
data sources. The continuously extended toolset includes importers (filters) and/or wrappers 
to XML, RDF, relational data, web services, etc. 
 
Fig.1 presents a view on the architecture, which involves data structures (figures with dashed 
lines) and program modules (grey boxes). The architecture takes into account the subdivision 
of the storage and processing between client and server, strong typing and query optimization 
(by rewriting and by indices). The subdivision on client and server is only for easier 
explanation; actually, each ODRA installation can work as a client and as a server. Many 
clients can be connected to a server and a client can be connected to many servers. Below we 
present a short description of architectural elements from Figure 24.  

 

Figure 24 : Architecture of ODRA 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 38 - 
© Copyright by VIDE Consortium 

 

In the figure above it is worth to note the following elements: 

• The strong type checker takes a query/program syntactic tree and checks if it conforms 
to the declared types. Types are recorded within a client local metabase and within the 
metabase of persistent objects that is kept on the server. The strong static type checker 
simulates actual execution of a query during compile time. The type checker has several 
other functions. In particular, it changes the query syntactic tree by introducing new 
nodes for automatic dereferences, automatic coercions, for typing literals, for resolving 
elliptic queries and for dynamic type checks (if static checks are impossible). The type 
checker introduces additional information to the nodes of the query syntactic tree that is 
necessary further for query optimization.  

• Static ENVS - static environment stack. It is a compile time counterpart of the 
environment stack (call stack) known from almost all programming languages. 

• Static QRES - static result stack. It is a compile time counterpart of the result stack 
(arithmetic stack) known from almost all programming languages. 

• Optimization by rewriting - this is a program module that changes the syntactic tree that 
is already annotated by the strong type checker.  

• Compiler to bytecode. This module takes the strongly checked and optimized syntactic 
tree of a query/program and produces a bytecode that can be executed by the interpreter. 
In the prototype implementation we developed our own bytecode format called Juliet. In 
the future we consider the possibility to generate directly the Java bytecode but it needs 
further research. 

• Updateable object views. ODRA offers a highly transparent mechanism for updateable 
object views that allows defining virtual objects with arbitrary, explicitly definable 
update semantics. This feature is essential for integrating various data sources using 
ODRA. 

ODRA introduces a powerful query and programming language SBQL (Stack-Based Query 
Language).  It is precise with respect to the specification of semantics. The pragmatic quality 
of SBQL is achieved by orthogonality of introduced data/object constructors, orthogonality of 
all the language constructs, object relativism, orthogonal persistence, typing safety, 
introducing all the classical and some new programming abstractions (procedures, functions, 
modules, types, classes, methods, views, etc.) and following commonly accepted 
programming languages’ and software engineering principles. 
 
SBQL queries can be embedded within statements that can change the database or program 
state. Typical imperative constructs are creating a new object, deleting an object, assigning 
new value to an object (updating) and inserting an object into another object. Typical control 
and loop statements such as if…then…else…, while loops, for and for each iterators, and 
others are also available. Some peculiarities are implied by queries that may return 
collections; thus there are possibilities to generalize imperative constructs according to this 
new feature. 
 
SBQL in ODRA project introduces also procedures, functions and methods. All procedural 
abstractions of SBQL can be invoked from any procedural abstractions with no limitations 
and can be recursive. SBQL programming abstractions deal with parameters being any 
queries; thus corresponding parameter passing methods are generalized to take collections 
into account. The strict-call-by-value method has been implemented, which makes it possible 
to achieve the effects of call-by-value, call-by-reference, and more. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 39 - 
© Copyright by VIDE Consortium 

 

SBQL is a strongly typed language. Each database and program entity has to be associated 
with a type. However, types do not constraint semi-structured nature of the data. In particular, 
types allow for optional elements (similar to null values known from relational systems, but 
with different semantics) and collections with arbitrary cardinality constraints. Strong typing 
of SBQL is a prerequisite for developing powerful query optimization methods based on 
query rewriting and on indices. 
 
For ODRA a generic gateway to Java libraries has been implemented. This facility allows one 
to use calls to Java programs within SBQL programs. The facility is especially useful to 
extend SBQL with GUI, with string operators, with J2EE capabilities, etc. 
 
From the point of view of VIDE project, ODRA has been chosen as one of the exemplary 
target platforms to be supported by model compilers. In this role it is intended to serve for 
investigating the code generation issues at a purely OO database and programming language 
platform. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 40 - 
© Copyright by VIDE Consortium 

 

6 VIDE to Java 

6.1 Approach 
In the following, we map VIDE to Java. The mapping description is divided into four 
subsections: mapping structural aspects, mapping the behavioural parts, mapping activity 
diagram constructs, and finally mapping OCL expressions. 
 

6.2 Mapping Structural Parts 
VIDE data structures are given by UML class diagrams. This section is structured into three 
subsections, each dealing with one specification of UML Type metaclass: Class, DataType, 
and Association. Mapping these elements is the major task regarding the static part of VIDE, 
providing the environment the mapped behavioural part will be embedded in. Moreover, types 
are regularly used in VIDE modelling; in the context of properties within a classifier, 
operation signatures (including parameters, return values and exceptions) and variables in the 
behaviour modelling. Other aspects of VIDE structures are addressed where applicable, e.g. 
the package concept in the class subsection. 

6.2.1 Data types 

Instances of DataType are identified only by their value; typical use is to represent primitive 
types (e.g. Integer, Boolean) and variants of multi-valued types (e.g. Sequence, Set). In VIDE, 
the required simple types are adopted from the OCL extension of UML. Other types used in 
the VIDE PIM language (e.g. Date) are defined in a library of types that may be imported to 
any VIDE model. 

6.2.1.1 Enumeration 

Enumeration is a kind of data type that defines a finite set of literals. Enumerations are 
mapped to Java enum types. The enum declaration defines a class implicitly extending 
java.lang.Enum. The enumeration literals are translated into a fixed set of constant fields.  
 

Example. Figure 25 show the mapping of an enumeration. 

 
 

 

Color public enum { 
 RED, GREEN, BLUE 
}  

Figure 25 : Enumeration mapping example 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 41 - 
© Copyright by VIDE Consortium 

 

6.2.1.2 TupleType 

TupleType is a metaclass adopted from OCL. Within instances of TupleType, several values of 
different types can be combined. These tuples are described by their composition parts 
(attributes); each part can be uniquely identified by its name. As tuples are specified to be 
immutable, instances of TupleType and their values are created at the same time. Tuples may 
be compared based on their name and value of their attributes. 
Directly mapping the metaclass TupleType requires some kind of lightweight data structure in 
the target language, with similar value handling as e.g. in Java primitive types. However there 
is no equivalent concept in Java. A working solution is to implement tuples as instances of a 
class named Tuple. This class controls access to an instance of java.util.Map<String, Object> 
that holds the names and values of the tuple attributes. The immutability of the map entries 
can be ensured by making the mutator method of the Map protected. 
 
Example. Listing 6.1 shows an OCL tuple. Applying the proposed mapping results in the 
Java code fragment shown in Listing 6.2. 
 

Tuple {name: String = ‘John’, age: Integer = 10} 
Listing 6.1: Tuple mapping example (OCL statement input) 

Tuple t1 = new Tuple(){{set("name", "John"); set("a ge", 
10);}}; 

Listing 6.2: Tuple mapping example (output) 

6.2.1.3 Primitive types 
 
VIDE models use the primitive types provided by OCL. OCL defines four basic types 
inheriting from PrimitiveType: Integer, Real, Boolean, and String. Transferring these types to 
equivalent Java constructs is straightforward; they can be mapped directly to Java primitive 
types, as shown in Table 2. However, there are conceptual discrepancies as in OCL 
everything is considered an object. This becomes apparent in the context of collections – OCL 
knows collections of basic types, whereas Java allows only object reference collections. The 
autoboxing feature in Java 5 hides this problem when accessing and manipulating primitive 
type collections. Nevertheless, the Java Wrapper type has to be used in the collection 
declaration statement. 

 

OCL basic type Java type Java Wrapper type Java default value 

Boolean Boolean java.lang.Boolean false 

Integer Int java.lang.Integer 0 

Real Double java.lang.Double 0.0d 

String String  null 

Table 2: Mapping of OCL basic types  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 42 - 
© Copyright by VIDE Consortium 

 

6.2.1.4 Collection types 

Collection types are data types that can contain multiple elements of a specific type. Similar 
to the basic types in the last section, collection types are obtained from the OCL standard 
library. The library contains four implementations of the abstract CollectionType class. Bag 
instances may contain duplicates and have no ordering; a Sequence is an ordered bag; a Set is 
a bag without duplicates; and finally an OrderedSet has both unique and ordered elements. 
 
There is an additional way to model collections. All subclasses of the metaclass 
MultipleElement (Property, Parameter, and Variable) own the properties upper and lower 
that specify the number of contained elements. Additionally, the mentioned metaclasses have 
the properties isUnique and isOrdered, resulting in the four variants that are similar to the 
listed subtypes of OCL CollectionType.  
 
In Java, the java.util.Collection classes can be used as equivalent counterparts to the variants 
of OCL CollectionType, shown in Table 3, as well as for the mapping of UML 
MultipleElements, listed in Table 4.  The tables provide suitable abstract declaration types and 
additionally instantiation types that implement the collection interfaces used for declaration. 
The instantiation types can be obtained from the predefined Java collection types with one 
exception, as Java does not contain an adequate concept for ordered and unique multi-valued 
types. The List interface can be used for declaration, as it provides the necessary accessor and 
mutator functionality. But the predefined implementations of List, e.g. java.util.ArrayList, do 
not ensure element uniqueness. java.util.SortedSet might be used in this context. SortedSet 
implements the Set interface and additionally introduces element order. However, this order is 
strictly ascending as far as a comparator is concerned. Consequently, SortedSet provides 
functionality to access the first and the last element of the ordering, but no direct access to 
other positions. This mapping therefore introduces an own implementation vide.UniqueList of 
the java.util.List interface that ensures uniqueness when an element is added. 
 

OCL Java   

collection type declaration type instantiation type 

Bag(T) java.util.Collection(? extends T) java.util.ArrayList(? extends T) 

Sequence(T) java.util.List(? extends T) java.util.ArrayList(? extends T) 

Set(T) java.util.Set(? extends T) java.util.HashSet(? extends T) 

OrderedSet(T) java.util.List(? extends T) vide.UniqueList(? extends T) 

Table 3: Mapping of OCL collection types 

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 43 - 
© Copyright by VIDE Consortium 

 

UML  Java  

type ordered unique declaration type instantiation type 

T false false java.util.Collection(? extends T) java.util.ArrayList(? exrends T) 

T true false java.util.List(? extends T) java.util.ArrayList(? extends T) 

T false true java.util.Set(? extends T) java.util.HashSet(? extends T) 

T true true java.util.List(? extends T) vide.UniqueList(? extends T) 

Table 4: Mapping of UML multiple elements 

6.2.2 Classes and packages 

In UML, packages are used to group elements and provide a shared namespace. Packages are 
the primary mean of UML for the decomposition of complex models. Among other subtypes 
of PackageableElement, packages can recursively own packages resulting in a tree structure. 
Moreover, packages can own instances of the UML metaclass Class. Classes are the blueprint 
for objects that share the same features, constraints, and semantics. Therefore, classes have a 
name and a set of properties and operations. With regard to the organisation of classes, an 
important concept is the generalisation relationship between classes. It allows reusing the 
characteristics of classes, as instances of class A can be viewed as instances of class B as well, 
if B is a generalisation of A. UML does not restrict classes to have only a single 
generalisation. 
 
Mapping UML packages and classes to Java is straightforward, as Java also uses classes, 
organised in packages. The names of the resulting Java packages and classes are taken from 
the modelled names. Though metaclass Interface is discarded in the VIDE modelling 
language, it is useful to translate abstract UML classes to Java interfaces, if they only contain 
constants and operations that do not contain behaviour. Other UML classes are mapped to 
Java implementation classes and, additionally, to interfaces named like the classes, but with a 
preceding “I”. These interfaces are used for variable declaration. 
 
The UML generalisation semantics can be transferred to the Java concept of inheritance. 
However, Java supports multiple inheritance only with regard to interfaces, and not with 
regard to implementation classes. VIDE allows multiple inheritance, but treats any inheritance 
conflict as an error. This simplifies the mapping, as e.g. naming conflicts or the diamond 
problem are not relevant. Based on this, the mapping strategy described in the following is 
sufficient. 
 
 All generalisations of the class A are listed in the association superClass. Class A may extend 
one class (called extension) and may inherit from a list of interfaces (called interfaceList). In 
the following, the elements of superClass are mapped to the extension and interfaces: 
 

1. All elements of superClass that are mapped (only) to an interface are added to the 
interfaceList. 

2. From the remaining elements of superClass the first one is used as extension. 
3. For the remaining classes the corresponding interfaces (named as the modelled class 

with a preceding “I”) are added to the interfaceList. Additionally, the properties and 
operations of these superclasses are added to the class body of A, if A does not contain 
equally typed and named properties, respectively operations with the same signature. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 44 - 
© Copyright by VIDE Consortium 

 

 
Example. Figure 26 shows an UML class hierarchy with class A1 and A2 being 
generalisations of class B. Both A1 and A2 are non-abstract. With the mapping provided 
above, this class hierarchy is transferred to the hierarchy in Figure 27. Listing 3 shows the 
Java output for class B. 

  
Figure 26 : Class inheritance mapping 

example (input) 
Figure 27 : Class inheritance mapping 

example (transformed)  

public class B extends A1 implements A2 { 
 public void doThat(){ 
  ... 
 } 
} 

Listing 3: Class inheritance (output of class B) 

6.2.3 Association 
 
An association is a relationship that can occur between typed instances. It has at least two 
ends represented by properties, each of which is connected to the type of the end. Instances of 
association are called links. Associations are one of the major abstraction concepts in object-
oriented modelling. However, there is no equivalent concept in Java language. Therefore, 
mapping the association structures and semantics to Java must be transferred to adequate 
classes, attributes and methods. VIDE modelling language only makes use of binary 
associations and excludes qualified associations and association classes. The two end 
properties are therefore mapped to attributes with accessor and mutator functionality in the 
involved classes, if the opposite end is navigable. In the bi-directional case, the mutator 
methods must ensure the synchrony of the opposite link end. 

6.2.4 Property 
 
In UML, a property may occur as an attribute of a class as well as an end of an association. 
Properties have a name, which is directly adopted by the Java attribute, and a type. The UML 
type can be a DataType (cf. Section 6.1.1) or a class contained in the model. If the upper 
characteristic is greater than one, the Java type additionally depends on the multiplicity of the 
property. The resulting Java type is then a generic collection, as defined in Table 4, with the 
mapped property type as element type.  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 45 - 
© Copyright by VIDE Consortium 

 

 
Mapping the four visibility modifiers (public, protected, private, package) of UML Properties 
to Java is straightforward, as Java has the same access control levels for attributes with almost 
the same generated semantics. Nevertheless, properties are always mapped to private 
attributes to support data encapsulation. If the visibility of the property is not private, accessor 
and mutator methods are produced as described in this section. The access modifier of these 
methods is mapped from the visibility of the property. Additionally, there is a restriction 
concerning the visibility used in bi-directional associations – mutator methods of involved 
ends are public as they must be accessible from the opposite side for synchronisation. 
 
The property may be declared readOnly and isStatic, which is mapped to the final and static 
modifiers in Java. 
 
The following tables define a common interface of accessor and mutator method signatures 
for properties. As several actions deal with accessing and manipulating properties and 
associations this interface abstracts from the different variants of properties. 
 

Short name Method signature and description 

ObjectGet +getProp() : T 

 Returns the value of prop.  

ObjectSet +setProp(T newValue) : void 

 Sets the attribute to newValue. If the mapped property is 
memberEnd of a bi-directional association, both old and new 
values have to be synchronised. In case of a multi-valued 
property, this update has to be performed for all elements of the 
old and new collection.   

Table 5: Basic field accessor and mutator methods 

Table 5 lists the accessors and mutators that are generated for all properties. The method 
signatures assume that the property is identified as prop and its type is mapped to the Java 
type T. 
 
If the property prop is multi-valued, additional methods should be produced as described in 
Table 6. It is assumed that the UML type of the elements of prop can be mapped to Java type 
E. 
 

Short name Method signature and description 

ObjectAdd +addToProp(E value) : boolean 

 Tries to add value to the attribute. The return value indicates, 
whether or not the addition was successful. In case of a bi-
directional association, both old and new values have to be 
synchronised. 

ObjectRemove +removeFromProp(E value) : boolean 

 Tries to remove value from the attribute. Returns whether or not 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 46 - 
© Copyright by VIDE Consortium 

 

the removal was successful. In case of a bi-directional 
association, the involved instances must be updated.  

RemoveAll +removeAllFromProp() : void 

 Removes all elements from the attribute and updates the links in 
case of a bi-directional association. 

HasIn +hasInProp(E value) : boolean 

 Checks, if value is an element of the attribute. 

IteratorOf +iteratorOfProp() : java.util.Iterator<T> 

 Returns an Iterator over all elements of the attribute. 

SizeOf +sizeOfProp() : int 

 Returns the number of elements of the attribute. 

Table 6: Additional accessor and mutator methods for multi-valued fields  

Furthermore, if the multi-valued property prop is ordered, the methods listed in Table 7 
should be generated additionally. 
 

Short name Method signature and description 

PositionGet +getProp(int position) : E 

 Returns the element at position from the prop collection. If this 
element is not an instance of DataType, the result depends on 
whether or not the element is declared as destroyed. If 
isDestroyed() of the element returns true, the element is removed 
from the list and PositionGet returns null. Otherwise, a reference 
to the element is returned. 

PositionAdd +addAtIndexToProp(int position, T newValue) : void 

 Adds newValue to the multi-valued attribute at position and 
updates the links in case of a bi-directional association. 

PositionRemove +removeAtIndexFromProp(int position) : void 

 Removes element at position i from the attribute. In case of a bi-
directional association, the removed instance has to be updated, 
too. 

Table 7: Additional mutator methods for multi-valued, ordered fields 

 
The methods listed in Table 8 are not part of the common accessor and mutator interface. 
They are only generated in the context of ordered association ends to support the link actions 
CreateLinkAction and DestroyLinkAction. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 47 - 
© Copyright by VIDE Consortium 

 

Short name Method signature and description 

DoublePositionAdd +addAtIndexToProp(int pos1, T newValue, int pos2) :  
void 

 Adds newValue to the own association end attribute at position 
pos1 and causes the newValue instance to add the calling object 
to its association end attribute at pos2. 

DoublePositionRemove +removeAtIndexFromProp(int pos1, int pos2) : void 

 Removes element at position pos1 from the own association end 
attribute and causes this element to remove the target object from 
its own association end attribute at position pos2. 

Table 8: Additional mutator methods for multi-valued, ordered association ends 

6.2.5 Operation 
An operation is a behavioural feature of a classifier that specifies the name, type, parameters, 
and constraints for invoking an associated behaviour. UML operations are mapped to method 
declarations in Java. The method body is derived from the associated activity. Mapping the 
visibility of the operation to an equivalent Java access modifier is straightforward, as shown 
in the last section. Though VIDE does not adopt the isAbstract characteristic of UML, 
operations are mapped to abstract method calls, if the class is modelled to be abstract and no 
activity is linked to the operation. The method name is derived from the name property of the 
UML operation; however it has to be checked if the method has the same signature as the 
accessor and mutator methods defined in the last section. Conflicts should be resolved by 
adapting the method’s name, e.g. by appending the String “Modelled”. If the name of the 
operation is equal to the name of the class then mapping this operation results in a Java class 
constructor. 
 
