
FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

1

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

FP6-IST-2004-033606

VIsualize all moDel drivEn programming
VIDE

WP 4

Deliverable Number D.4.1

Quality Defects in

Model-driven Software Development

Project name: Visualize all model driven programming

Start date of the project: 01 July 2006

Duration of the project: 30 months

Project coordinator: Polish - Japanese Institute of Information Technology

Work package Leader: Fraunhofer IESE

Due date of deliverable: 30. June 2007

Actual submission date 09. August 2007

Status final

Document type: Report

Document acronym: D4.1

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

2

Editor(s) Jörg Rech, Axel Spriestersbach

Reviewer(s) Jörg Rech, Axel Spriestersbach, Andreas Jedlitschka, Sonnhild

Namingha, Andreas Roth

Accepting Kazimierz Subieta

Location http://www.vide-ist.eu

Version 1.0

Dissemination level PU (Public)

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

3

Abstract

To support the modeler of a PIM during his work, information about possible threats to the
quality (in respect to ISO 9126) of the PIM should be identified as early as possible. In this
work package quality defects such as architectural smells, anti-patterns, or design flaws are
investigated that might occur on the PIM level, and especially in the behavior model via the
VIDE action language. Furthermore, new quality defects are explored that might emerge in
the data-intense business domain or in the general context of action languages. The know-
ledge explored in this work package will be used to develop a module of VIDE that discovers
quality defects in the internal PIM representation and annotates its textual and visual repre-
sentation.

This deliverable is split into two parts. This report provides an in-depth survey of the state-
of-the-art in quality defects that are a potential threat to the quality of models in MDSD.

The second report will focus on quality defect discovery techniques and include the technical
specification of techniques for discovering quality defects as well as methods for handling
them.

The VIDE consortium:

Polish-Japanese Institute of Information Technology
(PJIIT)

Coordinator

Poland

Rodan Systems S.A. Partner Poland

Institute for Information Systems at the German Research
Center for Artificial Intelligence

Partner Germany

Fraunhofer-Gesellschaft e.V. Partner Germany

Bournemouth University Partner United
Kingdom

SOFTEAM Partner France

TNM Software GmbH Partner Germany

SAP AG Partner Germany

ALTEC Partner Greece

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

4

Table of Contents

Abstract3

Table of Contents4

List of Figures6

List of Tables..................................... ..7

1 Introduction and Overview9
1.1 The objectives of WP4 .. 10

2 Background 13
2.1 Introduction to SQA .. 13
2.2 Software Quality ... 14

2.2.1 Software Quality Models .. 15
2.2.2 Software development process and maturity models .. 16

2.3 Quality Defects and Quality Defect Diagnosis .. 17
2.3.1 Automated Quality defect diagnosis techniques .. 17
2.3.2 Quality defect handling methods ... 18

2.4 Software Quality Improvement Techniques .. 18
2.5 Beyond the State of the Art... 18

3 Description of Research Approach and Methodology 20
3.1 Background and General Objectives .. 20
3.2 Review Method ... 20
3.3 Review Questions ... 21
3.4 Data Sources and search terms ... 21
3.5 Literature Selection and Literature Quality Assessment .. 24
3.6 Data Extraction ... 24
3.7 Data Synthesis Activities .. 25

4 Quality Defects and Related Concepts 26
4.1 Overview & Visualization of Concepts .. 26

4.1.1 Literature corpora overview ... 27
4.1.2 Available Information Structures for Quality Defects ... 28
4.1.3 Comments to the following collection .. 31

4.2 Ageing Symptoms ... 33
4.3 Anomalies ... 34
4.4 Anti-guidelines .. 36
4.5 Anti-patterns.. 37
4.6 Bug Patterns ... 42
4.7 Critic Rules.. 45
4.8 Defect Patterns ... 52
4.9 Defects, Bugs & Errors (Design) .. 54
4.10 Error Patterns ... 64
4.11 Fault Patterns ... 65
4.12 Flaws ... 66
4.13 Heuristics .. 68
4.14 Illnesses .. 78

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

5

4.15 Metric Thresholds ... 79
4.16 Negative Patterns ... 81
4.17 Pitfalls ... 82
4.18 Principles (Design Principles) ... 84
4.19 Puzzles / Puzzlers .. 86
4.20 Rules (Design Rules) .. 87
4.21 Sins (Code sins) ... 90
4.22 Smells ... 92
4.23 Styles, Conventions, and Rules .. 97