The method return type as well as the method arguments depend on the parameters 
contained in the operation. Parameters have four kinds of direction: in, inout, out, and return. 
A single parameter may be distinguished as a return parameter. The type and multiplicity of 
this parameter are mapped to the Java return type of the method.  The parameters with 
direction kind in are translated to the method arguments. However, there is no direct 
conceptual counterpart for the remaining two parameter directions inout and out, as Java 
method may not have multiple return types. To overcome this limitation, this mapping 
introduces additional attributes in the class of the operation. In case of direction inout, these 
attributes are initialised with the argument value that is to be passed into the method. After 
method execution, the manipulated attribute is readout. In case of direction out, only the latter 
step is performed.   
 
Example. Figure 28 shows the a class Taxi with an operation drive() and a parameter of each 
direction kind. Listing 4 shows the resulting attributes and methods in the Java class Taxi, and 
Listing 5 provides exemplary code that is used to call the method drive(). 
 

 
Figure 28 : Operation mapping example (input) 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 48 - 
© Copyright by VIDE Consortium 

 

private Location location; 
public int getLocation() { return location; } 
public void setLocation(double newValue) { location  = 
newValue; } 
private double price; 
public Money getPrice() { return price; } 
public boolean drive(Set<Person> passengers){…} 

Listing 4: Operation mapping example (output – attributes and methods) 

aTaxi.setLocation(someLocation); 
Boolean arrived = aTaxi.drive(setOfPersons); 
someLocation = aTaxi.getLocation(); 
Money price = aCar.getPrice(); 

Listing 5: Operation mapping example (output – method calls) 

 

6.3 Mapping Actions to Java 
 
This section defines how the UML actions that are included in the VIDE metamodel [Ref. 
D2.1] can be mapped to Java statements. The definitions of the different actions were taken 
from D2.1 but they were extended to also show inherited attributes and associations as these 
are relevant for mapping the actions to Java statements. 
 

6.3.1 Sample input model for Actions 
 
To exemplarily demonstrate the code fragments resulting from the specified actions mapping, 
the following sample input model is introduced: 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 49 - 
© Copyright by VIDE Consortium 

 

 
Figure 29 : Example model 

 
The multiplicity types of the structural features are chosen to cover all potential combinations 
of the properties isUnique and isOrdered. The setting of these structural features can be 
determined by the prefix of their name: 
 

Prefix isOrdered isUnique 
collectionOf False false 
listOf True false 
setOf False true 
uniqueListOf True true 

Table 9: Multiplicity table of the example 

  
If for demonstration purposes multiple-valued local variables or parameters are introduced, 
they are named accordingly. 
 

6.3.2 General Concepts 

6.3.2.1 Action 
 
As Action is an abstract class, no direct mapping to Java code is provided. The mapping of the 
subclasses inheriting from the metaclass Action is described in the following subsections of 
this chapter.   



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 50 - 
© Copyright by VIDE Consortium 

 

6.3.2.2 Object Flow 
 
In an activity, objects can be passed between the contained actions using output pins, object 
flows and input pins. The mapping rules of object flow are relevant for many Actions. 
Therefore, we define in the following a mapping strategy for pins and object flows. 
 
Mapping of InputPins, ObjectFlows and OutputPins 
 
To reflect the flow of objects in the generated Java code, a table is used to keep track of the 
objects that are made accessible via object flows while traversing an action graph. This table 
contains a map of each object flow contained in the activity to a reference to the object flow’s 
object. 
 
Initialization of the object flow table: 
The table is created when the UML Actions to Java generator enters an activity. All object 
flows found in the activity are added to the table as “empty” flows (respective object 
references are set to null). Additionally, for all ActivityParameterNodes contained in the 
activity the outgoing object flows are updated in the list to have a reference to the object 
specified in the ActivityParameterNode.  
  
Reading  the object flow table (InputPins): 
If the generator traverses an Action with InputPins the referenced object can be accessed 
using the object flow table. The incoming property of the InputPin specifies the object flow 
entry in the table. The corresponding object reference is used as input object for the Action. 
(ValuePins are accessed in another way; see “Mapping of ValuePins” section) 
 
Updating the object flow table (OutputPins): 
If there are OutputPins contained in the traversed Action, the object flows specified in the 
outgoing property of the OutputPin are updated with a reference to the object that is defined 
as output object in the Action specification. 
 
Mapping of ValuePins 
 
A ValuePin is treated differently from other InputPins, as this Pin is used to integrate an 
expression in the code. This expression is of type ValueSpecification and appears in two 
different (subclass-)variants in VIDE: OpaqueExpression and ExpressionInOCL. 
 
OpaqueExpression: 
In case of an OpaqueExpression the body property is read, which is a list of Strings. The first 
list element is used as value of the ValuePin in the code generation process. Additional 
elements of the body property are discarded. 
 
ExpressionInOCL: 
An ExpressionInOCL is the root element for an expression specified with OCL model 
elements. This subtree has to be traversed to generate the Java String corresponding to the 
expression. This String is integrated in the code generation process as value of the ValuePin. 
 

6.3.3 Invocation Actions  
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 51 - 
© Copyright by VIDE Consortium 

 

6.3.3.1 CallOperationAction 
 
The generator takes the name op of the Operation associated to the CallOperationAction and 
uses it in an operation call statement in Java.  
 
If the Operation is static then the name of the method call statement should include the name 
of the class where the method is defined. The information on whether an operation is static or 
not is available using the attribute isStatic. The name of the class where a static method is 
defined can be accessed using the association between the metaclasses Operation and Class. 
 
If the Operation is not static, the name of the target object instance has to be included in the 
generated Java method call statement. The name can be get from the target input pin of the 
action (cf. Chapter 1.1.2).  
 
For each argument input pin contained in the argument list of the action the name of the 
referenced object has to be included as parameter in the generated Java method call statement. 
 
If the Operation has a return type (determined by the existence of a contained parameter with 
direction set to return) then a new temporary variable is declared (cf. chapter 1.1.4) and the 
method call statement in Java is generated as the right side of an assignment statement to that 
new variable. Additionally, a reference to the result object is stored in the outputPin (cf. 
chapter 1.1.2). 
 
Examples (based on the sample model introduced in Appendix A): 
 
1) A CallOperationAction of the operation getStudentsCount, containing a result outputpin:  
 

 
 
The static Operation getStudentsCount is contained in the Class Student and has a parameter 
of type integer and direction return. Therefore, the CallOperationAction results in the 
following Java code fragment: 
 

int  var__1 = Student. getStudentsCount(); 

 
2) A CallOperationAction of the operation printStudents, containing a target InputPin and two 
argument InputPins. 
 

CallOperationAction 

operation := getStudentsAccount 
result 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 52 - 
© Copyright by VIDE Consortium 

 

 
 
The operation printStudents is not static and has no Parameter of direction return. Assuming, 
that via target InputPin an instance of class Professor with identifier professorA is accessible 
and both argument InputPins can be resolved to the boolean value true, the following code 
fragment will be generated: 
 

professorA.printStudents( true , true ); 

 
 

6.3.3.2 ReplyAction 
 
A return statement in Java (“return”) is generated from this action and the statement generated 
for the first replyValue statement is appended. As Java does not support multiple return values 
in a return statement, only the first reply value is taken into account. The others are discarded. 
 
Example (based on the sample model introduced in Appendix A): 
 

 
ReplyAction containing a reply value InputPin: 
 
 
Assuming, that the reply value InputPin can be resolved to an object with the identifier value, 
the following code is generated: 
 

return  value; 

 
 

6.3.4 Object Creation Actions 

6.3.4.1 CreateObjectAction 
 
 

ReplyAction 
 

reply value 

CallOperationAction 

operation := printsStudents 

target argument argument 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 53 - 
© Copyright by VIDE Consortium 

 

This action is mapped to a constructor call statement in Java. The name of class (which is also 
the name of the constructor method in Java) is accessible through the association to the 
metaclass Classifier. According to the definition of this action, no parameters can be passed.  
 
Similarly to method calls with return values a new variable that has the same type as the 
constructor class (i.e., the classifier referenced in the action) is declared and an assignment 
statement is generated so that the constructor call statement is assigned to that new variable. A 
unique identifier that is not already used in the models is used for that new variable (cf. 
Section 1.1.4).  
 
Example : 
 
A CreateObjectAction with its classifier set to the Class Publication: 
 

 
Assuming, that the name property of the result OutputPin is set to result, the following Java 
code is generated: 
 

Publication result = new Publication(); 

 

6.3.4.2 DestroyObjectAction 
 
Java does not provide destructors. The garbage collector automatically determines, what data 
objects are no longer accessed and reclaims the resources used by these objects. Therefore, a 
DestroyObjectAction is mapped to an assignment of null to the object reference specified with 
the target InputPin.  
 
Example : 
 
A DestroyObjectAction containing a target InputPin: 
 

 
 

DestroyObjectAction 
 

target 

result 

CreateObjectAction 

classifier := Publication 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 54 - 
© Copyright by VIDE Consortium 

 

If the target InputPin can be resolved to an object reference named var, the following code 
will be generated: 
 

var = null ; 
 

6.3.5 StructuralFeature Actions 
 
Figure 3 shows the structural feature actions in UML2. In the following, we will describe the 
mapping of the actions to Java. 
 
The structural feature specified in these actions can be a property of the object or an 
association end. With the interface of accessor and mutator methods defined in section 1.1.3, 
there is no need to distinguish between these two kinds of structural features. If one of these 
methods is referenced in the following subsections, the short name defined in the tables of 
sections 1.1.3 will be used (e.g. “Getter”, “ObjectRemove”).  
 

6.3.5.1 AddStructuralFeatureValueAction 
 
This action is mapped to an assignment statement in Java. To generate the left side of the 
assignment the object input pin is used for generating the object reference string and the 
structural feature name is used for generating the attribute name in Java. The right-side of the 
assignment is generated using the value input pin. However, the generated code depends on 
the multiplicity of the structural feature (determined from its “Upper” value). If the feature is 
multi-valued, several cases have to be differentiated based on the structural feature’s attribute 
“isOrdered” and the action features “isReplaceAll” and “insertAt”: 
 
• Non-multiple Structural Feature: a normal assignment via Setter method is generated. 

(example 1) 
• Multiple Structural Feature:  

o replaceAll = true: generates a replacement via Setter method. (example 2)  
o replaceAll = false: 

� not ordered: generates an insertion using the ObjectAdd method. (example 
3) 

� ordered: 
• insertAt = null: generates an insertion at the end of the list using the 

ObjectAdd method. (generated output is equivalent to example 3) 
• insertAt = pos: generates an insertion at position pos using the 

PositionAdd method. (example 4) 
 

Example : 
 
1) An AddSructuralFeatureAction with a non-multiple structural feature: 
 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 55 - 
© Copyright by VIDE Consortium 

 

 
 

Assuming that the object InputPin can be resolved to a Student studentXY and the value 
InputPin can be resolved to the String “Anton” , the generated code is then: 
 

studentXY.setName("Anton"); 
 
2) An AddStructuralFeatureAction with a multiple-valued structural feature and the property 
isReplaceAll set to true: 
 

 
 
Assuming that the object InputPin can be resolved to a Student studentXY and the value 
InputPin resolves to a list of ExamIDs someExamList, the generated code is: 
 

studentXY.setListOfExams(someExamList); 
 
3) An AddStructuralFeatureAction with a multiple-valued structural feature and the property 
isReplaceAll set to false. Additionally, the Action contains an insertAt InputPin: 
 

 
 
Assuming that: 

- the object InputPin can be resolved to a Professor professorXY 
- the value InputPin can be resolved to a String with identifier aString  

The following code will be generated:  

AddStructuralFeatureAction 

structuralFeature := setOfAssistants 
isReplaceAll := false 
 

object value 

AddStructuralFeatureAction 

structuralFeature := listOfExams 
isReplaceAll := true 
 

object value 

AddStructuralFeatureAction 

structuralFeature := name 
isReplaceAll := (ignored) 
 

object value 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 56 - 
© Copyright by VIDE Consortium 

 

 

professorXY.addToSetOfAssistants(aString); 
 
4) An AddStructuralFeatureAction with a multiple-valued structural feature and the property 
isReplaceAll set to false. Additionally, the Action contains an insertAt InputPin: 
 

 
 
Assuming that: 

- the object InputPin resolves to a Student studentXY 
- the value InputPin resolves to an integer examID 
- the insertAt InputPin resolves to an integer indexPos 

The following code is generated: 
 

studentXY.addAtIndexToListOfExams(indexPos, examID) ; 
 

6.3.5.2 ClearStructuralFeatureValueAction 
 

The mapping of this action to Java depends on the multiplicity of the structural feature. If it is 
multi-valued, the method removeAll is called on the structural feature (example 1). 

If not multiple valued, a Setter method call is generated, In the case of a non-primitive type 
the attribute value is set to null (example 2). Otherwise, the Java default value (given in the 
table below) of the respective primitive type is used: 

 

Primitive Type Default Value 
byte, short, int 0 

long 0L 

float 0.0f 

double 0.0d 

char ‘\u0000’ 

boolean false 
 
Example : 
 
1) A ClearStructuralFeatureAction with a multiple-valued structural feature: 
 

AddStructuralFeatureAction 

structuralFeature := listOfExams 
isReplaceAll := false 
 

object value insertAt 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 57 - 
© Copyright by VIDE Consortium 

 

 
 

If the object can be resolved to a Professor instance with the identifier professorXY, the 
following code fragment is generated: 
 

professorXY.removeAllFromStudents(); 
 

 
 
2) A ClearStructuralFeatureAction with a non-multiple-valued structural feature: 
 
 
If the object can be resolved to a Student instance with the identifier studentXY, the following 
code fragment is generated: 
 

studentXY.setName( null ); 

6.3.5.3 RemoveStructuralFeatureValueAction 
 

If the structural feature is not multi-valued (upper == 1), this action is treated similarly to 
ClearStructuralFeatureAction (see 1.4.2). 
If the structural feature is multiple, four cases can occur depending on the values of the 
properties isUnique and isOrdered: 

1) unique and ordered (Unique List): 

isRemoveDuplicates is ignored because the List is already unique. 

a) removeAt = i: a PositionRemove method call is generated. An object possibly 
specified as value of the value input pin is ignored (example 1). 

b) removeAt = null: an ObjectRemove method call is generated (example 2). 

2) unique and unordered (Set): 

isRemoveDuplicates is ignored because the Set is already unique. 

removeAt is ignored because the Set is unordered. 

An ObjectRemove method call is generated (analog to example 2) 

3) not unique and ordered (List): 

a) removeAt = i 

ClearStructuralFeatureAction 

structuralFeature := name 

object 

ClearStructuralFeatureAction 

structuralFeature := students 

object 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 58 - 
© Copyright by VIDE Consortium 

 

I. isRemoveDuplicates = true: First, a new, temporary variable (cf. chapter 1.1.4) 
of the same type as the structural feature elements is declared and initialized 
with the structural feature element at position removeAt. Afterwards, a 
PositionRemove-method call is generated, as a test statement in an empty 
while loop. The new variable serves as parameter of the remove method. An 
object possibly specified as value of the value input pin is ignored. (example 3) 

II. isRemoveDuplicates = false: A PositionRemove method call is generated 
(analog to example 1). An object possibly specified as value of the object input 
pin is ignored. 

b) removeAt = null 

I. isRemoveDuplicates = true: An ObjectRemove-method is called as a test 
statement in an empty while loop. The object specified with the value InputPin 
is the parameter of this method. (example 4) 

II. isRemoveDuplicates = false: an ObjectRemove method call is generated 
(analog to example 2) 

4) not unique and unordered (Collection): 

removeAt is ignored because the Collection is unordered. 

Comparable to case 3b. 

a) isRemoveDuplicates = true: An ObjectRemove-method is called as a test statement 
in an empty while loop. The object specified with the value InputPin is the 
parameter of this method. (analog to example 4). 

b) isRemoveDuplicates = false: an ObjectRemove method call is generated (analog to 
example 2). 

 
Example : 
 
1) A RemoveStructuralFeatureAction with a unique-list kind of structural feature and a 
contained removeAt InputPin: 

 
 
Assumptions: 

- the object InputPin can be resolved to a Professor professorXY 
- the removeAt InputPin resolves to an Integer indexPos 

The following code is generated: 

 

professorXY.removeAtIndexFromUniquelistOfPublicatio ns(indexPos); 

RemoveStructuralFeatureAction 

structuralFeature := uniqueListOfPublications 
isRemoveDuplicates := (ignored) 
 

removeAt object 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 59 - 
© Copyright by VIDE Consortium 

 

 
 

2) A RemoveStructuralFeatureAction with a unique-list kind of structural feature, without 
removeAt InputPin: 

 
Assumptions: 

- the object InputPin can be resolved to a Professor professorXY 
- the value InputPin can be resolved to a Publication aPublication. 

The following code is generated: 

 

professorXY.removeFromUniquelistOfPublications(aPub lication); 

 
3) A RemoveStructuralFeatureAction with a non-unique kind of structural feature and a 
removeAt InputPin, isRemoveDuplicates set to true: 
 

 
 
Assumptions: 

- the object InputPin can be resolved to a Professor professorXY 
- the removeAt InputPin can be resolved to 7. 

The following code is generated: 

 

Publication var__1 = 
professorXY.getUniqueListOfPublications().get(7); 
while  (professorXY.removeFromUniqueListOfPublications (v ar__1)){} 

 
4) A RemoveStructuralFeatureAction with a non-unique kind of structural feature, 
isRemoveDuplicates set to true: 

RemoveStructuralFeatureAction 

structuralFeature := uniqueListOfPublications 
isRemoveDuplicates := true 
 

object removeAt 

RemoveStructuralFeatureAction 

structuralFeature := uniqueListOfPublications 
isRemoveDuplicates := (ignored) 
 

object value 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 60 - 
© Copyright by VIDE Consortium 

 

 
 
Assumptions: 

- the object InputPin can be resolved to a Professor professorXY 
- the value InputPin can be resolved to a String aTitle. 

The following code is generated: 

 

while  (professorXY.removeFromCollectionOfTitles(aTitle)) {}  
 

6.3.6 Link Actions 
 
Link actions are only used in the context of associations. As the interface of accessor and 
mutator methods defined in section 1.1.3 are generated for both properties and association 
ends, this functionality can be used in the following mapping rules (referenced by the short 
name defined in the tables of sections 1.1.3). 
 

6.3.6.1 ClearAssociationAction 
 
ClearAssociationAction is mapped to RemoveAll method calls on the object passed to the 
action via the object InputPin.  
 

Associations contained in VIDE models are limited to a maximum of 2 navigable association 
ends, which are listed in the association’s navigableOwnedEnd property. To determine the 
respective association end for the object input pin, the type of that object is compared with the 
type of both association ends found in navigableOwnedEnd. For each type match, the 
elements associated with the input pin object are deleted by generating a call to the respective 
RemoveAll method. Note, that the input pin object can be a member of both ends in case of a 
looping association is looping. 
 
Example : 
 
A ClearAssociationAction with an object InputPin: 
 

RemoveStructuralFeatureAction 

structuralFeature := collectionOfTitles 
isRemoveDuplicates := true 
 

object value 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 61 - 
© Copyright by VIDE Consortium 

 

 
 
Assumptions: 

- the object InputPin can be resolved to a Professor professorXY 
This is mapped to the following code fragment: 
 

professorXY.removeAllFromStudents(); 
 

6.3.6.2 CreateLinkAction 
 
The mapping of a CreateLinkAction depends on the information given with the two 
associated LinkEndCreationData (in the following called A and B) elements. 
 
If the properties specified by A and B are non-multiple, the CreateLinkAction is mapped to a 
Setter method call with the value InputPins of A and B respectively as target and parameter 
(example 1). 
 
If the properties specified by A and B are multiple-valued and isOrdered is set to false, the 
insertAt InputPin is ignored (the “insertAt = null” case is described in the following 
mapping). 
 
Moreover, the property isReplaceAll of A and B and their optional insertAt InputPin have to 
be taken into account:  
- isReplaceAll = false for both: 

- insertAt = null for both:  
An ObjectAdd method call is generated. The target and parameter of this method is 
specified by the value InputPins of A and B (example 2). 

- insertAt not null for A, insertAt = null for B 
A PositionAdd method call is generated. The target is specified by the value InputPin 
of B, the position parameter by the insertAt InputPin of A, the object parameter by the 
value InputPin of A (example 3). 

- insertAt = null for A, insertAt not null for B 
(symmetric to the last case) 

- insertAt not null for both 
A DoublePositionAdd method call is generated. The target is specified by the value 
InputPin of B, the first position parameter by the insertAt InputPin of A, the object 
parameter by the value InputPin of A, the second position parameter by the insertAt 
InputPin of B (example 4). 

- isReplaceAll = true for A, isReplaceAll = false for B 
(insertAt of A is ignored) 
- insertAt = null for B 

ClearAssociationAction 

association := ProfessorStudents 

Association

name :=ProfessorStudents 
navigableOwnedEnds := 
(students, professor) 

object 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 62 - 
© Copyright by VIDE Consortium 

 

A RemoveAll method call is generated with the value InputPin of B as target. 
Afterwards, the AddObject method call is generated, taking the two objects specified 
by the value InputPins as target and parameter (example 5). 

- insertAt not null for B 
A RemoveAll method call is generated with the value InputPin of B as target. 
Afterwards, a PositionAdd method call is generated. The target is specified by the 
value InputPin of A, the position parameter by the insertAt InputPin of B, the object 
parameter by the value InputPin of B (example 6). 

- isReplaceAll = false for A, isReplaceAll = true for B 
(symmetric to the last case). 

- isReplaceAll = true for both. 
(insertAt is ignored for both) 
For both objects specified by the value InputPins of A and B, a RemoveAll method call is 
called. Then, the AddObject method call is generated, taking the two objects specified by 
the value InputPins as target and parameter. (example 7) 
 

Examples: 
 
1) A CreateLinkAction dealing with two single-valued properties: 
 

 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 

This is mapped to the following Java code fragment: 
 

objectB.setSingleAttrA(objectA); 
 
2) A CreateObjectAction dealing with multiple-valued, ordered properties. For both 
LinkEndCreationDatas, isReplaceAll is set to false and no insertAt InputPin is contained: 

CreateLinkAction 

LinkEndCreationData :=  (A, B) 

LinkEndCreationData

name := A 
property := singleAttrA 
isReplaceAll := (ignored) 

LinkEndCreationData

name := B 
property := singleAttrB 
isReplaceAll := (ignored) 

value value 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 63 - 
© Copyright by VIDE Consortium 

 

 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 

This is mapped to the following code fragment: 
 

objectB.addToListOfAs(objectA); 
 
3) Same setting as example 2, but A has an insertAt InputPin. 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 
- the insertAt InputPin of A can be resolved to 3. 

This is mapped to the following code fragment: 
 

objectB.addAtIndexToListOfAs(3, objectA); 
 
4) Same setting as example 2, but both LinkEndDatas have an insertAt InputPin. 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 
- the insertAt InputPin of A can be resolved to 3. 
- the insertAt InputPin of B can be resolved to 5. 

This is mapped to the following code fragment: 
 

objectB.addAtIndexToListOfAs(3, objectA, 5); 
 
5) Same setting as example 2, but isReplaceAll of A is set to true. 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 

This is mapped to the following code fragment: 
 

CreateLinkAction 

LinkEndCreationData :=  (A, B) 

LinkEndCreationData

name := A 
property := listOfAs 
isReplaceAll := false 

LinkEndCreationData

name := B 
property := listOfBs 
isReplaceAll := false 

value value 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 64 - 
© Copyright by VIDE Consortium 

 

objectB.removeAllFromListOfAs(); 
objectB.addToListOfAs(objectA); 

 
6) Same setting as example 2, but isReplaceAll of A is set to true and B contains an insertAt 
InputPin. 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 
- The insertAt InputPin of B can be resolved to 3. 

This is mapped to the following code fragment: 
 

objectB.removeAllFromListOfAs(); 
objectA.addToListOfBs(3, objectB);  

 
7) Same setting as example 2, but isReplaceAll is set to true for both A and B: 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 

This is mapped to the following code fragment: 
 

objectA.removeAllFromListOfBs(); 
objectB.removeAllFromListOfAs(); 
objectA.addToListOfBs(objectB); 

6.3.6.3 DestroyLinkAction 
 
The mapping of a DestroyLinkAction depends on the two associated LinkEndDestructionData 
elements (in the following called A and B). 
 
If the properties specified by A and B are non-multiple, the DestroyLinkAction is mapped to a 
Setter method call with the value InputPins of A as target and null as parameter (see example 
1). This setter method will set the respective property of B to null. 
 
If the properties specified by A and B are multiple-valued and isOrdered is set to false, the 
destroyAt InputPin is ignored (the “destroyAt = null” case is addressed in the following 
mappings). 
 
If the properties specified by A and B are multiple-valued and isUnique is set to false, the 
property isRemoveDuplicates is ignored (the “isRemoveDuplicates = false” case is addressed 
in the following mappings). 
 
Moreover, the property isRemoveDuplicates of A and B and their optional destroyAt InputPin 
have to be taken into account:  
- isRemoveDuplicates = false for both: 

- destroyAt = null for both:  
An ObjectRemove method call is generated. The target and parameter of this method 
is specified by the value InputPins of A and B (see example 2). 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 65 - 
© Copyright by VIDE Consortium 

 

- destroyAt not null for A, destroyAt = null for B 
A PositionRemove method call is generated. The target is specified by the value 
InputPin of B, the position parameter by the destroyAt InputPin of A (see example 3). 

- destroyAt = null for A, destroyAt not null for B 
(symmetric to the last case) 

- destroyAt not null for both: 
A DoublePositionRemove method call is generated. The target is specified by the 
value InputPin of B, the first position parameter by the insertAt InputPin of A,  the 
second position parameter by the insertAt InputPin of B (example 4). 

- isDestroyDuplicates = true for A. 
(destroyAt of A and isDestroyDuplicates and destroyAt of B are ignored, as all Links 
between A and B are destroyed.) 
An empty while loop with an ObjectRemove method call as test statement is generated. 
The target of the method call is specified by the value InputPin of B, the parameter by the 
value InputPin of A. (example 5) 

- Other Combinations: Similar to the last case. 
 
Examples: 
 
1) A DestroyLinkAction dealing with simple-valued (non-multiple) properties: 
 

 
 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 

This is mapped to the following code fragment: 
 

objectB.setSimpleAttrA( null ); 

 
2) A DestroyLinkAction dealing with multiple-valued, ordered properties. The property 
isDuplicatesRemove is set to false for both A and B, no destroyAt InputPins are contained: 

DestroyLinkAction 

LinkEndDestructionData :=  (A, B) 

LinkEndDestructionData

name := A 
property := simpleAttrA 
isRemoveDuplicates := (ignored) 

LinkEndDestructionData

name := B 
property := simpleAttrB 
isRemoveDuplicates := (ignored) 

value value 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 66 - 
© Copyright by VIDE Consortium 

 

 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 

This is mapped to the following code fragment: 
 

objectB.removeFromListOfAs(objectA); 
 
3) Same setting as example 2, but A has a destroyAt InputPin. 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 
- The destroyAt InputPin of A can be resolved to 3. 

This is mapped to the following code fragment: 
 

objectB.removeAtIndexFromListOfAs(3); 
 
4) Same setting as example 2, but both A and B have a destroyAt InputPin. 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 
- The destroyAt InputPin of A can be resolved to 3. 
- The destroyAt InputPin of B can be resolved to 4. 

This is mapped to the following code fragment: 
 

objectB.removeAtIndexFromListOfAs(3, 4); 
 
5) Same setting as example 2, but isDuplicatesRemove is set to true for A. 
 
Assumptions: 

- the value InputPin of A can be resolved to objectA. 
- the value InputPin of B can be resolved to objectB. 

This is mapped to the following code fragment: 

DestroyLinkAction 

LinkEndDestructionData :=  (A, B) 

LinkEndDestructionData

name := A 
property := listOfAs 
isRemoveDuplicates := false 

LinkEndDestructionData

name := B 
property := listOfBs 
isRemoveDuplicates := false 

value value 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 67 - 
© Copyright by VIDE Consortium 

 

 

while  (objectB.removeFromListOfAs(objectA){} 

6.3.7 ValueProcessingActions 

6.3.7.1 ValueSpecificationAction 
 
A ValueSpecificationAction is only used in the context of a Clause (as part of a 
ConditionalNode) and a LoopNode. In both cases, the purpose is to introduce the expression 
used as test criterion. The generated code for this action is the Java code generated from the 
OCLExpression of the contained value input pin.   

6.3.7.2 ValueSpecification 
 
In Vide, ValueSpecifications are only used indirectly as superclass of OpaqueExpression, 
which is again a superclass of ExpressionInOcl. Therefore, it is sufficient to only focus on 
code generation for OpaqueExpression and for ExpressionInOCL. If we have an 
OpaqueExpression, then the generated code would be the body. The generation of java code 
from OCL expressions is completely covered by integration of an external OCL Compiler, 
consequently we will not address it here. 
 

6.3.8 Variable Actions 

6.3.8.1 AddVariableValueAction 

 
The mapping of this action is very similar to the mapping of the action 
AddStructuralFeatureValueAction. In the simple case of a non multiple-value variable this 
action is mapped to an assignment statement in Java (example 1). The name of the variable is 
used in the left side of the assignment. The value input pin is used to generate the expression 
value at the right side of the assignment. In the case of a multi-value variable several cases 
have to be differentiated as explained below: 
 
• isReplaceAll = true: generates a replacement assignment (analog to example 1). 
• isReplaceAll = false: 

o not ordered: generates an insertion (call to the add method of the Java collection 
interface List, example 2). 

o ordered: 
� insertAt = null: generates an insertion at the end of the list using the add 

method of the Java collection interface List, (analog to example 2). 
� insertAt not null: generates an insertion at the position specified by insertAt 

using the add method of the List interface that takes a position and a value 
(example 3). 

 
Examples : 
 
1) An AddVariableValueAction with a non-multiple variable: 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 68 - 
© Copyright by VIDE Consortium 

 

 
Assumption: 

- the value InputPin can be resolved to a Publication aPublication 
The following code is generated: 
 
publ = aPublication; 

 
2) An AddVariableValueAction with a multiple-valued, not ordered variable and the property 
replaceAll is set to false: 
 

 
Assumption: 

- the value InputPin can be resolved to a String “Dr. Best”  
The following code is generated: 
 

setOfAssistants.add( "Dr. Best" ); 
 
3) An AddVariableValueAction with a multiple-valued, ordered variable and the property 
replaceAll set to false. Additionally, it contains an insertAt InputPin: 
 

 
Assumption: 

- the value InputPin can be resolved to an Integer “examID”  
- the insertAt InputPin can be resolved to an Integer “indexPos” 

The following code is generated: 

AddVariableValueAction 

variable := listOfExams 
isReplaceAll := false 
 

value 

Variable

name := listOfExams 
type := Integer 
upper := * 
isOrdered := true 

insertAt 

AddVariableValueAction 

variable := setOfAssistants 
isReplaceAll := false 
 

value 

Variable

name := setOfAssistants 
type := String 
upper := * 
isOrdered := false 

AddVariableValueAction 

variable := publ 

value 

Variable

name := publ 
type := Publication 
upper := 1 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 69 - 
© Copyright by VIDE Consortium 

 

 

listOfExams.add(indexPos, examID); 
 

6.3.8.2 ClearVariableValueAction 

 
If case of a single-value variable that has a non-primitive type an assignment of the variable to 
null is generated (var = null;). In case of a primitive type, the variable is set to the default 
value (see table in section ClearStructuralFeatureAction). In the case of a multi-value variable 
the method clear of the Java collection classes is called to delete all values contained in the 
variable. 
 
Example (based on the sample model introduced in Appendix A): 
 
A ClearVariableAction with a multiple-valued variable: 

 
 
The following code is generated: 
 

listOfExams.clear(); 

6.3.8.3 RemoveVariableValueAction 
 
If the Variable is not multi-valued (upper == 1), this action is treated similarly to 
ClearVariableAction: for primitive types the variable is set to the default value, otherwise the 
variable is set to null. 
If the variable is multi-valued, four cases can occur depending on the properties isUnique and 
isOrdered: 

1) unique and ordered (UniqueList): 

isRemoveDuplicates is ignored because the list is already unique. 

a) removeAt not null: remove(int)-method of class java.util.List is called. An object 
possibly specified as value of the value input pin is ignored (see example 1).  

b) removeAt = null: remove(Object)-method of class java.util.List is called (see 
example 2). 

2) unique and unordered (Set): 

isRemoveDuplicates is ignored because the Set is already unique. 

removeAt is ignored because the Set is unordered. 

remove(Object)-method of class java.util.Set is called (analog to example 2). 

ClearVariableValueAction 

variable := lis tOfExams 

Variable

name := listOfExams 
type := Integer 
upper := * 
isOrdered := true 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 70 - 
© Copyright by VIDE Consortium 

 

3) not unique and ordered (List): 

a) removeAt not null 

I. isRemoveDuplicates = true: first, a new, temporary variable (cf. chapter 1.1.4) 
of the same type as the variable elements is declared and initialized with the 
variable element at position removeAt. Afterwards, remove(Object)-method of 
class java.util.List is called as a test statement in an empty while loop. The new 
variable serves as parameter of the remove method. An object possibly 
specified as value of the value input pin is ignored. (example 3) 

II. isRemoveDuplicates = false: remove(int)-method of class java.util.List is 
called. An object possibly specified as value of the object input pin is ignored 
(analog to example 1). 

b) removeAt = null 

I. isRemoveDuplicates = true: A remove(Object)-method of class java.util.List 
with the is called as a test statement in an empty while loop. The object 
specified with the value InputPin is the parameter of this method. (example 4) 

II. isRemoveDuplicates = false: remove(Object)-method of the class java.util.List 
is called (analog to example 2). 

4) not unique and unordered (Collection): 

removeAt is ignored because the Collection is unordered. 

(Comparable to case 3b). 

a) isRemoveDuplicates = true: A remove(Object)-method of class java.util.Collection 
with the is called as a test statement in an empty while loop. The object specified 
with the value InputPin is the parameter of this method. (analog to example 4). 

b) isRemoveDuplicates = false: remove(Object)-method of the class java.util.Collection 
is called (analog to example 2). 

 
Examples : 
 

 
 
1) RemoveVariableValueAction with an ordered and unique variable. A removeAt InputPin is 
contained. 
 
Assumption: 

- the removeAt InputPin can be resolved to an Integer “examID”  
The following code is generated: 
 

uniqueListOfPublications.remove(indexPos); 
 

RemoveVariableValueAction 

variable := uniqueListOfPublications 
isRemoveDuplicates := (ignored) 

Variable

name :=uniqueListOfPublications 
type := Publications 
upper := * 
isOrdered := true 
isUnique := true 

removeAt 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 71 - 
© Copyright by VIDE Consortium 

 

2) RemoveVariableValueAction with an ordered and unique variable. A value InputPin, but 
no removeAt InputPin is contained. 
 

 
 
Assumption: 

- the value InputPin can be resolved to a Publication “publ”  
The following code is generated: 
 

uniqueListOfPublications.remove(publ); 
 
3) RemoveVariableValueAction with an ordered and non-unique variable. The property 
isRemoveDuplicates is set to true. 
 

 
Assumption: 

- the removeAt InputPin can be resolved to an Integer “indexPos” 
The following code is generated: 
 

i nt  var__1 = listOfExams.get(indexPos); 
while  (listOfExams.remove(var__1)){} 

 
4) RemoveVariableValueAction with an ordered and non-unique variable. The property 
isRemoveDuplicates is set to true. 
 
 

RemoveVariableValueAction 

variable := uniqueListOfPublications 
isRemoveDuplicates := (ignored) 

Variable

name :=uniqueListOfPublications 
type := Publications 
upper := * 
isOrdered := true 
isUnique := true 

value 

RemoveVariableValueAction 

variable := listOfExams 
isRemoveDuplicates := true 

Variable

name :=listOfExams 
type := Integer 
upper := * 
isOrdered := true 
isUnique := false 

value 

RemoveVariableValueAction 

variable := listOfExams 
isRemoveDuplicates := true 

Variable

name :=listOfExams 
type := Integer 
upper := * 
isOrdered := true 
isUnique := false 

removeAt 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 72 - 
© Copyright by VIDE Consortium 

 

Assumption: 
- the value InputPin can be resolved to an Integer “examID”  

The following code is generated: 
 

while  (listOfExams.remove(examID)){} 

 
 

 

6.4 Mapping of Activities to Java 
 
This section presents the mapping of metaclasses defined in the activity package. 
 
The notation used to present mapping is: 

• Courier font stands for literal expressions 
• Italic font stands for VIDE metamodel terms (classes, properties) 
• map word stands for : apply the mapping of the following metamodel term. 

 

6.4.1 Activity 
 
Activities can be mapped to Java method declaration using their name and their parameter. 
But this information is more formally specified by the owning operation. Therefore, there is 
no direct mapping of activities to Java. 
 

6.4.2 ActivityEdge 
 
This is an abstract class and there is no direct mapping to Java. 

6.4.3 ActivityNode 
 
This is an abstract class and there is no direct mapping to Java. 
 

6.4.4 Behavior 
 
Although this class is not abstract, there is no direct instance of it. So there is no direct 
mapping to Java 
 

6.4.5 ConditionalNode & Clause 
 

 
For the first clause, generate an if  statement, for other clauses, generate else if  
statements. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 73 - 
© Copyright by VIDE Consortium 

 

The last clause has an always true test association by construction so there is no need to do 
specific mapping for it. 
 
For each clauses, its test association is used to generate the Java test. 
 
The order, the clauses are generated, is given by the successorClause and predecessorClause 
associations of the Clause metaclass. 
 
 
 
Example : 
 

if  ( map 1st test clause) { 
 map 1st body clause 
} 
else if ( map 2nd test clause) { 
 map 2nd body clause 
} 
else if (true) { 
 map last body clause 
} 

 
Remarks: 
 
 
It is assumed that the ExecutableNode in the body association are ordered in their sequential 
execution position. 
 
It is assumed that the ExecutableNode in the test association have an empty handler 
association. 
 
It is assumed that test association contains only one ExecutableNode 
 
VIDE Switch statement are transformed in if else if  expressions in Java 
 

6.4.6 ControlFlow 
 
ControlFlow is not mapped to specific Java statement but it is important to generate statement 
in the appropriate sequential order. 
 

6.4.6.1.1.1 ControlNode 
 
This is an abstract class and there is no direct mapping to Java. 
 