5 Domain-specific Quality Defects 100
5.1 Business Application / Business Domain ... 100

5.1.1 Applications for SME.. 102
5.1.2 CRM example .. 102
5.1.3 Lead and Opportunity Management .. 103

5.2 Consequences for Quality Assurance in MDSD for the Business Domain 108
5.2.1 Maintainability .. 108
5.2.2 Efficiency .. 109
5.2.3 Reliability .. 109
5.2.4 Portability ... 109
5.2.5 Functionality ... 110
5.2.6 Usability ... 110

5.3 Sources for Domain specific quality defects ... 111
5.3.1 (Development) Guidelines ... 111
5.3.2 Programming style ... 112
5.3.3 Tool based defect detection ... 114

6 Resulting defect model for the business domain 118

7 Concluding Remarks 120
7.1 Recommendations .. 120
7.2 Outlook .. 120

8 Glossary 122

9 References 125

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

6

List of Figures

Figure 1. Literature Type about Quality Defects 27

Figure 2. Conferences with contributions about quality defect s .. 28

Figure 3. SAP E-SOA Architecture 101

Figure 4. Sales Scenario 104

Figure 5. Main Classes in Opportunity Management 106

Figure 6. Diagram of setProcessStatusValidSince() 107

Figure 7. Result screen ABAP Code Inspector 115

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

7

List of Tables

Table 1. Quality Aspects used in the different Quality Model s (based on (Ortega et al.,
2003)) 16

Table 2. Information Content of QD templates used in larger collections 30

Table 3. Ageing symptoms by (Visaggio, 2001) 33

Table 4. Anomalies by (Kasyanov, 2001) 35

Table 5. Concurrent Anomalies by (Taylor & Osterweil, 1980) .. 35

Table 6. Anti-Guidelines for Unmaintainable Code by (Green, 1996) 36

Table 7. Antipatterns by (Brown et al., 1998)............... .. 38

Table 8. Antipatterns by (Dudney et al., 2002).............. ... 39

Table 9. Java Antipatterns by (Tate, 2002).................. ... 39

Table 10. EJB Antipatterns by (Tate et al., 2003) 40

Table 11. Multithread Antipatterns by (Hallal et al., 2004) 40

Table 12. Performance Antipatterns by (Parsons & Murphy, 2004 a, 2004b) 41

Table 13. Performance Antipatterns by (Smith & Williams, 2001 , 2002, 2003) 41

Table 14. Bug Patterns by (Allen, 2002) 42

Table 15. Bug Patterns by (Farchi et al., 2003) 43

Table 16. Bug Patterns by (D. Hovemeyer & Pugh, 2004) 44

Table 17. Design Critic Rules by (Robbins, 1998, 1999; Robbin s et al., 1997, 1998a, 1998b;
Robbins et al., 1998c; Robbins & Redmiles, 1998, 20 00) .. 46

Table 18. Additional Critics in ArgoUML (ArgoUML, 2007) 46

Table 19. Critic Rules by (Coelho & Murphy, 2007) 51

Table 20. Defect Patterns individuals by (Nakamura, 2007) 53

Table 21. Defect Bug classes by (Telles & Hsieh, 2001) 55

Table 22. Security Errors by (Livshits & Lam, 2005) 56

Table 23. Design Defects by (Younessi, 2002), Chapter 6 57

Table 24. Design Defects by (Younessi, 2002), Appendix C 57

Table 25. Defects by (Christian F. J. Lange & Chaudron, 2006 ; Christian F. J. Lange et al.,
2006) 63