 

6.4.6.1.1.2 ExceptionHandler 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 74 - 
© Copyright by VIDE Consortium 

 

 
 
It is mapped to Java with the following pattern : 
 

try { 
 map protectedNode 
} 
catch ( map exceptionType[0] map exceptionInput ) { 
 map handlerBody 
} 
… 
catch ( map exceptionType[n] map exceptionInput ) { 
 map handlerBody 
} 

 
remarks : protectedNode is the back pointer of  handler association in ExecutableNode 
 

6.4.6.1.1.3 ExecutableNode 
 
This is an abstract class and there is no direct mapping to Java. 
 
Handler association is checked to map ExceptionHandler. 

6.4.7 ExpansionRegion, ExpansionNode 
 
It is mapped to Java 5 with the following pattern: 
 

for ( A a : map inputElement[0] ) 
{ 
 map StructuredActivityNode 
} 

 
Where A is mapped from type association of  inputElement. Type should be a collection, A is 
the type of elements in the collection. 
 
VIDE doesn’t support returning elements from ExpansionRegion invocation. 
 
If Expansionregion has more than one inputElement, the loop is duplicated for every 
inputElement. 
 

6.4.8 ForkNode 
It is mapped to a Java thread creation. The outgoing flow is generated inside the run  method 
of the thread and the method is finished when the corresponding JoinNode is encountered. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 75 - 
© Copyright by VIDE Consortium 

 

A

B

I C

 
Figure 30 : Example of Forknode 

The mapping of the example presented Figure 1 is : 
 

map I 
Thread t1 = new Thread() { 
   public void run() { 
      map A 
       }   // the JoinNode is reached 
}.start(); 
Thread t2 = new Tread() { 
   public void run() { 
      map B 
       }   // the JoinNode is reached 
}.start(); 
// wait for both threads to finish 
t1.join(); 
t2.join(); 
map C 

 

6.4.9 LoopNode 
 
It is mapped to while  or do while  statement depending of the value of isTestedFirst 
attribute. 
 
The whole Java loop expression is embedded in a block to conceal setupPart variables inside 
the loop perimeter. 
 
 

• If isTestedFirst is true : 
 

{ 
  map setupPart[0] 
     … 
  map setupPart[n] 
     while( map test[0] ) { 
     map bodyPart [0] 
  } 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 76 - 
© Copyright by VIDE Consortium 

 

} 
 

• If isTestedFirst is false : 
 

{ 
      map setupPart[0] 
   … 
      map setupPart[n] 
  do { 
 map bodyPart[0] 
  } while( map test[0] ) 
} 

 
 
Remarks 
 
It is assumed that test association contains only one ExecutableNode 
 
It is assumed that bodyPart association contains only one ExecutableNode 
 
Vide for loops are generated as Java while  loops. 

6.4.10 ObjectFlow 
 
There is no direct mapping of ObjectFlow to Java. ObjectFlow are followed to find variable 
or parameter to be passed to method invocation or assignment statements. 
 

6.4.11 ObjectNode 
 
This is an abstract class and there is no direct mapping to Java. 

6.4.12 SequenceNode 
 
It is mapped to a block with variable declarations and executable node taken respectively 
from variable and executableNode associations 
 

{ 
    map variable[0] 
    …  
    map variable[n] 
    map executableNode[0] 
    …  
    map executableNode[n] 
} 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 77 - 
© Copyright by VIDE Consortium 

 

6.4.13 StructuredActivityNode 
 
This is an abstract class and there is no direct mapping to Java. 

6.4.14 Variable 
 
Modeled Variables: 
If a Variable is contained in a StructuredActivityNode (e.g. SequenceNode) it is mapped to a 
variable declaration at the beginning of the generated code block. The reason for this is that 
the variables are not contained in a special order (or mentioned in the ordered list of 
ExecutableNodes). 
 
The variable is  mapped to Java variable declaration as follows : 
 

map type map name = map defaultValue ; 
 
Where type association indicates the type of the variable (inherited from TypeElement), name 
is an attribute of Variable (inherited from NamedElement) and defaultValue association 
indicates an optional default value. 
 
If defaultValue association is null, variable is initialised with a default value according to its 
type, as described in Table 2. 
 
  
Temporary Variables: 
Additionally, the mappings described in the following chapters suggest to introduce 
temporary (not modelled) variables at certain points. These variables are used to store the 
results of the actions. 
 
The type of the temporary variables can be determined from the result specification of the 
action. The identifier can be determined from the name of the OutputPin. If the name property 
is not set, a unique identifier has to be chosen, otherwise name conflicts could appear. To 
ensure the uniqueness of the chosen identifier, the generator has to check, whether or not an 
identifier called “var__(i)” (with (i) being the integer value of an counter) is already used in 
the actual context. The check has to take local variables, parameters and fields of the class 
into account. If a conflict is detected, the counter is incremented and the check is repeated 
with “var__(i+1)”. Otherwise “var__(i)” is chosen as identifier and the counter is 
incremented. The counter is reinitialized when entering another activity.  
 
Example (based on the sample model introduced in Appendix A): 
In this example, the result of the Operation getPublicationByTitle contained in class Professor 
is to be assigned to the Variable publ. This is modelled by introducing the variable publ itself 
and two ExecutableNodes in sequence: 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 78 - 
© Copyright by VIDE Consortium 

 

 
 
The variable publ of type Publication is mapped to a corresponding variable declaration at the 
beginning of the code generated for the SequenceNode that contains that variable: 
 

Publication publ; 
 
As already explained in this chapter, a newly declared temporary variable with the unique 
name var__1 is used to map the object flow between the two actions : 
 

Publication var__1 = 
professorXY.getPublicationByTitle(title); 
publ = var__1; 

6.5 Expressions 
This section presents the mapping of the VIDE metamodel expression package. These 
metaclass comes from the OCL metamodel. They always return a value. 
  
The notation used to present mapping is: 

• Courier font stands for literal expressions 
• Italic font stands for VIDE metamodel terms (classes, properties) 
• map word stands for : apply the mapping of the following metamodel term. 

 

6.5.1 CallExp 
This is an abstract class and there is no direct mapping to Java. 
 

6.5.2 FeatureCallExp 
This is an abstract class and there is no direct mapping to Java. 

6.5.3 IfExp 
It is mapped to the Java ternary operator  ?: 
 

( map Condition) ? map thenExpression : map elseExpression 

CallOperationAction 

operation := getPublicationByTitle 
result 

AddVariableValueAction 

variable := publ 

value 

Variable

name := publ 
type := Publication 

argument target 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 79 - 
© Copyright by VIDE Consortium 

 

6.5.4 IterateExp 
 
It is generated as an instantiation of an anonymous class. This generation pattern allows using 
a return statement instead of an assignment of result. The context is made available as 
arguments of the evaluating method. 
 
ResultType  is the mapping of the type of result 
 

(new Object() { 
   public map result.type eval( map source.type Par, 
                           map contextVariable.type self, 
                           map parameterVariable.type 
                              parameterVariable.name) 
   { 
      map result; 
      for ( map iterator : Par) 
      { 
         map body; 
      } 
      return map result.name; 
   } 
}).eval( map source, this, 
        map parameterVariable.representedParameter.name); 

 

6.5.5 IteratorExp 
 
This class represents all the predefined VIDE operators that apply on elements of a set. A lot 
of operators are meaningful for checking the constraints of a model but less useful for 
processing business logic. Therefore, only the mapping of the more relevant operators is 
described. In all mappings, the context is made available as arguments of the evaluating 
method. 
 
 

• collect 
 
It is mapped to a specialized version of iterateExp, where the results of body are added to the 
result. Note that it is assumed that the body expression refers to the iterator. 
 

(new Object() { 
   public map result.type eval( map source.type Par,  
                           map contextVariable.type self, 
                           map parameterVariable.type 
                               parameterVariable.name) 
   { 
      map result; 
      for ( map iterator : Par) 
      { 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 80 - 
© Copyright by VIDE Consortium 

 

        map result.name.add( map body); 
      } 
      return map result.name; 
   } 
}).eval( map source, this, 
        map parameterVariable.representedParameter.name); 

 
 

• sortedBy 
 
It is mapped to an anonymous class that calls the Java sort primitive defined on Collection 
and return the List. The comparator required by the sort primitive is also an anonymous class. 
 

(new Object() { 
   public map result.type eval( map source.type Par, 
                           map contextVariable.type self, 
                           map parameterVariable.type 
                              parameterVariable.name) 
  { 
      Collection.sort(Par, new Comparator< source.type.elementType>() { 
         public int compare( source.type.elementType o1, 
                            source.type.elementType o2) { 
            if (o1. map body < o2. map body) 
               return -1; 
            else if o1. map body = o2. map body) 
               return 0; 
            else 
               return 1; 
       } }); 
     return Par; 
  }).eval( map source, this, 
         map parameterVariable.representedParameter.name); 

 
• select 

 
It is mapped to a specialized version of iterateExp, where elements that satisfy the body are 
added to the result. Note that it is assumed that the body expression is boolean and refers to 
the iterator. 
 

(new Object() { 
   public map result.type eval( map source.type Par, 
                           map contextVariable.type self, 
                           map parameterVariable.type 
                              parameterVariable.name) 
   { 
      map result; 
      for ( map iterator : Par) 
      { 
        if ( map body)  map result.name.add( map iterator.name); 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 81 - 
© Copyright by VIDE Consortium 

 

      } 
      return map result.name; 
   } 
  }).eval( map source, this, 
         map parameterVariable.representedParameter.name); 

 
• exists 

 
It is mapped to a specialized version of iterateExp, where as soon as an element satisfies body 
true  is returned and false  if no element satisfies it. Note that it is assumed that the body 
expression is boolean and refers to the iterator. 
 

(new Object() { 
   public map result.type eval( map source.type Par, 
                           map contextVariable.type self, 
                           map parameterVariable.type 
                              parameterVariable.name) 
   { 
      for ( map iterator : Par) 
      { 
        if ( map body)  return  true; 
      } 
      return false; 
   } 
  }).eval( map source, this, 
         map parameterVariable.representedParameter.name); 

 
• forAll 

 
It is mapped to a specialized version of iterateExp, where as soon as an element doesn’t 
satisfy body false  is returned and true  if all elements satisfy it. Note that it is assumed 
that the body expression is boolean and refers to the iterator. 
 

(new Object() { 
   public map result.type eval( map source.type Par, 
                           map contextVariable.type self, 
                           map parameterVariable.type 
                              parameterVariable.name) 
   { 
      for ( map iterator : Par) 
      { 
        if (! map body)  return  false; 
      } 
      return true; 
   } 
  }).eval( map source, this, 
         map parameterVariable.representedParameter.name); 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 82 - 
© Copyright by VIDE Consortium 

 

6.5.6 LiteralExp 
 
It is directly mapped to its name, inherited from NamedElement. 
 

name 
 

6.5.7 LoopExp 
Although not formally abstract class, this class has no direct mapping to Java. 
 

6.5.8 NavigationCallExp 
NavigationCallExp is a reference to a Property attached to an Association. It’s mapping will 
differ if it’s qualifier is empty or not. 
 
No qualifier: it is mapped to the name of its navigationSource (Property) 
 

navigationSource.name 
 
With qualifier: the mapping of the qualifier is mapped at the beginning using a dot to separate. 
 

map qualifier. navigationSource.name 

6.5.9 OclExpression 
This is an abstract class and there is no direct mapping to Java. 
 

6.5.10 OclVariable 
 
OclVariables are mapped using VariableExps 
 

name 

6.5.11 OpaqueExpression 
It is assumed that OpaqueExpression contains only Java code and it is mapped directly to its 
body. 
 

Body[1] 

6.5.12 OperationCallExp 
 
OperationCallExp is used to represent unary operator (not, unary -), binary operators (+, -,*, /, 
<, >, =, <>, <=, >=, or, xor, and) or user defined operation call. Its mapping depend on that. 
 
Unary Operator 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 83 - 
© Copyright by VIDE Consortium 

 

 

referredOperation.name map source 
 
Binary Operator 
 

map source  referredOperation.name map argument[1] 
 
User defined operator 
 

map source. referredOperation.name (  map argument[1] ,  … map argument[n] )  

6.5.13 PropertyCallExp 
PropertyCallExp is used to get the value of an attribute. It is map to the according syntax in 
java, a dot notation. 
 

map source. referredProperty.name 

6.5.14 VariableExp 
 
VariableExp is used to get the value of a variable. It is map to the name of the variable. 
 

referredVariable.name 

6.5.15 ExpressionInOcl 
ExpressionInOcl is the root of an Ocl expression, it is mapped to its bodyExpression 
 

map bodyExpression 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 84 - 
© Copyright by VIDE Consortium 

 

7 VIDE to J2EE 

This section describes the mapping of VIDE to two APIs defined in Java EE 5, the last 
version of J2EE presented section 5.1. These APIs are: 

• Java Persistence API (JPA) 
• Java Web Services (JAX-WS) 

 
Note : SAP Web Application Server is fully compatible with both JPA and JAX-WS, therefore 
there is no particularities for this platform in this document. Nevertheless, the Java compiler 
will be validated on this platform to ensure interoperability of the mapping and the developed 
compiler. 

7.1 Java Persistence API 
This chapter presents the mapping of VIDE to the Java Persistence API (JPA). It started with 
a little presentation of JPA, then, the stereotypes required for JPA are defined before the 
definition of the mapping for structure, action and expression where mapping to Java 
Persistence Query Language (JPQL) is presented.  

7.1.1 Presentation of JPA 
 
JPA (Java Persistence API) defines an interface to persist normal Java objects (or POJO's in 
some people terminology) to a datastore. JPA is tightly coupled to RDBMS datastores. JPA is 
a standard approved in June 2006 as part of "EJB3" though can be used outside of the J2EE 
container. JPA defines the interface that an implementation has to implement. It replaces JDO 
the previous persistent API specified by Sun. 
 
JPA defines persistent property of the Java classes through the use of Java annotations. This is 
a clear advantage for generating JPA code from VIDE program because there is no need to 
generate an xml file like JDO. 
 
JPA defines also a query language JPQL that looks like SQL but work in the name space of 
the Java program, not in the database name space. 

7.1.2 VIDE Mapping to JPA 
 
JPA provides more than 10 Java annotations to be able to define complex mappings between 
Java classes and databases. For this first mapping of VIDE to JPA, we modestly stay at the 
level of the proof of concept and we only consider simple Java to database mapping, where 
each table is represented as a class and each column as an attribute or a foreign key to another 
table. 
 
The notation used to present mapping is: 

• Courier font stands for literal expressions 
• Italic font stands for VIDE metamodel terms (classes, properties) 
• map word stands for : apply the mapping of the following metamodel term. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 85 - 
© Copyright by VIDE Consortium 

 

7.1.2.1 VIDE Profile for JPA 
 
With the introduction of persistency, it is essential to be able to distinguish between classes 
whose instances will be store and retrieve in the database and classes whose instances will be 
transient.  
 
Therefore the stereotype <<Persistent>>  defined on classes will indicate classes that 
should be annotated for JPA persistence. 
 
JPA also require that every persistent class define a primary key. To deal with this constraint, 
the stereotype <<Id>>  on attribute is defined. 
 

7.1.2.2 Structure 
 
This section defines the Java annotations generated to use JPA for the structure part of the 
VIDE metamodel. 
 

7.1.2.2.1 Class 
 
If a class is stereotyped Persistent, then the Java annotation @Entity  is generated before the 
class declaration. 
 

@Entity 
public class Student { 
… 
} 

 
If the persistent class extends an abstract class, the annotation @MappedSuperclass  is 
added to the super class. 

@MappedSuperclass 
public abstract class Person { 
… 
} 
 
@Entity 
Class Student extends Person { 
… 
} 

7.1.2.2.2 Property (Attribute) 
 
If a Property that acts as an attribute of a class is stereotyped Id, then the Java annotation @Id 
is generated before the attribute declaration. 
 

@Entity 
public class Student { 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 86 - 
© Copyright by VIDE Consortium 

 

 
@Id 
public int id; 
… 
} 

 

7.1.2.2.3 Property (Association) 
 
The annotations generated depend on the multiplicity and the nature of the association. 
 

b

0..1 0 ..1

A B

 
Figure 31 : Simple composition 

The simple composition as presented Figure 31 will generate: 
 

@Entity 
public class A { 
 
@OneToOne(cascade=CascadeType.ALL, fetch=FetchType. LAZY) 
public B b; 

 
The annotation and its property indicates that when a A is saved or destroyed, its 
corresponding B should be (CascadeType.ALL) and FetchType says that B should be loaded 
from the data store only when the attribute b is read. 
 

b

0..1 *

A B

 
Figure 32 : Composition to many 

The case presented  Figure 32 will generate: 
 

@Entity 
public class A { 
 
@OneToMany(cascade=CascadeType.ALL, fetch=FetchType .LAZY) 
public B b; 

The annotation becomes OneToMany. The properties have the same meaning than previously. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 87 - 
© Copyright by VIDE Consortium 

 

b

* 0..1

A B

 
Figure 33 : Association Many to One 

The case presented Figure 33 will generate: 
 

@Entity 
public class A { 
 
@ManyToOne(fetch=FetchType.LAZY) 
public B b; 

 
The annotation is ManyToOne because several A can be linked to the same B. The cascading 
is useless because the association is not a composition. 
 
If b multiplicity is *  then the annotation is ManyToMany with the same property. 
 

b

* 0..1

A B

 
Figure 34 : Bidirectional association 

 
The case presented  Figure 34 will generate: 

@Entity 
public class A { 
 
@ManyToOne(fetch=FetchType.LAZY) 
public B b; 
 
… 
 
@Entity 
public class B { 
 
@OneToMany(mappedBy=A.b) 
public A a; 

 
There is no modification in A class, but in class B, mappedBy property tells that the 
association ‘belongs’ to class A and that a attribute will be loaded correctly. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 88 - 
© Copyright by VIDE Consortium 

 

7.1.2.3 Activity 
Mapping VIDE to JPA doesn’t affect the Activity metaclasses but some code to declare the 
entity manager and transactions is required to use JPA. For this first version, we propose to 
declare the entity manager as a global singleton and to gather all database operations as a 
single transaction. This code is added in the main  operation. 
 

public class VIDEEntityManager { 
 public static EntityManager em; 
    public static EntityManager getEM() 
    { 
       if (em == null) 
       { 
           em = 
Persistence.createEntityManagerFactory(“default”).c reateEntityManager(); 
       } 
       return em; 
    } 
} 

 

public class VIDEApp { 
    public static void main (String[] args){ 
       VIDEEntityManager.getEM().getTransaction.beg in(); 
       // generated code here 
       VIDEEntityManager.getEM().getTransaction.com mit(); 
    } 
} 

 

7.1.2.4 Actions 
 
Only CreateObjectAction and DestroyObjectAction are impacted. 
 

7.1.2.4.1 CreateObjectAction 
 
Apart from creating the new object, it has to be made persistent, the generated code is : 
 

   Professor p = new Professor(); 
   VIDEEntityManager.getEM().persist(p); 

 

7.1.2.4.2 DestroyObjectAction 
 
The object should be deleted in the database. 
 

   VIDEEntityManager.getEM().remove(p); 
   P = null; 

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 89 - 
© Copyright by VIDE Consortium 

 

7.1.2.5 Expression 
 
JPA give us the opportunity to use OCL expression to make queries on the database. 
 
How to decide to generate a query or a simple mapping described chapter 6.5 ? 
 
If the source of an OCL expression refer to a classifier (VIDE allows to skip the allInstances 
primitive of OCL) then it is a query, if it is a property or a variable then it is a simple 
mapping. 
 
In the following sections em is used for VIDEEntityManager.getEM() . 
 

7.1.2.5.1 Trivial mapping 
 
This mapping consists to retrieve all the persistant instances of a class without any selection 
criterion and pass this list to the following expression. 
  

em.createQuery(“from source”).getResultList() 
 
This mapping is used for exist  and forall . collect , sortedBy  and select  can 
take more advantages of JPQL.  
 

7.1.2.5.2 Mapping collect to JPA query 
 
The body association is used in the select  clause. 
 

em.createQuery(“select map iterator. map body from source map 
iterator”).getResultList() 

7.1.2.5.3 Mapping sortedBy to JPA query 
 
The body association is used in the sortby  clause. 
 

em.createQuery(“from source map iterator group by   map 
body”).getResultList() 

 
This mapping requires that body is a PropertyCallExp, because group by  clause is defined 
only on attribute in JPQL. If not, a trivial mapping should be generated. 
 

7.1.2.5.4 Mapping select to JPA query 
 
The body association is used in the where  clause. 
 

em.createQuery(“from source map iterator where map body”).getResultList() 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 90 - 
© Copyright by VIDE Consortium 

 

7.2 Web services 
 
This chapter describes the mapping of the VIDE Web Services profile to J2EE and focuses on 
the implementation of that mapping in the context of the Java/J2EE model compiler. Thereby, 
two use cases are considered. In the first, one a VIDE class is published as a Web Service an 
appropriate Java code should be generated whereas in the second case an external Web 
Service is consumed from within VIDE class.  
 
The main idea in the first case is to generate Java API for XML Web Services (JAX-WS) 
annotations in the Java code. Since, the implementation of the consumed Web Service 
operation is not available; the model compiler should generate code that calls appropriate 
client-side Web Service proxies rather then generating Java code from UML actions.  
 
The structure of this document is as follows. Section 7.2.1 presents the VIDE profile for Web 
Services. Section 7.2.2  presents the Web Service support in the target platform and mainly 
the JAX-WS annotations. Section 7.2.3 explains how to VIDE model compiler to J2EE 
implements the publishing of a VIDE class as a Web Service and Section 7.2.4 explains how 
it implements the consumption of an external Web Service. 
 

7.2.1 VIDE Web Services Profile 
 
In the following, the stereotypes of the VIDE Web Service profile are described. 
 

• Stereotype ConsumedService 
 
This stereotype designates that a class will be a proxy to a remote web service conforming to 
a certain WSDL contract. The operations of that class are associated to remote calls to the 
operations of a given web service. Because of that, elements marked with this stereotype 
cannot be attached any OCL code to their body.  
 
This metaclass does not exist in UML metamodel and is implemented as a stereotype applied 
to Class. 
 
Generalizations 
Class 
Attributes 
URL:String[1] – WSDL contract address 
portType:String[1] – represented interface 
 

• Stereotype PublishedService 
 
Applicable to class without any attributes defined. This stereotype indicates that a class 
should be exposed as a web service endpoint. Those are assumed to be automatically started 
at the beginning of model execution.  
 
Generalizations 
Class 
Attributes: 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 91 - 
© Copyright by VIDE Consortium 

 

Namespace:String[1] - defaults to (filtered) containing package global name 
 

• Stereotype PublishedOperation 
 
Marks those operations, which should be available as operations of the published Web 
Service. They can be applied only when the containing class is marked with publishedService. 
All types used as input or output parameters such operations are mapped to XSD types 
definition of types WSDL section.  
 
Generalizations 
Class 
 

7.2.2 Java Web Service annotations 
 
Fortunately, Web Services in the J2EE platform is based on annotations, which makes 
mapping VIDE PIM stereotypes to J2EE simple as an appropriate annotation has to be 
generated (and not methods). 
 
In the following, we present the JAX-WS annotations that are relevant for mapping the VIDE 
Web Service profile to J2EE. 
 

• javax.jws.WebService The purpose of this annotation is to mark an endpoint 
implementation as implementing a web service or to mark that a service endpoint 
interface as defining a web service interface. 

 
Properties: 
name: The name of the wsdl:portType 
targetNamespace: The XML namespace of the WSDL and some of the XML  
elements generated from this web service. Most of the XML elements will be in  
in the namespace according to the JAXB mapping rules. 
serviceName: The Service name of the web service (wsdl:service) 
endpointInterface: The qualified name of the service endpoint interface. 
portName:  The wsdl:portName 
 

 

• javax.jws.WebMethod The purpose of this annotation is to expose a method as a 
web service operation. 
 

Properties: 
operationName: The name of the wsdl:operation matching this method. 

action: The XML namespace of the WSDL and some of the XML elements  
generated from this web service. 
exclude: Used to exclude a method from the Web Service. 
 
These two annotations are the most relevant one for mapping VIDE Web Services profile to 
Java. The annotations javax.jws.WebParam and WebResult are also related to our work 
but they are not necessarily needed.  
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 92 - 
© Copyright by VIDE Consortium 

 

7.2.3 Publishing a VIDE class as a Web Service 
 
The user may take a state-of-the-art UML class diagrams editor and load the VIDE profiles 
for Web Services. Then, he can add the stereotype <<publishedService>> to the classes that 
should be exposed in the Web Service. To select specific methods for exposition in the Web 
Service, the user may use the stereotype <<publishedMethod>>.  
 
The model compiler from VIDE to J2EE takes the profiled model and generates JAX-WS 
annotations in the Java class accordingly. The generated source code files have then to be 
compiled by the user and deployed to a J2EE application server. 
 
An example of the code generated by the VIDE model compiler to make a class exposed as a 
web service is shown below. The java class is annotated with the JAX-WS annotation 
@WebService 
 
@WebService 
public class Opportunity  
{ 

public float getValue (String curr)  
{ 
return this.value(); 
} 

} 
 
To configure which methods of the Java class should be exposed in the Web Service the 
annotation @WebMethod is generated. This annotation has properties such as 
operationName, which can be use to give the Web Service operation a different name than 
that of the class method. 
 
@WebService(name="OpportunityService") 
public class Opportunity{ 
 

@WebMethod(operationName="getOpportunityValue") 
public float getValue (String currency)  
{  
return this.value(); 
} 

} 
 

The deployment process is beyond the scope of this document and will be described in D9.2. 
 

7.2.4 Consuming an External Web Service 
 
PJIIT is working on WSDL to VIDE import. That is, they will provide a tool for text-to-
Model transformation that generates a VIDE model out of the WSDL file. This tool creates a 
proxy class in the VIDE model for the Web Service and marks it with the 
<<consumedService>> stereotype. 
 
 
The stereotype <<consumedService>> has a string property called URL, which stores the 
URL of the WSDL file of the consumed Web Service. For each such class, the model 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 93 - 
© Copyright by VIDE Consortium 

 

compiler generates a Java class, whose methods redirect all calls to operations of the Java 
Web Service proxy class.  For example, assume that the class with the stereotype 
<<consumedService>> has a method called wsoperation . The Java method generated by 
the model compiler gets a reference to the Web Service proxy class (in the example 
ServiceMyPortType) and then call the same operation on that proxy and passes its parameters 
to it as shown below. 
 
Public int wsoperation (int param1, int parm 2) 

{ 

 //get reference to the local WS port proxy 

 ServiceMyPortType port = new Service.getMyPort() ;  

 //redirect the call and return result if applicabl e 

 return port.wsoperation(param1,param2); 

} 

 
The generated code will only work correctly if the client-side Web Service proxy is available. 
For that reason, the model compiler uses the tool wsimport and passes the URL property of the 
<<consumedService>> stereotype as parameter. 
 

wsimport http://company.com/OpportunityService?wsdl  

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 94 - 
© Copyright by VIDE Consortium 

 

8 The model compiler to ODRA 

This chapter presents the specification of the mapping from VIDE metamodel to ODRA code.  

8.1 Introduction 
The model compiler to ODRA is specified as a function Map2ODRA, which maps instances 
of VIDE metamodel to textual code in SBQL to be executed by the ODRA database system. 
The definition of this function uses the structural recursion, i.e. the mapping of each kind of 
nodes is described using the mapping of its subordinate kinds. Fragments of the textual output 
are marked with red colour to additionally distinguish them from the mapping function 
invocations. 
 
We will also use a generalization of the function Map2ODRA which will apply to a sequence 
a items. The function Map2ODRA* has two arguments: a node and an optional separator. The 
result of Map2ODRA*(seq, sep) is the concatenation of the results of the function 
Map2ODRA applied to all elements of the sequence seq separated by the separator sep. The 
result of Map2ODRA*(seq) is just the concatenation of the results of the function Map2ODRA 
applied to all elements of the sequence seq. 

8.2 Structures 

8.2.1 Mapping 

8.2.1.1 Type hierarchy 

8.2.1.1.1 BagType 
BagType is mapped to the ODRA system as declaration of multiple elements with 

cardinality [0..*]. The attribute elementType is inherited by the BagType from its 
generalization CollectionType. 

Mapped node x Mapping result Map2ODRA(x) 
BagType Map2ODRA(x.elementType) [0..*]  

8.2.1.1.2 Classifier  
In VIDE classifier is just an abstract super-class for data type, association and class. 

The mapping of a Classifier is defined by its concrete subclasses. 

8.2.1.1.3 Class  
Class is mapped to ODRA class whose name is obtained by adding the Class suffix: 

Mapped node x Mapping result Map2ODRA(x) 
Class x.nameClass 

For class declaration – see the section “Features of classes” below. 

8.2.1.1.4 CollectionType 
The mapping of a CollectionType is defined by its concrete subclasses. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 95 - 
© Copyright by VIDE Consortium 

 

8.2.1.1.5 DataType 
The mapping of a DataType is defined by its concrete subclasses. 

8.2.1.1.6 Enumeration 
An enumeration is a data type whose values are enumerated in the model as 

enumeration literals. The enumerations are not implemented in ODRA. Thus, Enumeration is 
mapped to string.  

Mapped node x Mapping result Map2ODRA(x) 
Enumeration string 

8.2.1.1.7 OrderedSetType 
OrderedSetType is a collection type constructor that describes a set of elements where 

each distinct element occurs only once in the set. The ordered set is currently not 
implemented in ODRA. The OrderedSetType is mapped the same way as BagType. 

Mapped node x Mapping result Map2ODRA(x) 
OrderedSetType Map2ODRA(x.elementType) [0..*]  

8.2.1.1.8 PrimitiveType 
The PrimitiveType is mapped simply to its name: 

Mapped node x Mapping result Map2ODRA(x) 
PrimitiveType x.name 

8.2.1.1.9 SequenceType 
SequenceType is a collection type constructor that describes a list of elements where 

each element may occur multiple times in the sequence. The sequence is currently not 
implemented in ODRA. The SequenceType is mapped the same way as BagType. 

Mapped node x Mapping result Map2ODRA(x) 
SequenceType Map2ODRA(x.elementType) [0..*]  

8.2.1.1.10 SetType 
SetType is a collection type constructor that describes a set of elements where each 

distinct element occurs only once in the set. The set is currently not implemented in ODRA. 
The SequenceType is mapped the same way as BagType. 

Mapped node x Mapping result Map2ODRA(x) 
SetType Map2ODRA(x.elementType) [0..*]  

8.2.1.1.11 TupleType 
TupleType (informally known as record type or struct) combines different types into a 

single aggregate type. The parts of a TupleType are described by its attributes, each having a 
name and a type. TupleType is mapped to an ODRA record: 

Mapped node x Mapping result Map2ODRA(x) 

TupleType 
record {  

Map2ODRA*(x.ownedProperty, ;) 
}  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 96 - 
© Copyright by VIDE Consortium 

 

8.2.1.1.12 Type 
The mapping of a Type is defined by its concrete subclasses. 

8.2.1.1.13 VoidType 
VoidType represents a type that conforms to all types. The void type is mapped to an 

empty string. 

Mapped node x Mapping result Map2ODRA(x) 
VoidType Empty string 

8.2.1.2 Features of classes 
Each declared class is mapped to an ODRA declaration of class. Together with this 

declaration a variable holding the extent of the Class is created. The ODRA class name has 
suffix Class . The extent however has the same name as the VIDE class. 

Mapped node x Mapping result Map2ODRA(x) 

Class 
(declaration) 

class x.nameClass extends Map2ODRA*(x.superClass, ,) {  
instance x.name { 

Map2ODRA*(x.ownedAttribute, ;) ; 
} 
Map2ODRA*(x.ownedOperation) 

} 
 
x.name : x.nameClass[0..*] 

If the list of super-classes is empty, the phrase extends is omitted.  

There is also a special case: when the mapped class has the «module» stereotype, then 
it has to have the name as the owning package (otherwise an error is reported). In this case, 
the content of such a class is mapped as directly owned by the ODRA module. 

Mapped node x Mapping result Map2ODRA(x) 
Class 

(«module» with the 
same name as its 
owning package) 

Map2ODRA*(x.ownedAttribute, ;) ; 
Map2ODRA*(x.ownedOperation) 

8.2.1.2.1 Association 
An Association is not directly mapped to ODRA. It is mapped indirectly through the 
properties owned by classes. 

8.2.1.2.2 BehavioralFeature  
A behavioural feature specifies that an instance of a classifier will respond to a designated 
request by invoking a behaviour. It is mapped to ODRA method declaration. The 
raisedExceptions are not mapped since this part of a method header is not implemented in 
ODRA.  

Mapped node x Mapping result Map2ODRA(x) 

BehavioralFeature 
(none of ownerParameter is return) 

x.name ( Map2ODRA*(x.ownedParameter, ;) ) {  
Map2ODRA(x.method) 

}  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 97 - 
© Copyright by VIDE Consortium 

 

BehavioralFeature 
(one of ownerParameter is return; 

say the i-th is a return; 
the type of this return parameter is not 

a class) 

x.name ( Map2ODRA*(x.ownedParameter, ;) ) : 
Map2ODRA (x.ownerParamater[i].type) 

{ 
Map2ODRA(x.method) 

}  
BehavioralFeature 

(one of ownerParameter is return; 
say the i-th is a return; 

the type of this return parameter is a 
class) 

x.name ( Map2ODRA*(x.ownedParameter, ;) ) : 
ref Map2ODRA (x.ownerParamater[i].type) 

{ 
Map2ODRA(x.method) 

}  

8.2.1.2.3 Constraint  
A constraint is a condition or restriction expressed in natural language text or in a 

machine readable language for the purpose of declaring the contract of an element. A 
Constraint is mapped to an empty ODRA string, since it has nothing to do with execution. 

Mapped node x Mapping result Map2ODRA(x) 
Constraint Empty string 

8.2.1.2.4 Element 
The mapping of an Element is defined by its concrete subclasses. 

8.2.1.2.5 Feature 
The mapping of a Feature is defined by its concrete subclasses. 

8.2.1.2.6 MultiplicityElement 
A MultiplicityElement is an abstract metaclass that includes attributes for defining the 

bounds of a multiplicity. It is mapped to ODRA cardinality declaration. Other attributes are 
not mapped since ODRA does not implement set or sequence yet. 

Mapped node x Mapping result Map2ODRA(x) 
MultiplicityElement [ x.lower .. x.upper ] 

8.2.1.2.7 NamedElement 
The mapping of a Feature is defined by its concrete subclasses. 

8.2.1.2.8 Namespace 
The mapping of a Feature is defined by its concrete subclasses. 

8.2.1.2.9 Operation 
An operation inherits its mapping from BehavioralFeature. 

8.2.1.2.10 Package 
A package is used to group elements, and provides a common namespace for the 

grouped elements. A package is mapped onto an ODRA module: 

Mapped node x Mapping result Map2ODRA(x) 

Package 
add module x.name { 

Map2ODRA*(x.ownedType) 
Map2ODRA*(x.nestedPackage) 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 98 - 
© Copyright by VIDE Consortium 

 

}  

8.2.1.2.11 PackageableElement 
The mapping of a PackageableElement is defined by its concrete subclasses. 

8.2.1.2.12 PackageImport 
A package import is a relationship that allows the use of unqualified names to refer to 

package members from other namespaces. A package import is directly mapped to ODRA  
module import. 

Mapped node x Mapping result Map2ODRA(x) 
PackageImport import  x.importedPackage.name ; 

8.2.1.2.13 Parameter  
A parameter specifies how arguments are passed into or out of an invocation of an 

operation. Each Parameter is mapped to an ODRA method parameter. Parameters of class 
types are always mapped to call-by-reference. Parameters of non-class types are mapped to 
call-by-reference if they are out or inout. Otherwise, they are mapped to call-by-value. The 
return output parameter is mapped in a special way (see the mapping of BehavioralFeature), 
so here its is mapped to an empty string. 

Mapped node x Mapping result Map2ODRA(x) 
Parameter  
(class type, 

direction ≠ return) 
x.name : ref x.type.nameClass 

Parameter 
(non class type,  
direction = in) 

x.name : Map2ODRA(x.type) 

Parameter 
(non class type,  

direction ∈{ inout, out})  
x.name : ref Map2ODRA(x.type) 

Parameter 
(direction = return) 

Empty string 

 

8.2.1.2.14 ParameterDirectionKind 
ParameterDirectionKind is not mapped directly. Its mapping is quite indirect defined above 
together with the mapping of a Parameter. Literally, ParameterDirectionKind is mapped to an 
empty string. 

8.2.1.2.15 Property 
A Property is a structural feature. It is mapped onto an ODRA field declaration. The 

mapping is different for bi-directional association ends. In this case, the ODRA field 
declaration contains the indication of the reverse relationship. 

Mapped node x Mapping result Map2ODRA(x) 
Property 

(association not set,  
default value not set) 

x.name : Map2ODRA(x.type) ; 

Property 
(association not set,  

x.name : Map2ODRA(x.type) := 
Map2ODRA(x.defaultValue) ; 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 99 - 
© Copyright by VIDE Consortium 

 

default value set) 
Property 

(association set but 
unidirectional) 

x.name : ref Map2ODRA(x.type) ; 

Property 
(bi-directional association set) 

x.name : ref x.type.name  
reverse  

x.association.memberEnd->select(y|y≠x).name ; 

8.2.1.2.16 RedefinableElement 
The mapping of a RedefinableElement is defined by its concrete subclasses. 

8.2.1.2.17 Relationship 
The mapping of a Relationship is defined by its concrete subclasses. 

8.2.1.2.18 StructuralFeature 
The mapping of a StructuralFeature is defined by its concrete subclasses. 

8.2.1.2.19 TypedElement 
The mapping of a TypedElement is defined by its concrete subclasses. 

8.2.1.2.20 VisibilityKind 
A VisibilityKind is mapped to an empty ODRA string, since visibilities are not 

implemented in ODRA. 

Mapped node x Mapping result Map2ODRA(x) 
VisibilityKind Empty string 

8.2.1.3 Services 
In order to include Web Services definition and usage from the level of VIDE models we 
extend the metamodel with three metaclasses. However, Web services are not anyhow marked 
distinct in ODRA database schema. Therefore all the nodes described above are mapped as 
ordinary ODRA objects. 

The actual deployment of published service interfaces and consumed service proxies is 
performed with additional commands that are described – together with some general 
considerations on Web service mapping in section 8.6. 