Table 26. Error Patterns by (Longshaw & Woods, 2004, 2005) 64

Table 27. Fault Patterns (in Matlab) by (Nkwocha & Elbaum, 20 05) ... 65

Table 28. Fault Patterns by (Alexander et al., 2002) 66

Table 29. Design Flaws by (Marinescu, 2002) 67

Table 30. Design Flaws by (Marinescu & Lanza, 2006) 67

Table 31. Heuristics by (Riel, 1996b) 68

Table 32. Heuristics by (Gibbon, 1997) 75

Table 33. Heuristics by (Grotehen, 2001) 77

Table 34. Illnesses by (Hawkins, 2003) 79

Table 35. Metric Thresholds by (Lorentz & Kidd, 1994) 80

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

8

Table 36. Negative Patterns collected by (Veryard, 2001) 81

Table 37. Pitfalls by (Webster, 1995) 83

Table 38. Java Pitfalls by (Daconta et al., 2000) (Daconta et al., 2003) 84

Table 39. Principles collected by (Martin, 2000) and (Roock & Lippert, 2006) 85

Table 40. Principles by (Coad & Nicola, 1993)................ ... 86

Table 41. Puzzles by (Bloch & Gafter, 2005) 87

Table 42. Design rules by (Johnson & Foote, 1988) 87

Table 43. Inconsistency Rules by (Liu et al., 2002) 89

Table 44. Inconsistency Rules by (Liu, 2002) 89

Table 45. Security Sins by (Howard et al., 2005) 90

Table 46. Bad smells in code (Fowler, 1999) 93

Table 47. Code smells by (Wake, 2003) 94

Table 48. Code smells by (Kerievsky, 2005) 94

Table 49. Code smells by (Tourwé & Mens, 2003) 95

Table 50. Architecture smells (Roock & Lippert, 2006) 95

Table 51. OCL smells by (Correa & Werner, 2004) 97

Table 52. Database smells by (Ambler & Sadalage, 2006) 97

Table 53. Style conventions by (Ambler, 2006) 98

Table 54. Selected Quality Defects targeted for VIDE WP9 118

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

9

1 Introduction and Overview

Model-driven software development (MDSD) drastically alters the software development
process, which is characterized by a high degree of innovation and productivity. MDSD fo-
cuses on the idea of constructing software systems not by programming in a specific pro-
gramming language, but by designing models that are translated into executable software sys-
tems by generators. These characteristics enable designers to deliver product releases within
much shorter periods of time and develop more different platforms compared to the traditional
methods. In theory, this process makes it unnecessary to worry about an executable system’s
quality, as it is "optimized" by the generators.

However, proponents of MDA must provide convincing answers to questions such as "What
is the quality of the models and software produced?" The designed models are also a work
product that requires a minimal set of quality aspects (e.g., the maintainability of models over
a longer life-time). Quality assurance techniques such as testing, inspections, software analy-
sis, or software measurement are well researched for programming languages, but their appli-
cation in the domain of software models and model-driven software development is still in an
embryonic phase.

The goals of quality assurance for model-driven software development are diverse and in-
clude the improvement of quality aspects such as maintainability, reusability, security, or per-
formance. Quality assurance for model-driven software development will play an important
role for the future wide-spread usage of model-driven architectures in general, as well as in
specific application domains.

The main concern of software quality assurance (SQA) is the efficient and effective develop-
ment of large, reliable, and high-quality software systems. While verification and validation
efforts in industry typically focus on functional aspects, using techniques such as testing or
inspection, other quality aspects are often neglected. However, the non-functional quality of a
software product is crucial for its evolution and maintenance by the same or another software
organization. Other techniques such as software product analysis and measurement are either
used to measure software systems and interpret their quality based on a previously defined
quality model or to predict project characteristics based on experiences from past measure-
ments. From the deficits found by interpreting the quality characteristics (e.g., software me-
trics), further actions are derived on an abstract level to improve software quality.

Another approach in SQA is the diagnosis of explicitly defined defects such as anti-patterns,
design flaws, or code smells, which represent system-independent defects with a negative
effect on a quality aspect such as maintainability. Individual refactorings are used to remove
these defects and improve the defective parts without changing its functionality.

Today, a vast number of these defects are known and documented in various communities
under various names. Typically, they are collected and described by practitioners and consul-
tants and represent condensed experiences from multiple projects they were involved in. In
this report, the term quality defect is used as an umbrella term for the concepts antipattern,
smell, flaw, pitfall, bug pattern, defect pattern, negative pattern, (bad) heuristic, (bad) charac-
teristic, anti-idiom, (design) problem, (design) defect, refactoring candidate, puzzlers, traps,
anomalies, and many more (typically with an additional focus on a quality aspect, develop-
ment phase, or abstraction level – e.g., a performance antipattern, test smell, or architectural
anomaly) that have a negative effect on a quality aspect (e.g., maintainability or reusability).
Problems concerning the compilability of the model (e.g., missing attributes) or regarding the
conformance to a standard (e.g., capitalize class name) are not in the focus of quality defects.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

10

In spite of the large number of quality defect collections available today, not many tech-
niques, methods, or tools are available for their manual, semi-manual, and automatic diagno-
sis (i.e., their diagnosis or prognosis). On the one hand, this might be the result of them being
described in different formalization grades, the formal and complete representations of the
defective objects (e.g., a software project plan) not being adequate, and not all of them are
diagnosable at all. On the other hand, most practitioners and researchers are neither aware of
the various concepts quality defects are known under nor are they informed about all defects
under one concept.