8.2.1.4 Module 
Module is a class that is a specialization of a normal Class but has one important difference. It 
is immediately instantiated after the system start as a singleton object. Module-stereotyped 
class is required to have the same name as its containing package and is not allowed to be a 
member of associations. A Module x is mapped almost the same way as its generalization’s, 
i.e. Class (see the Class mapping section for the description of this special case).  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 100 - 
© Copyright by VIDE Consortium 

 

8.3 Actions 

8.3.1 Mapping 

8.3.1.1 General Concepts 

8.3.1.1.1 Action 
An action is a named element that is the fundamental unit of executable functionality. The 
mapping of an Action is defined by its concrete subclasses. 

8.3.1.1.2 InputPin 
An input pin is a pin that holds input values to be consumed by an action. The mapping of an 
InputPin is either defined by one of its subclass (if the InputPin in fact belongs to a subclass) 
or is equal to mapping of an OutputPin which is the source of an ObjectFlow whose target is 
this InputPin. 

8.3.1.1.3 OutputPin 
An output pin is a pin that holds output values produced by an action. The mapping of an 
OutputPin is defined by the action who owns this OutputPin. 

8.3.1.1.4 Pin 
A pin is a typed element and multiplicity element that provides values to actions and accepts 
result values from them. The mapping of a Pin is defined by its concrete subclasses. 

8.3.1.1.5 ValuePin 
A value pin is an input pin that provides a value to an action that does not come from an 
incoming object flow edge. The mapping of a ValuePin is just the mapping of the provided 
ValueSpecification. 

Mapped node x Mapping result Map2ODRA(x) 
ValuePin Map2ODRA(x.value) 

8.3.1.2 Invocation Actions 

8.3.1.2.1 InvocationAction 
Invocation is an abstract class for the various actions that invoke behaviour. The mapping of a 
InvocationAction is defined by its  concrete subclasses. 

8.3.1.2.2 CallAction 
CallAction is an abstract class for actions that invoke behaviour and receive return values. 
The mapping of a CallAction is defined by its  concrete subclasses. 

8.3.1.2.3 CallOperationAction  
CallOperationAction is an action that transmits an operation call request to the target object, 
where it may cause the invocation of associated behaviour. It is mapped an ODRA method 
call on the target of CallOperationAction.  

Mapped node x Mapping result Map2ODRA(x) 
CallOperationAction Map2ODRA(x.target) 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 101 - 
© Copyright by VIDE Consortium 

 

. 
x.operation.name(Map2ODRA*(x.argument), , ) 

8.3.1.2.4 RaiseExceptionAction 
RaiseExceptionAction is an action that causes an exception to occur. It is mapped to an 
ODRA throw statement.  

Mapped node x Mapping result Map2ODRA(x) 
RaiseExceptionAction throw Map2ODRA(x.exception) ;  

8.3.1.2.5 ReplyAction  
ReplyAction is an action that accepts a set of return values. It is mapped to an ODRA return  
statement.  

Mapped node x Mapping result Map2ODRA(x) 
ReplyAction return Map2ODRA(x.replyValue) ;  

8.3.1.3 Object Actions 

8.3.1.3.1 CreateObjectAction 
CreateObjectAction is an action that creates an object that conforms to a statically specified 
classifier and puts it on an output pin at runtime. It is mapped to the ODRA create statement. 

Mapped node x Mapping result Map2ODRA(x) 
CreateObjectAction create x.classifier.name () ; 

8.3.1.3.2 DestroyObjectAction 
This action destroys the object on its input pin at runtime. It is mapped to the ODRA create 
statement. 

Mapped node x Mapping result Map2ODRA(x) 
DestroyObjectAction delete Map2ODRA(x.target) ; 

8.3.1.4 Structural Feature Actions 

8.3.1.4.1 AddStructuralFeatureValueAction 
AddStructuralFeatureValueAction is a write structural feature action for adding values to a 
structural feature. It is mapped to an ODRA assignment statement (if isReplaceAll=true) or to 
an ODRA insert-copy statement (if isReplaceAll=false).  

Mapped node x Mapping result Map2ODRA(x) 
AddStructuralFeatureValueAction 

(isReplaceAll=true; 
x.structuralFeature is not of class type) 

x.object . x.structuralFeature.name 
:=  

x.value ; 
AddStructuralFeatureValueAction 

(isReplaceAll=true; 
x.structuralFeature is of class type) 

x.object . x.structuralFeature.name 
:=  

ref( x.value ); 
AddStructuralFeatureValueAction 

(isReplaceAll=false;  
x.structuralFeature is not of class type) 

x.object  
:<<  

(x.value as x.structuralFeature.name) ; 
AddStructuralFeatureValueAction x.object  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 102 - 
© Copyright by VIDE Consortium 

 

(isReplaceAll=false;  
x.structuralFeature is of class type) 

:<  
ref(x.value) ; 

8.3.1.4.2 ClearStructuralFeatureValueAction 
ClearStructuralFeatureAction is a structural feature action that removes all values of a 
structural feature. It is mapped to the ODRA delete statement. 

Mapped node x Mapping result Map2ODRA(x) 
ClearStructuralFeatureAction delete x.object . x.structuralFeature.name ; 

8.3.1.4.3 RemoveStructuralFeatureValueAction 
RemoveStructuralFeatureValueAction is a write structural feature action that removes values 
from structural features. It is mapped to the ODRA delete statement. 

Mapped node x Mapping result Map2ODRA(x) 

RemoveStructuralFeatureValueAction 
delete  

x.object . x.structuralFeature.name[x.removeAt]; 

8.3.1.4.4 StructuralFeatureAction 
StructuralFeatureAction is an abstract class for all structural feature actions. The mapping of 
StructuralFeatureAction to ODRA is defined by its concrete subclasses. 

8.3.1.4.5 WriteStructuralFeatureAction 
WriteStructuralFeatureAction is an abstract class for structural feature actions that change 
structural feature values. The mapping of WriteStructuralFeatureAction to ODRA is defined 
by its concrete subclasses. 

8.3.1.5 Link Actions 

8.3.1.5.1 ClearAssociationAction 
ClearAssociationAction is an action that destroys all links of an association in which a 
particular object participates. It is mapped to the ODRA delete statement. The endData is 
inherited from LinkAction. 

Mapped node x Mapping result Map2ODRA(x) 
ClearAssociationAction delete x.object . x.endData.name; 

8.3.1.5.2 CreateLinkAction 
This action can be used to create links and link objects. CreateLinkAction is mapped to the 
ODRA insert-copy statement.  

Mapped node x Mapping result Map2ODRA(x) 

CreateLinkAction 
x.inputValue [1]  

:<<  
(ref(x.inputValue[2]) as x.endData[1].property.name) ; 

8.3.1.5.3 DestroyLinkAction 
This action destroys a link. DestroyLinkAction is mapped to the ODRA delete statement. 

Mapped node x Mapping result Map2ODRA(x) 
DestroyLinkAction delete  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 103 - 
© Copyright by VIDE Consortium 

 

(x.inputValue [1] . x.endData[1].property.name as FreshVar 
where 

FreshVar = x.inputValue[2]) ; 
FreshVar is a new (fresh) variable name generated in such a way that it does not occur 
anywhere in the generated code. 

8.3.1.5.4 LinkAction 
LinkAction is an abstract class for all link actions that identify their links by the objects at the 
ends of the links and by the qualifiers at ends of the links. The mapping of LinkAction to 
ODRA is defined by its concrete subclasses. 

8.3.1.5.5 LinkEndCreationData 
LinkEndCreationData is not an action. It is not directly mapped to ODRA code. It is used in 
the mapping of owning LinkAction. 

8.3.1.5.6 LinkEndData 
LinkEndData is not an action. It is an element that identifies links. It identifies one end of a 
link to be read or written by the children of LinkAction. It is not directly mapped to ODRA 
code. It is used in the mapping of owning LinkAction. 

8.3.1.5.7 LinkEndDestructionData 
LinkEndDestructionData is not an action. It is an element that identifies links. It identifies one 
end of a link to be destroyed by DestroyLinkAction. It is not directly mapped to ODRA code. 
It is used in the mapping of owning LinkAction. 

8.3.1.5.8 WriteLinkAction 
WriteLinkAction is an abstract class for link actions that create and destroy links. The 

mapping of LinkAction to ODRA is defined by its concrete subclasses. The mapping of 
WriteLinkAction to ODRA is defined by its concrete subclasses. 

8.3.1.6 Value Processing Actions 

8.3.1.6.1 ValueSpecification 
A value specification is the specification of a (possibly empty) set of instances, including both 
objects and data values. Its mapping is defined by its concrete subclasses. 

8.3.1.6.2 ValueSpecificationAction 
ValueSpecificationAction is an action that evaluates a value specification. Its mapping to 
ODRA code is equivalent to the mapping of the specified value. 

Mapped node x Mapping result Map2ODRA(x) 
ValueSpecificationAction Map2ODRA(x.value) 

The mapping of its output pin result is the same as mapping of the action. 

8.3.1.7 Variable Actions 

8.3.1.7.1 AddVariableValueAction 
AddVariableValueAction is a write variable action for adding values to a variable. It is 
mapped to an ODRA assignment statement (if isReplaceAll=true) or to an ODRA create 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 104 - 
© Copyright by VIDE Consortium 

 

temporal statement (if isReplaceAll=false).  

Mapped node x Mapping result Map2ODRA(x) 
AddVariableValueAction 

(isReplaceAll=true) 
x.variable.name := x.value ; 

AddVariableValueAction 
(isReplaceAll=false) 

create temporal x.variable.name (x.value) ; 

8.3.1.7.2 ClearVariableAction 
ClearVariableAction is a variable action that removes all values of a variable. It is mapped to 
the ODRA delete statement. 

Mapped node x Mapping result Map2ODRA(x) 
ClearVariableAction delete x.variable.name ; 

8.3.1.7.3 RemoveVariableValueAction 
RemoveVariableValueAction is a write variable action that removes values from variables. 

It is mapped to the ODRA delete statement. 

Mapped node x Mapping result Map2ODRA(x) 
RemoveVariableValueAction delete x.variable.name [x.removeAt]; 

8.3.1.7.4 VariableAction  
VariableAction is an abstract class for actions that operate on a statically specified variable. 
Its mapping to ODRA code is defined by its concrete subclasses. 

8.3.1.7.5 WriteVariableAction  
WriteVariableAction is an abstract class for variable actions that change variable values. Its 
mapping to ODRA code is defined by its concrete subclasses. 

8.3.1.8 Variable 
Variables are elements for passing data between actions indirectly. A local variable stores 
values shared by the actions within a structured activity group but not accessible outside it. 
VIDE variables are mapped to ODRA variable declaration statements. If the type of a VIDE 
variable is a class, an ODRA variable of a reference type is created. Otherwise, a non-
reference type is used. 

Mapped node x Mapping result Map2ODRA(x) 
Variable  

(class type) 
x.name : ref x.type.nameClass [ x.lower .. x.upper ]; 

Variable 
(non class type) 

x.name : Map2ODRA(x.type) [ x.lower .. x.upper ]; 

8.4 Activities 

8.4.1 Mapping 

8.4.1.1.1 Activity 
An activity is the specification of parameterised behaviour as the coordinated sequencing of 
subordinate units whose individual elements are actions. The mapping of an Activity to 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 105 - 
© Copyright by VIDE Consortium 

 

ODRA is the sequential execution of owned nodes. 
Mapped node x Mapping result Map2ODRA(x) 

Activity 
{ 

Map2ODRA*(x.node, ;) 
} 

8.4.1.1.2 ActivityEdge 
ActivityEdge is an abstract class for the connections along which tokens flow between 
activity nodes. Its mapping to ODRA is defined by its concrete subclasses. 

8.4.1.1.3 ActivityGroup 
An activity group is an abstract class for defining sets of nodes and edges in an activity. Its 
mapping to ODRA code is defined by its concrete subclasses. 

8.4.1.1.4 ActivityNode 
An activity node is an abstract class for points in the flow of an activity connected by 
edges. Its mapping to ODRA code is defined by its concrete subclasses. 

8.4.1.1.5 ActivityParameterNode 
An activity parameter node is an object node for inputs and outputs to activities. It is just 
mapped to the result of mapping its parameter. 

Mapped node x Mapping result Map2ODRA(x) 
ActivityParameterNode Map2ODRA(x.parameter) 

8.4.1.1.6 Behavior 
Behavior is a specification of how its context classifier changes state over time. In VIDE, the 
mapping is available for one concrete subclass of Behavior – namely, Activity. 

8.4.1.1.7 Clause 
A clause is an element that represents a single branch of a conditional construct, including a 
test and a body section. It is mapped to the ODRA conditional statement.  

Mapped node x Mapping result Map2ODRA(x) 
Clause if ( Map2ODRA(x.test) ) Map2ODRA(x.body) ; 

8.4.1.1.8 ConditionalNode 
A conditional node is a structured activity node that represents an exclusive choice among 
some number of alternatives. It is mapped to ODRA as a cascade of if-else statements 
obtained by appropriate concatenation of mappings of ConditionalNode’s Clauses. 

Mapped node x Mapping result Map2ODRA(x) 
ConditionalNode Map2ODRA*(x.clause, else) 

8.4.1.1.9 ControlFlow 
A control flow is an edge that starts an activity node after the previous one is finished. It is 
mapped to ODRA composition of commands (in fact it means juxtaposition).  

Mapped node x Mapping result Map2ODRA(x) 
ControlFlow Map2ODRA(x.incoming) Map2ODRA(x.outgoing) 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 106 - 
© Copyright by VIDE Consortium 

 

8.4.1.1.10 ControlNode 
A control node is an abstract activity node that coordinates flows in an activity. In VIDE it is 
used only for the ForkNode. Its mapping to ODRA is defined by its concrete subclasses. 

8.4.1.1.11 ExceptionHandler 
An exception handler is an element that specifies a body to execute in case the specified 
exception occurs during the execution of the protected node. ExceptionHandler is mapped to 
an ODRA try-catch statement.  

Mapped node x Mapping result Map2ODRA(x) 

ExceptionHandler 

try  
{ 

Map2ODRA(x.protectedNode) 
}  
catch (Map2ODRA(x.exceptionInput) : Map2ODRA(x.exceptionType))  
{ 

Map2ODRA(x.handlerNode) 
} 

8.4.1.1.12 ExecutableNode 
An executable node is an abstract class for activity nodes that may be executed. Its mapping 
ODRA code is defined by its concrete subclasses. 

8.4.1.1.13 ExpansionNode 
An expansion node is an object node used to indicate a flow across the boundary of an 
expansion region. ExpansionNode inherits its mapping to ODRA from its generalization. 

8.4.1.1.14 ExpansionRegion 
An expansion region is a structured activity region that executes multiple times corresponding 
to elements of an input collection. It is mapped to foreach statement. The attribute bodyPart 
is inherited from its generalization StructuredActivityNode.  

Mapped node x Mapping result Map2ODRA(x) 

ExpansionRegion 
foreach ( Map2ODRA(x.inputElement) ) do { 

Map2ODRA(x.bodyPart) 
} 

8.4.1.1.15 ForkNode 
A fork node is a control node that splits a flow into multiple concurrent flows. Since ODRA 
does not support parallel execution, the ForkNodes are mapped the same way as ControlFlow, 
i.e. to sequential execution of nodes. 

8.4.1.1.16 LoopNode 
A loop node is a structured activity node that represents a loop with setup, test, and body 
sections. LoopNode is mapped to an ODRA while-do (or do-while) statement preceded by the 
mapping of the setupPart.  

Mapped node x Mapping result Map2ODRA(x) 

LoopNode 
(isTestedFirst=true) 

Map2ODRA(x.setupPart) ; 
while ( Map2ODRA(x.test) ) do { 

Map2ODRA(x.bodyPart) 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 107 - 
© Copyright by VIDE Consortium 

 

} 

LoopNode 
(isTestedFirst=false) 

Map2ODRA(x.setupPart) ; 
do {  

Map2ODRA(x.bodyPart) 
while ( Map2ODRA(x.test) ) ; 

8.4.1.1.17 ObjectFlow 
An object flow is an activity edge that can have objects or data passing along it. It is not 
mapped directly to ODRA. It mapping amounts to assigning the integration of its inputPin 
with its outputPin, i.e. the mapping of its inputPin becomes the mapping of its outputPin. 

8.4.1.1.18 ObjectNode 
An object node is an abstract activity node that is part of defining object flow in an activity. 
The mapping of an ObjectNode to ODRA is inherited from a proper subclass of the 
TypedElement class. 

8.4.1.1.19 SequenceNode 
A sequence node is a structured activity node that executes its actions in order. The mapping 
of a SequenceNode to ODRA is just the sequential execution of owned subnodes.  

Mapped node x Mapping result Map2ODRA(x) 
SequenceNode Map2ODRA*(x.executableNode, ;) 

8.4.1.1.20 StructuredActivityNode 
A structured activity node is an executable activity node that may have subordinate nodes. Its 
mapping to ODRA is defined by its concrete subclasses. 

8.5 Expressions 

8.5.1 Mapping 

8.5.1.1.1 CallExp 
A CallExp is an expression that refers to a feature (operation, property) or to a predefined 
iterator for collections. Its result value is the evaluation of the corresponding feature. This is 
an abstract metaclass. Its mapping to ODRA is given by it concrete subclasses. 

8.5.1.1.2 FeatureCallExp 
A FeatureCallExp expression is an expression that refers to a feature that is defined for 

a Classifier in the UML model to which this expression is attached. Its mapping to ODRA is 
given by it concrete subclasses. 

8.5.1.1.3 IfExp 
An IfExp results in one of two alternative expressions depending on the evaluated value of a 
condition. It is mapped to the ODRA if-then-else-expression. 

Mapped node x Mapping result Map2ODRA(x) 

IfExp 
if Map2ODRA(x.Condition) then 

Map2ODRA(x.ThenExpression) 
else 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 108 - 
© Copyright by VIDE Consortium 

 

Map2ODRA(x.elseExpression) 

8.5.1.1.4 IterateExp 
An IterateExp is an expression that evaluates its body expression for each element of a 
collection. This is the construct with the most complex mapping to ODRA. The ODRA 
operation leaves by has to be used: 

Mapped node x Mapping result Map2ODRA(x) 

IterateExp 

(Map2ODRA(x.baseExp) groupas C). 
  ( 
    (1 as counter, Map2ODRA(x.setup) groupas Map2ODRA(x.result)) 
    leaves by 
    ( 
       ((C[counter] as Map2ODRA(x.iterator)).(counter + 1 as counter,  

Map2ODRA(x.body) groupas Map2ODRA(x.result))) 
       where counter <= count(C) 
    ) 
  ).Map2ODRA(x.result) 

8.5.1.1.5 IteratorExp 
An IteratorExp is an expression that evaluates its body expression for each element of a 
collection. It is mapped to a call to ODRA non-algebraic operator. 

Mapped node x Mapping result Map2ODRA(x) 
IteratorExp Map2ODRA(x.iterator) Map2ODRA(x.operator) Map2ODRA(x.body) 

The mapping of OCL operators to ODRA operators is presented in the following 
table: 

OCL operator ODRA operator 

->collect . (dot) 

->sortedBy order by 

->select where 

->exists exists 

->forAll forall 
Table 10: Mapping OCL iterator operations to ODRA SBQL 

LiteralExp 
A LiteralExp is an expression with no arguments producing a value. In general the result 
value is identical with the expression symbol. Literal expressions are mapped directly to 
ODRA. One exception is the string which is has to surrounded by double quotes in ODRA.  

8.5.1.1.6 LoopExp 
A LoopExp is an expression that represents a loop construct over a collection. It mapping to 
ODRA is defined by its concrete subclasses. 

8.5.1.1.7 NavigationCallExp 
A NavigationCallExp is a reference to a Property defined in a UML model. It mapped to a 
call to ODRA dot operator. 

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 109 - 
© Copyright by VIDE Consortium 

 

Mapped node x Mapping result Map2ODRA(x) 
NavigationCallExp Map2ODRA(x.qualifier) . x.navigationSource.name 

8.5.1.1.8 OclExpression 
An OclExpression is an expression that can be evaluated in a given environment. 
OclExpression is the abstract superclass of all other expressions in the metamodel. It mapping 
to ODRA is given by its concrete subclasses. 

8.5.1.1.9 OclVariable 
Variables are typed elements for passing data in expressions. Its mapping to ODRA is just the 
call to its name.  

Mapped node x Mapping result Map2ODRA(x) 
OclVariable x.name 

8.5.1.1.10 OpaqueExpression 
An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set 
of values when evaluated in a context. Its mapping to ODRA is just its interpretation.  

Mapped node x Mapping result Map2ODRA(x) 
OpaqueExpression x.body 

8.5.1.1.11 OperationCallExp 
An OperationCallExp refers to an operation performed on build in OCL types that is mostly 
operator calls such as: +, -,*, /, <, >, =, <>, <=, >=, not, xor, and, or, unary -. User defined 
operations are called by appropriate action. It is mapped to ODRA function call or operator 
call. 

Mapped node x Mapping result Map2ODRA(x) 
OperationCallExp 

(referredOperation is one of +, -,*, /, 
<, >, =, <>, <=, >=, or, xor, and)  

Map2ODRA(x.argument[1]) 
x.referredOperation.name 

Map2ODRA(x.argument[2]) 
OperationCallExp 

(referredOperation is one of not, 
unary-) 

x.referredOperation.name 
Map2ODRA(x.argument[1]) 

OperationCallExp (all other 
possibilities) 

Map2ODRA(x.argument[1]) . 
x.referredOperation.name  

( Map2ODRA*(x.argument[2-*], ,) ) 

8.5.1.1.12 PropertyCallExp 
A PropertyCallExpression is a reference to an Attribute of a Classifier defined in a UML 
model. It is mapped to ODRA dot operator. 

Mapped node x Mapping result Map2ODRA(x) 
PropertyCallExpression Map2ODRA(x.qualifier) . x.referredProperty.name 

8.5.1.1.13 VariableExp 
A VariableExp is an expression that consists of a reference to a variable. It is mapped to the 
variable name. 

Mapped node x Mapping result Map2ODRA(x) 
VariableExp x.referredVariable.name 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 110 - 
© Copyright by VIDE Consortium 

 

8.5.1.1.14 ExpressionInOcl 
An expression in OCL is an expression that is written in OCL. Because in the abstract syntax 
OclExpression is defined recursively, the top of the abstract syntax tree is represented by 
ExpressionInOcl, and it is defined to be a subclass of the ValueSpecification metaclass from 
the UML core, as shown in. The ExpressionInOcl is mapped the same way as its owned 
expression in OCL. 

Mapped node x Mapping result Map2ODRA(x) 
ExpressionInOcl Map2ODRA(x.bodyExpression) 
 

8.6 VIDE Web services compilation rules for ODRA platform 
In this section we describe compilation rules for Web service elements from a VIDE model. 
Additionally to generic (target platform independent) view on the compilation process we 
describe concrete compilation scenarios.  
In Web Services profile subsection we describe Web Service related VIDE UML profile 
enhancements. Common compilation schema is subsection where we provide generic rules 
and best practices for Web services model compilation. We do not prescribe any particular 
approach used at target platforms for handling Web Services there. In the last subsection – 
Compilation Scenarios – we go into ins and outs of Web services compilation for ODRA 
platform.  

8.6.1 Web Services profile 
Web Service related classes can be marked inside the model with «ConsumedService» and 
«PublishedService» stereotypes.  
 

«ConsumedService» 

Designates that class will represent a proxy to remote Web Service conforming to 
certain WSDL contract. Its operations are associated to remote Web method calls 
of given Web Service. Exact shape of this stereotype will be specified based on 
the design decisions in model compilers development in VIDE. 

Generalizations 
Class 

Attributes 
URL:String[1]   Address of Web Service contract definition 
port:String[1]  name of Web Service port to use 
service:String[1] name of Web Service to use 

 
«PublishedService» 

Tells system that class should be exposed as Web Service endpoint.  

Generalizations 
Class 

Attributes 
url:String[1]  points to URL where Web Service should be installed 
Namespace:String[1] - defaults to (filtered) containing package global name 
 
«PublishedOperation» 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 111 - 
© Copyright by VIDE Consortium 

 

Marks those operations, which should be available as Web methods of that 
endpoint. 

Generalizations 
Operation 
 

Additionally the following naming conventions are used: 
WSDL VIDE 

Publishing and consuming 
(encoded) target namespace containing package names 
Port type class name 
operations names operations names 

Publishing only 
Service name Name of class suffixed with 

“Service” 
Port name Name of class suffixed with 

“Port” 
Table 11: VIDE-WSDL naming conventions 

8.6.2 Generic Web Services compilation schema notes 
Web services are represented as regular VIDE model elements marked with certain 
stereotypes. However because of their remote behaviour, they need to be treated in a special 
way during compilation.  
For example a consumed service is visible in editor as normal class (and set of associated 
types generated from WSDL) and hence can be called from any other package. However, 
compiler needs to be aware of that fact and compile it using dedicated procedure. All calls to 
such remote proxy can still be compiled in standard way. Possible problem here is to maintain 
tight control over the way consumed service is realized inside a target platform.  
Importing service to model means generating a static proxy stub packaged with all necessary 
types. Same procedure is usually done on target platforms level. This is sufficient if system 
creation starts from PSM and there is no already collected web service information from PIM 
level. However in our case, where such data already exists, it should not be dismissed (i.e. by 
deciphering again all information from WSDL contract). Doing so affirms that all dependent 
(on service proxy) model elements will have their calls working correctly. Recreating proxy 
from scratch can lead to inconsistencies between what VIDE user sees and what is being 
executed (hence errors would be less descriptive and debugging more problematic).  

We did not encountered this problem in our compilation scenarios, and hence 
do not prescribe following this more laborious mapping path here to prevent 
them. However, we want to make developers aware of possible implications of 
proxy regeneration. We can imagine that for certain use cases this will be a 
sufficient solution. 

For published services similar discussion need to be made. In that case fortunately there is no 
need to manage tight control over Web service element because no code generation occurs. 
However what may be crucial to provide is to have exactly the same WSDL contract of 
service being exposed for each target platform. To achieve such effect, WSDL (at least some 
part of it) should be generated before compiler gets started. Instead of bare model, compiler 
will be feed in additionally with such (partial) contract. This requires usage of contract first 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 112 - 
© Copyright by VIDE Consortium 

 

approach toolset to create service stub. Such skeleton can then be filled with target platform 
code.  
In such approach compiler authors need to manage tight control over generated stub. This is 
important since class being exposed can be used also locally. Building service as a black-
boxing wrapper on such local class is reasonable solution to follow.  

This feature should be considered optional. Because of its high 
implementation complexity and no direct requirement for this in neither of the 
two currently supported target platforms, it will not be implemented in VIDE 
prototype. In future it may be realized as additional Web Services VIDE 
component common to all target compilers and resisting between PIM and 
PSM layers. 

8.6.3 The model compiler to ODRA 

8.6.3.1 Services 
In order to include Web Services definition and usage from the level of VIDE models we 
extend the metamodel with two class stereotypes. Web services are compiled in similar way 
to regular classes. However there are some exceptions from the standard compilation routine. 
The exact compilation routines for consumed and published services are described in the 
following subsections. 

8.6.3.1.1 ConsumedService 
To achieve tight control over compiling, the consumed services proxy is not regenerated using 
add module … as proxy ODRA DDL command. Instead of that regular compilation 
takes place (this also applies to containing package and associated types). Thanks to that no 
special handling for compilation of remote methods calls is necessary. Finally compiled class 
is promoted to constitute remote proxy using dedicated DDL ODRA command.  

Mapped node x Mapping result Map2ODRA(x) 

Class marked with 
«ConsumedService» 

stereotype 

(after x.package compiled code) 
cm x.package.name; 
(port and service are taken from associated Web Service options file 
section) 
promote x.nameClass to proxy on "self.getValue( 
self.getAppliedStereotypes()-> 
select(name='ConsumedService')->asSequence()->at(1), 'URL' )”  
with ( 
port="self.getValue( self.getAppliedStereotypes()-> 
select(name='ConsumedService')->asSequence()->at(1), 'port' )",  
service=" self.getValue( self.getAppliedStereotypes()-> 
select(name='ConsumedService')->asSequence()->at(1), 'service' )") 
cm .. 

8.6.3.1.1.1 Example 
Let’s consider the following VIDE model consuming-example.uml taken from related 
WP5 document chapter. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 113 - 
© Copyright by VIDE Consortium 

 

 
Figure 35 : Example for consumed service mapping into ODRA 

Main procedure from the above diagram has the following body: 
context Test::Test.main body  
{ 
  let serviceProxy  : SalePortTypeProxy  = create { }; 
  if ( serviceProxy.getItems()-> size () > 0)  { 
    let toBuy  : Item  = serviceProxy . getItems ()->first(); 
    if ( toBuy . getPrice() < 100 ) { 
      serviceProxy . buy ( toBuy ); 
    }   
  } 
} 

The result of compilation procedure described above will be: 
add module org_shop_example  { 
  class SalePortTypeProxyClass { 
    buy(item:Item) { } 
    getItems():Items { } 
  } 
  class  Item { 
    // attributes 
  }  
  class  Items { 
    items:Item[1..*]; 
  }  
} 
 
cd org_example_shop  
promote ShopSalesPortTypeProxyClass  to proxy on  
    "http://localhost:8080/Shop?wsdl" with ( 
  port=" ShopSoap11Port ",  
  service=" ShopService " 
); 
cd ..  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 114 - 
© Copyright by VIDE Consortium 

 

 
add module Test  { 
  import org_shop_example; 
  main () { 
    salePortTypeProxy:SalePortTypeProxyClass; 
    if  ( count (salePortTypeProxy.getItems()) > 0) { 
      if  (salePortTypeProxy[0].getPrice() < 100) { 
        salePortTypeProxy.buy(toBuy); 
      } 
    }  
  } 
}  
 

8.6.3.1.2 Publishing 
Since ODRA does not support the contract first approach – the simple approach will be used 
for publishing. Since exposed components are regular (constrained) classes, their compilation 
will be handled by standard mapping routine. Thanks to that no special handling is necessary 
for compilation of local methods calls. 
ODRA endpoint is not created on original class but on its wrapper. The wrapper contains only 
methods marked with PublishedService stereotype and relays real execution to the underlying 
class.  
Finally dedicated ODRA DDL command is used to expose Web Service. ODRA supports 
only the wrapped document/literal service invocation style – if different one is requested, 
compilation error is reported. 

Mapped node x Mapping result Map2ODRA(x) 

Class marked with 
«PublishedService» 

stereotype 

class x.nameClass extends Map2ODRA*(x.superClass, ,) {  
     instance x.name { 
        Map2ODRA*(x.ownedAttribute, ;) ; 
    } 
    Map2ODRA*(x.ownedOperation) 
} 
class x.nameWrapperClass extends x.nameClass { 
    instance x.nameWrapper { 
        internal:x.nameClass; 
    } 
    for each x.ownedOperation marked with «PublishedOperation» 
stereotype 
        x.ownedOperation.name( 
            Map2ODRA*(x. ownedOperation.ownedParameter, ;) )  
            : Map2ODRA (x.ownedOperation.ownerParamater[i].type) {  
            internal.x.ownedOperation.nameOperation( 
                Map2ODRA*(x.ownedOperation.ownedParameter.name, 
,)); 
        } 
}  
(after x.package compiled code) 
cm x.package.name; 
(url, port and service are taken from associated Web Service options 
file section) 
add endpoint x.nameEndpoint on x.nameWrapperClass with ( 
    state=STARTED, 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 115 - 
© Copyright by VIDE Consortium 

 

    path="/relativePart(self.getValue( self.getAppliedStereotypes()-> 
select(name='PublishedService')->asSequence()->at(1), 'URL' )))",  
    portType="x.name", 
    port="x.namePort",  
    service="x.nameService",  
    ns="self.getValue( self.getAppliedStereotypes()-> 
select(name='PublishedService')->asSequence()->at(1), 'namespace' 
)" 
)  
cm .. 

Class marked with 
«Module» and 

«PublishedService» 

stereotype 

class x.nameWrapperClass extends Map2ODRA*(x.superClass, ,) {  
     instance x.name { 
     } 
} 
    for each x.ownedOperation marked with «PublishedOperation» 
stereotype 
        x.ownedOperation.nameOperation( 
            Map2ODRA*(x. ownedOperation.ownedParameter, ;) )  
            : Map2ODRA (x.ownedOperation.ownerParamater[i].type) {  
            x.ownedOperation.name( 
                Map2ODRA*(x.ownedOperation.ownedParameter.name, 
,)); 
        } 
}  
(after x.package compiled code) 
(same as for the above case) 

8.6.3.1.2.1 Example 
Let’s consider the following VIDE model publishing-example.uml taken from related 
WP5 document chapter. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 116 - 
© Copyright by VIDE Consortium 

 

 
Figure 36 : Example for published service mapping into ODRA 

The result of compilation to ODRA using routine described above will be: 
add module org_shop_example  { 
  items:Items; 
  class ShopSalePortTypeClass { 
    instance ShopSalePortType : { } 
    checkIfAvailable(item:Item):boolean { ... } 
    buy(item:Item) { ... } 
    getItems():Item[0..*] { ... }     
  }  
  class  Item { 
    // attributes 
  }  
  class  Items { 
    items:Item[1..*]; 
  }  
  class  ShopSalePortTypeWrapperClass extends  ShopSalePortTypeClass { 
    instance  ShopSalePortTypeWrapper { 
      internal:ShopSalePortTypeClass; 
    } 

    buy(item:Item) { internal.buy(item); } 
    getItems():Item[0..*] { return internal.getItem s(); } 
  } 
} 
 
cm org_shop_example  
add endpoint ShopSalePortTypeEndpoint  on ShopSalesPortTypeWrapperClass  with 
(STATE=STARTED, path="/ Shop", portType=” ShopSalePortType ”, 
port=” ShopSalePortTypePort " service=” ShopSalePortTypeService ” 
ns=" example.shop.org ");  

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 117 - 
© Copyright by VIDE Consortium 

 

9 Transformation frameworks 

Following the MDA approach, models created by VIDE editors are supposed to be platform 
independent, whereas some model compiler generates a platform specific model or even code 
towards a specific target platform. In this context, we evaluated several MDA tools with 
respect to their usability as underlying framework for the VIDE model compiler to Java.  
 
In the following, we will present some evaluation criteria and especially VIDE-specific ones. 
Then we give a brief overview and evaluation of the most promising MDA tools with respect 
to the Java model compiler. 

9.1 Evaluation Criteria  

9.1.1 Requirements defined by VIDE specification 
Generally, the underlying generator tool should support the development of a model compiler 
as described in [VIDE2007a] in the specification of work package 6: 

- The model compiler should “exemplify the mapping of Action Semantics 
representation into common application server platforms, thus allowing to verify 
VIDE completeness and flexibility in the development targeted onto typical 
commercial software platform”. 

- The model compiler should enable the development of the prototype (to be developed 
in work package 9). 

 
Consequently, compatibility to other VIDE modules is crucial, especially with regard to the 
development of an integrated prototype. To ensure this, the technology chosen for the model 
compiler should be selected carefully and the requirements collected during work package 1 
should be taken. These requirements are presented in the following. 

9.1.1.1 Integration with the Eclipse 
 
As pointed out in [VIDE2007a] and [VIDE2007b], the VIDE system including the VIDE 
prototype will be developed using the Eclipse framework, because Eclipse is considered as 
being a successful, widely adopted Open Source project. Therefore, the MDA tool must 
provide integration in the eclipse framework. 

9.1.1.2 Compatibility with EMF 
 
The VIDE partners decided to use EMF as VIDE’s modelling framework for the PIM 
modelling with UML. For model storage and to be interoperable with existing UML 
modelling tools, the Ecore-based UML2 implementation of MDT is used, as it nicely 
integrates the OCL metamodel. UML2 export is now supported by many tools. 
 
Therefore, the MDA tool used by the model compiler must accept UML2 models (serialized 
in XMI) as input.  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 118 - 
© Copyright by VIDE Consortium 

 

9.1.1.3 Supporting Multiple Target Platforms 
 
Following the MDA approach, VIDE should support code generation for various target 
environments. 
 
Therefore, the MDA tool should not be limited to a specific target language and should be 
extensible in regard to new target platforms. 
 

9.1.1.4 Open Source 
 
In [VIDE2007a], VIDE is specified to be an open and interoperable platform, that will be 
compliant and build upon standards (UML/XMI) and successful open source platforms for 
tool interoperability.  The MDA tool used by the model compiler to Java should also be Open 
Source. 

9.1.1.5 Using XPand as Model-to-Text transformation language 
 
In the context of WP 1 [VIDE2007a] §7.4.4, several Model-to-text transformation standards 
were compared. In particular we compared the Velocity template Language, and XPand. 
XPand has several advantages over Velocity as it is simple and easy-to-learn (less than 10 
commands), natively support MDSD as it takes real models as input, strongly typed and thus 
supports syntax checking while editing.  
 
Requirement Tool-5 in D1.1 states that XPand should be used for Model-to-text 
transformation in VIDE. 

9.1.2 Other Criteria 
Additionally, there are some more common tool features to be mentioned, which are not 
specific to the VIDE project. As the, they can indicate the maturity and quality of the MDA 
tool, they should be taken into consideration, too.  

9.1.2.1 Industrial Adopted Tool 
 
The tool should be proven in real-world industrial projects. 
 

9.1.2.2 Tool Documentation and Support 
 
Comprehensive, up-to-date tool documentation should be available. The tool should be 
sufficiently maintained or further developed. Support via forum or e-mail should be available.  
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 119 - 
© Copyright by VIDE Consortium 

 

9.2 Tool Evaluation 

9.2.1 Overview 
 
The general discussion about the possibilities and opportunities which the Model Driven 
Software Development potentially offers has led to a wide choice of MDA tools, which all 
claim to support Model Driven Architecture. 
 
Far more than 60 tools can be investigated incorporating at least one of the major aspects of 
MDA: 
 

- UML-based modelling 
- Transformation between the application overall design models and the models that are 

specific to the underlying computing architecture 
- Generation of code in a specific language 

 
To be suitable for the specific task of WP6 in the VIDE context, a model compiler should 
support especially the third aspect, code generation. 
 
On the other hand, the first aspect, UML-based modelling, is not in the specified scope, as the 
model compiler should integrate with a VIDE editor based on EMF (chapter 2.1.2). Therefore, 
there is no need for an own graphical UML modelling facility. Consequently, these MDA 
modelling suites are considered inappropriate. 
 
Filtering the remaining selection for widely-used Open Source projects reveals that there are 
only two candidates left: AndroMDA and openArchitectureWare. In the following sections, 
these two will be shortly introduced and then we evaluate whether they are conform with the 
remaining criteria specified in Section 2 and thus suitable as underlying MDA tool for the 
VIDE model compiler.  
 