To support the modeler of a platform-independent model (PIM) during his work, information
about possible threats to the quality (in respect to ISO 9126) of the PIM should be identified
as early as possible. In this work package, quality defects are investigated that might occur on
the PIM level, and especially in the behavior model via the VIDE action language. Further-
more, new quality defects are explored that might emerge in the data-intense business domain
or in the general context of action languages. The knowledge explored in this work package
will be used to develop a module of VIDE that discovers quality defects from the internal
PIM representation and annotates its textual and visual representation.

In contrast to the insular and inconsistent collections in other publications this report presents
the results of a systematic literature review to create a comprehensive and uniform collection
of these quality defects and start a quality defect body of knowledge. We have selected over
560 black and grey publications published in scholarly literature. This review includes a
summary of quality defects and their definitions. The sister report D4.2 will include a sum-
mary of quality defect diagnosis techniques, their characteristics, benefits, and shortcomings.

1.1 The objectives of WP4
The results presented in this report are based upon a systematic literature review that was tar-
geted to be complete, concise, and consistent. It is the result of tasks 4.1, 4.2, and 4.3 as de-
fined in the project and listed in the following:

• Task 4.1 Researching and summarizing existing quality defects (Task leader IESE): A
detailed analysis of the state-of-the-art in quality defect discovery (which is currently
largely done on source code) will be performed to develop a strong foundation for the lat-
er work. Another goal is to elicit a summary of existing quality defects that might appear
in higher levels of the software development process and especially on PIM and PSM.

• Task 4.2 Modeling the information- and defect model for MDA (Task leader IESE): In
order to identify quality defects in a PIM, a formal model to describe the morphology (i.e.,
the inner structure and characteristics) of quality defects will be defined. Based upon this
formal defect model and the definition of the VIDE language (i.e., the representation of a
PIM) the information model that describes the available information that a tool can use to
identify potential quality defects will be synthesized.

• Task 4.3 Modeling domain-specific parts of the models (Task leader SAP): To identify
and formalize quality defects specific to a particular domain of business applications, the
domain-specific variabilities of the domain with respect to quality will be analyzed and
compared against the defect model. This will result in an extension (i.e., variant) of the
core defect model for a specific domain summarizing and characterizing quality defects of
this domain.

• Task 4.4 Development of techniques for PIM-specific quality defects (Task leader
IESE): Based upon the required information that characterizes quality defects (i.e, the de-
fect model) and the available information from the PIM (i.e., the information model),

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

11

techniques for automatically discovering symptoms that indicate specific quality defects
will be defined.

• Task 4.5 The quality defect discovery module (Task leader IESE): Based upon the
techniques of quality defect discovery, the visual editor, and the general process, the tool
for quality defect discovery that will support the modeler of a PIM will be designed. The
design of the discovery techniques will be based either upon the standard languages (e.g.,
OCL) used or on free parsing and reasoning technologies (e.g., ANTLR).

In work package D.1 (“Standards, Technological and Research-Base for the VIDE Project,
Project Evaluation Criteria and User Requirements Definition”), the consortium has investi-
gated the typical user groups for the VIDE environment. All these user groups have potential-
ly different requirements on the visualization of the model (esp. the PIM) and, in our context,
the visualization of quality defects regarding structural and behavioral aspects of the model.

The identified user roles “analysts/designers”, “analysts/VIDE programmers”, and “archi-
tects” are all strongly integrated into the PIM modeling process. However, the two other roles
“domain users” and “business analysts” (resp. “requirement analysts”) are not necessarily
required to develop the software model on the PIM level. They are more involved in the de-
velopment of the CIM level and might support others in the development of the PIM (e.g., as
contacts for the information encoded in the CIM).

The core roles involved in the development of the PIM are the analysts/designers, ana-
lysts/VIDE programmers, and architects. They, as well as their variants (e.g., GUI designer,
DB tester, etc.), are responsible for the creation, modification, and quality assurance of the
PIM. Based on the description in D.1, they have the following foci that should be supported
by the visualization of quality defects:

• Analysts/designers are responsible for the conceptual platform-independent model that is
based on the computational-independent model produced by the business analyst. This
role uses the VIDE language and tools to define the first level of behavior, but leaves the
details to the VIDE developer. Therefore, it requires information on the quality of the
model regarding the big picture (i.e., architecture) as well as structural aspects. Addition-
ally, as this role is also responsible for deciding if predefined components may be reused
it has to have information regarding the components’ interfaces as well as regarding the
reusability, adaptability, or composability of the components.