9.2.2 AndroMDA 
 
AndroMDA is described as extensible generator framework, following the MDA paradigm. 
AndroMDA takes a UML model from a CASE-tool as input and generates classes and 
deployable components for all kinds of platforms. 
 
AndroMDA comes with a big bundle of ready-to-use metamodels and templates (cartridges), 
making it easy to get started. There is a cartridge from UML to Java but it supports only the 
structural part of UML (i.e., no action support). 
 
The current stable version is AndroMDA 3.2. 
   

9.2.2.1 Integration with Eclipse 
 
There is currently no stable Eclipse IDE integration. It is pronounced that this will change in 
the near future, as an integration project called Android is on the edge of being released.  



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 120 - 
© Copyright by VIDE Consortium 

 

9.2.2.2 Compatibility with EMF 
 
Since the current version of AndroMDA (3.2), EMF UML2 compatible XMI files are 
supported. 

9.2.2.3 Support of Multiple Target Platforms 
 
AndroMDA can generate (textual) code for any target platform. It comes with a bundle of 
ready-to-use metamodels and templates, making it easy to get started with simple projects for 
various platforms, e.g.: Struts, JSF, Spring, Hibernate, EJB und jBPM. If these cartridges will 
not fit the current requirements a new cartridge can be developed 

9.2.2.4 Open Source 
 
AndroMDA is Open Source. 

9.2.2.5 Integration of XPand as transformation language 
 
AndroMDA uses the open source-Framework Velocity from Apache Software Foundation as 
template engine. An integration of XPand is not provided. 

9.2.2.6 Industrial Adopted Tool 
AndroMDA is widely-used as several success stories can be found (e.g. used by Lufthansa 
Systems). 

9.2.2.7 Tool Documentation and Support 
AndroMDA provides some tool documentation but the documentation seems outdated at 
some points. Support can be obtained at the forum, which seems to be frequently read by a 
large community. 

9.2.3 OpenArchitectureWare 
 
OpenArchitectureWare (oAW) is a modular MDA/MDD generator framework implemented 
in Java. It supports parsing of arbitrary models, and a language family to check and transform 
models as well as generate code based on them. Supporting editors are based on the Eclipse 
platform. 
 
At the core, there is a workflow engine allowing the definition of generator/transformation 
workflows. A number of pre-built workflow components can be used for reading and 
instantiating models, checking them for constraint violations, transforming them into other 
models and then finally, for generating code. 
 
Current stable version is oAW 4.2. 

9.2.3.1 Integration with Eclipse 

oAW is a subproject of the Eclipse Modeling project. Therefore, it is smoothly integrated in 
Eclipse. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 121 - 
© Copyright by VIDE Consortium 

 

9.2.3.2 Compatibility to EMF 
OAW has strong support for EMF UML2-based or Ecore-based models but can also work 
with other models, too (e.g. XML or simple JavaBeans). 
 

9.2.3.3 Support of Multiple Target Platforms 
 
Any (textual) artifact can be generated using the XPand generator. Therefore, multiple target 
platforms are supported. Only a few cartridges for standard platforms are ready-to-use 
available. The developers describe oAW as “tool for building tools”; their goal is not to 
develop generators but rather to provide the underlying framework, enabling the users to build 
their own generator.  

9.2.3.4 Open Source 
 
oAW is Open Source. 

9.2.3.5 Integration of XPand as transformation language 
 
XPand is an integral part of oAW. 
 

9.2.3.6 Industrial Adopted Tool 
 
oAW is widely-used, several success stories can be found on the tool homepage. 

9.2.3.7 Tool Documentation and Support 
Parallel to the release of oAW4.2 the documentation was completely revised. A direct contact 
to the oAW developer team is possible via the English or German forum. 

9.3 Evaluation Results 
Comparing AndroMDA and oAW according to the chosen criteria, it is obvious that oAW is 
regarded as the favourite: 
 
 AndroMDA oAW 
Integration with Eclipse  - + 
Compatibility to EMF Not possible in version 3.1 + 
Support of multiple target 
platform 

+ Just a framework 

Open Source + + 
Integration of XPand as 
transformation language 

- + 

Industrial Adopted Tool + + 
Tool Documentation and 
Support 

not up-to-date, tutorials 
missing 

+ 

Table 12: AndrMDA vs. oAW comparison table 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 122 - 
© Copyright by VIDE Consortium 

 

AndroMDA fails at the Criterion of Eclipse and XPand integration.  
 
Although it seems that AndroMDA can gather some points with its ready-to-use cartridges for 
all kinds of target platforms, this start-up advantage is withdrawn in the context of the VIDE 
model compiler as the peculiarities of VIDE (UML actions and OCL expressions) would 
result in the need for newly developed cartridges. The procedure of developing a generator 
from scratch is certainly better supported by oAW, as the developer profits from the highly 
advanced set of editors integrated in the oAW framework. 
 
Additionally, the oAW framework with its modular-structured architecture and 
comprehensive set of languages (e.g., Xtend, Check, etc) and the respective user-friendly 
editors promises more flexibility with regard to the integration in the overall VIDE 
framework. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 123 - 
© Copyright by VIDE Consortium 

 

10 UML Metamodel evolution propositions 

As presented Figure 37, in UML, an Activity is not owned by an Operation but by the Class to 
which the Operation belongs. This model is difficult to understand and offer very little reuse 
of the Activity because they depend heavily on the parameters of the Operation. 
 

*

1

ownedO peration

*0..1

methodspec ific ation

ownedE lement

1

*

Activity

BehaviourBehavioralFeature

Operation

Class

 
Figure 37 : Activity ownership in UML Metamodel 

 
Therefore, we propose the more understandable and manageable metamodel presented Figure 
38, where an Activity that describes an Operation is owned by this Operation. Note that the 
composition between Class and Behaviour still exist to manage Activity defined at the class 
level (it is not shown here to ease the understanding of the modification). The 
BehavioralFeature class, of little help, is removed. 

*1

ownedBehaviour

ownedO peration

1

*

Operation Behaviour

Activity

Class

 
Figure 38 : Activity ownership proposition 

A number of minor issues have been identified in the area of the Activities unit and its 
integration with the remaining part of UML. This part of specification is relatively new and is 
seldom being implemented. 
 
The most significant problems are related with attempting to use OCL as a general purpose 
query language for UML (though the specification explicitly mentions this as one of the OCL 
purposes). Namely, the following issues may need resolving in the further revisions of UML 
and OCL specifications. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 124 - 
© Copyright by VIDE Consortium 

 

• OCL cannot access UML’s Variable element. There are no appropriate expressions in the 
standard. It can read value from a Property of a Class or a Parameter of an Operation but 
cannot read values from a Variable defined in a StructuredActivityNode. 

• Unspecified conversion of OCL types to UML types. Although there is a conversion 
specified from UML types to OCL types, there is no explicit definition of the opposite 
conversion. It is then formally impossible to consume OCL expression results in UML 
actions and other UML constructs 

• Consuming of OCL collection types in UML actions. There is an important problem of 
correct and common interpretation of collection types. In UML a collection is represented 
by multiple values. OCL defined dedicated collection types, which are containers for 
stored values. When OCL expression is accessing UML multiple value, it is converted to 
appropriate OCL collection instance. On the other side also OCL expression (or query) 
may return multiple values, which are packed in a collection type. However, from UML's 
point of view, OCL collection is just a single value (of a collection, say Bag type). There 
is no reverse mapping from OCL collections to UML multiple value variables. Because 
of that, standard UML cannot treat OCL collections properly and cannot handle them for 
example in Expansion Regions. Such a conversion also cannot be done implicitly when 
consuming OCL results in ValueSpecificationAction. UML specification says that type of 
ValueSpecification in this action must be the same as the type of result in the OutputPin 
([UML2007] p.302). 

• Finally, it should be noted that introducing the truly seamless support for OCL 
expressions for UML behaviour would make a number of actions redundant: 
(ReadStructuralFeatureAction, ReadSelfAction, ReadExtentAction, ReadLinkAction etc.) 
thus contributing to the simplification of the overall metamodel. 

Moreover, the way OCL expressions can be embedded into UML behaviour is rather 
redundant for the purpose of realizing expressions inside method bodies. The wrapping 
provided by ExpressionInOcl class instance, constructing the expression’s environment (e.g. 
the self variable etc.) each time, even for the most trivial expressions results in a very large 
number of objects inside the model repository. 

 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 125 - 
© Copyright by VIDE Consortium 

 

11 Conclusion 

The aim of the “Model Compilers” work package is to specify the mapping of VIDE language 
to several languages and execution platforms. 
 
This study has been done for two different target languages and execution platforms, the 
Java/J2EE and ODRA SBQL languages. The first is a well known general purpose object 
oriented programming language while the other belongs to a new brand of object oriented 
programming language that integrates database query to its core and designated for rapid 
development of business intensive application. 
 
The mapping to Java has been done in three steps: 

1. Mapping to plain Java without any other consideration than to find semantically 
accurate and efficient translation schemas 

2. Mapping to JPA to allow VIDE program to interact transparently with databases. This 
mapping integrate not only model navigation as it is common in object oriented 
paradigm, but also the support for limited but useful queries based on JPQL. 

3. Mapping to web services, using the annotations defined in JAX-WS standard API. The 
mapping to web services is bidirectional: the compiler can generate code to produce 
publish web services as well as generating code to call access externally defined web 
services. 
 

ODRA mapping provided a quite straightforward way of achieving executable form of the 
VIDE models. For this reason, the ODRA engine was chosen to be adapted and provided with 
the editor facilities in order to allow model execution at development time, directly from the 
VIDE editor. 
 
Through the point of view of the mapping, we have shown the validity and the completeness 
of the VIDE metamodel and pinpoint some simplifications of the underlying UML metamodel 
to enhance its usability. 
 
Beyond the specification of the mapping for Java, the available tools to implement that 
mapping have been studied with respect of the requirements that come from WP1 work and 
that prescribe the use of a Xpand template base transformation tool that is integrated with 
Eclipse platform. OpenArchitectureWare has been chosen for that purpose. 
 
The implementation of these mappings and the use of the resulting tool will undoubtedly 
make appear enhancements and optimizations of the presented work, as well as the 
opportunity for the support of other platforms like .NET. 
 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 126 - 
© Copyright by VIDE Consortium 

 

12 Glossary 

CIM – Computation Independent Model. A high level, abstract model of a given problem 
domain, focusing on requirements and environment of the system.  

DBMS – Data Base Management System. It is a suite of programs which support the 
management and accessing of large structured sets of persistent and shared data. 
DBMSs are widely used in business applications. A current DBMS is an extremely 
complex set of software programs that controls the organization, storage and retrieval 
of data (or objects) in a database.  It also supports many features related to data 
management such as buffer management, authorization of users, granting privileges 
for users, database schema and sub-schema management, security, integrity, 
consistency, privacy, client-server architecture, query optimization and processing, 
concurrent access to shared data (transaction processing), data abstractions such as 
views, triggers and stored procedures, various interoperability facilities, geographic 
distribution of resources, and others. A DBMS frequently equipped with additional 
facilities such as Web interfaces, integrated programming languages, graphical user 
interfaces, data warehouses, report and form generators, multimedia management 
(graphics, voice, video), and others. Currently the most popular DBMSs are based on 
the relational model and SQL as a query/programming language. Other datamodels, in 
particular, object-oriented and XML-oriented, are also considered as a basis for the 
DBMS construction. 

JPA – Java Persistence API. The Java Persistence API provides a POJO persistence model for 
object-relational mapping. The Java Persistence API was developed by the EJB 3.0 
software expert group as part of JSR 220, but its use is not limited to EJB software 
components. It can also be used directly by web applications and application clients, 
and even outside the Java EE platform, for example, in Java SE applications. 

JPQL – Java Persistence Query Language. The Java Persistence query language defines 
queries for entities and their persistent state. The query language allows to write 
portable queries that work regardless of the underlying data store. 

MDA – Model Driven Architecture. It is an initiative promoted by OMG, assuming the 
central role of models (in particular – platform independent models (PIM)) in the 
software development process. Support for automated model transformations plays an 
important role for productive application of this vision. 

Metamodel extension – modification of the metamodel of existing modelling language to 
provide it with additional or modified features needed for particular area of 
application. Less intrusive ways of extension assume defining annotations or 
stereotypes, while the more intrusive ones assume addition or modification of the 
metamodel classes. 

MOF – Meta Object Facility. It is an OMG specification that defines a meta-metamodel for 
specification of various modelling languages in its terms. It is intended to provide a 
common foundation for those languages to support the development of common 
frameworks for models construction and transformations which is essential for 
realising the MDA postulates. 

oAW – OpenArchitectureWare. openArchitectureWare (oAW) is a modular MDA/MDD 
generator framework implemented in Java. It supports parsing of arbitrary models, and 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 127 - 
© Copyright by VIDE Consortium 

 

a language family to check and transform models as well as generate code based on 
them. 

OCL – Object Constraint Language. An OMG specified language being developed in 
association with the UML. Its main purpose is supporting the modelling and 
metamodelling by specifying precise constraints over their instances. Moreover, one of 
the potential applications of OCL is providing query language functionality. 

OMG – Object Management Group. Is a consortium established to for setting standards in the 
areas of object-oriented distributed systems and software modelling. Significant OMG 
initiatives or standard specifications include MDA, UML and CORBA. 

PIM – Platform Independent Model. Is a model of software specified in the way that avoids 
dependency on particular technological platform.  

Query language – The term is used in two contexts: (1) A language allowing the users for 
quick, ad hoc retrieval in large data resources. There are many such languages, 
frequently based on natural language processing, graphical tools or some forms. (2) A 
language that is used as an application programming interface to access databases, e.g. 
SQL, OQL, OCL, SBQL, JPQL, XQuery, etc. It is usually assumed that a query 
language should possess the following properties: high abstraction level, no involving 
physical details of data, non-procedurality (declarativity), macroscopic processing 
(many-data-at-a-time), simplicity and naturalness for programmers, machine 
efficiency for very large databases due to query optimization, universality (covering 
majority of useful user requests), domain independence, interpreted rather than 
compiled. Query languages, notably SQL, are considered the main factor of the 
spectacular success of  the  relational database technology. Queries are also building 
blocks for programming and database abstractions such as views, triggers, stored 
procedures and constraints. 

Service Oriented Architecture – an approach to software architecture aimed at reuse and 
loose coupling between applications, postulating modularisation in the form of 
services, which are usually by degree of magnitude more course grained than in earlier 
approaches to reuse and modularisation. To adjust to the changing requirements, the 
services are intended to be easily composable in the process of orchestration. 

UML – Unified Modeling Language. The language is designed for broad area of application 
in terms of various problem domains and levels of precision. Recent versions provide 
extended set of modelling constructs in order to make it possible to realize with UML 
the concept of executable modelling. Current published version is UML 2.1.1 
[OMG2007b]. 

UML Action Semantics – a part of UML language included into its metamodel in version 1.4 
of the specification, in order to provide it with the means of specifying behavioural 
details like reads, updates, collection processing and control flow. In subsequent 
versions of UML the respective features have been redesigned and included in Actions 
and Activities units. 

UML Actions – a UML unit grouping elementary constructs of behavioural specifications. 
Those include particularly object and link reads, updates, removals, variable reads and 
updates, performing calls and sending signals. 

UML Activities – a UML unit serving for behavioural modelling. Its notions allow describing 
the sequence and conditions for executing lower level behaviours. The concepts of 
control flow and object flow are emphasized. Apart from them, the package 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 128 - 
© Copyright by VIDE Consortium 

 

StructuredActivities introduces the elements for structured style modelling, which 
allow for relatively straightforward definition of constructs found in typical 
programming languages. 

UML Classes – the foundational unit of the UML static structure modelling notions. It 
defines the elements and notation for class models and the model decomposition 
mechanism using the notion of Package. 

UML Components unit – a UML unit depending on UML Classes, designed for 
specification of logical and physical components. Particularly, its notions allow for 
decomposition and definition of interfaces among replaceable software units. 

Web services – middleware technology assuming reuse and integration of application 
functionality by providing it with a form of course grained services available through 
standard protocols and reusing the WWW infrastructure. 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 129 - 
© Copyright by VIDE Consortium 

 

13 References 

[VIDE2007a]  Annex I - “Description of Work” (amendment). 2007-04-24. VIDE Consortium 
2007. 

[VIDE2007b]  Deliverable number D.1.1: Standards, Technological and Research-Base for the 
VIDE Project, Project Evaluation Criteria and User Requirements Definition. 
VIDE Consortium 2007. 

[VIDE2007c] Deliverable number D.2.1: VIDE language definition. VIDE Consortium 2007. 
[SAPAS] SAP Netweaver Application Server 

http://www.sap.com/platform/netweaver/components/applicationserver/index.epx 
[SAPJPA] Getting Started with Java Persistence API and SAP JPA 1.0 

https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/40ff8a3d-
065a-2910-2f84-a222e03d1f43 

[ADHK2008] R. Adamus, M. Daczkowski, P. Habela, K. Kaczmarski, T. Kowalski, M. 
Lentner, T. Pieciukiewicz, K. Stencel, K. Subieta, M. Trzaska, T. Wardziak,  J. 
Wiślicki: Overview of the Project ODRA. 1st International Conference on 
Object-Oriented Databases, Berlin 13-14 March 2008. 

[BEAJPA] Documentation on JPA 
http://edocs.bea.com/kodo/docs41/full/html/ejb3_overview.html 

[JAX] JAX-WS Annotations 
https://jax-ws.dev.java.net/jax-ws-ea3/docs/annotations.html 

[OMG2007] OMG: Unified Modeling Language Specification (Superstructure and 
Infrastructure) Version 2.1.2. November 2007 
http://www.omg.org/spec/UML/2.1.2 



FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 6 – Deliverable D6.1  
Version 1.0  Date 2008-04-15 
 

- 130 - 
© Copyright by VIDE Consortium 

 

Disclaimer of SAP AG1 

 
Copyright 2007 SAP AG, All Rights Reserved. 
 
No part of this publication may be reproduced or tr ansmitted in any form or 
for any purpose without the express permission of S AP AG.  
 
The information in this document is proprietary to SAP AG. No part of this 
document may be reproduced, copied, or transmitted in any form or for any 
purpose without the express prior written permissio n of SAP AG. 
 
This document is a preliminary version and not subj ect to your license 
agreement or any other agreement with SAP. This doc ument contains only 
intended strategies, developments, and functionalit ies of the SAP® product 
and is not intended to be binding upon SAP to any p articular course of 
business, product strategy, and/or development. Ple ase note that this 
document is subject to change and may be changed by  SAP at any time without 
notice. 
 
SAP assumes no responsibility for errors or omissio ns in this document.  
 
SAP does not warrant the accuracy or completeness o f the information, text, 
graphics, links, or other items contained within th is material. This 
document is provided without a warranty of any kind , either express or 
implied, including but not limited to the implied w arranties of 
merchantability, fitness for a particular purpose, or non-infringement. 
 
SAP shall have no liability for damages of any kind  including without 
limitation direct, special, indirect, or consequent ial damages that may 
result from the use of these materials. This limita tion shall not apply in 
cases of intent or gross negligence. 
 
The statutory liability for personal injury and def ective products is not 
affected. SAP has no control over the information t hat you may access 
through the use of hot links contained in these mat erials and does not 
endorse your use of third-party Web pages nor provi de any warranty 
whatsoever relating to third-party Web pages. 

 

                                                 
1 Applies to Sections 6.2, 6.3, 7.2, and 9 