• Analysts/VIDE programmers are responsible to complete the models regarding beha-
vioral aspects in such a way that will allow model simulation (i.e., for testing) and trans-
formation of the models into code. This role is only marginally concerned with structural
aspects developed by the analysts/designers.

• Architects are responsible for building the transformations of the PIM described using
VIDE into platform specific models and code. Additionally, the architect is an expert in
the target platform (e.g., Java VM, Tomcat/JSP, Struts, etc.) but also has a good under-
standing of UML and VIDE in order to be able to define the transformation. This role is
required to work with the complete PIM and PSM.

In summary, this report provides an extensive overview of existing quality defects affecting
quality aspects of software products, processes, projects, and organizations as well as tech-
niques for their diagnosis. Section 2 describes the background of software quality assurance
and quality defects, while section 3 contains the design of the systematic literature survey. In
particular, section 4 contains the description of quality defects and related concepts that were
described in the literature in order to describe the objects of diagnosis. Section 5 presents in-
formation on the data-oriented business domain that is targeted in the context of the VIDE
project. The selected quality defects that are to be used in WP9 are described in section 6.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

12

Finally, the conclusion in section 7 summarizes this report and gives an outlook on current
research and trends.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

13

2 Background

The software industry has a reputation for producing expensive, low-quality software as soft-
ware systems have reached a level of complexity that puts them beyond our ability to evolve
and maintain them easily. This increases the need for software organizations to develop or
rework existing systems with high quality.

To improve the quality of their software products, organizations often use quality assurance
activities such as refactoring of the source code to tackle defects that reduce internal or exter-
nal quality aspects of the software. During the last years many practitioners recorded their
experience with these kinds of defects in form of patterns and antipatterns (i.e., recurring solu-
tions or problems). However, only few of these collections are known to the research commu-
nity. Most of the developed approaches concerning such defects do only take code smells,
design flaws, and antipatterns into consideration. A comprehensive collection of the quality
defects will hopefully foster the research in this area.

Today, several types of quality defects (i.e., smells, anti-patterns, flaws, bug patterns, pitfalls,
etc.) can be diagnosed on the code level but also exist as threats to the quality of earlier ab-
stractions of the software system such as software models. While several approaches were
developed in the past to diagnose these quality defects in the source code of software systems,
the diagnosis of quality defects in software models (esp. in model abstractions used in MDSD
such as PIMs) is underdeveloped. Especially, the richness of information available in software
models other than class diagrams has still not been made available for quality defect diagno-
sis. Furthermore, the dependency of the context of a quality defect has not been analyzed
deeply. Several quality defects are location sensitive in such a way that they might emerge
during the application of an architectural style or design pattern (e.g., a Large Class in a
façade pattern), a contextual convention (e.g., the TypeEmbeddedInName smell in Java’s “to-
String” methods), or other best practices.

2.1 Introduction to SQA
The techniques to diagnose quality defects are based upon research from the fields software
refactoring (Fowler, 1999; Mäntylä, 2003; Mens & Tourwe, 2004; Simon et al., 2001; Tah-
vildari et al., 2003; van Emden & Moonen, 2002) to diagnose and remove quality defects,
software inspections (Aurum et al., 2002; Ciolkowski et al., 2002; Wohlin et al., 2002) to ma-
nually detect and analyze ambiguities in analysis or coding phases, source code analysis (Fen-
ton & Neil, 1999; Fenton & Ohlsson, 2000) to quantify code characteristics for quality mea-
surement and assurance, and software testing (Liggesmeyer, 2003) to detect functional defects
after implementation.

While some techniques for the diagnosis of quality defects in source code are already known,
the diagnosis of quality defects based on architectural and design information used in model-
driven software development (MDSD) and especially platform-independent models (PIMs)
from early software development phases are not well understood and open to further investi-
gation. Furthermore, with the rise of MDSD the need for high-quality and maintainable soft-
ware models will increase.

In VIDE, quality assurance knowledge for platform-independent models will be researched to
increase their quality and ease the development and maintenance of these models. This know-
ledge will be used to enrich the visualization of the models in order to inform the designers
and maintainers about potential threats to model quality.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

14

The remainder of this section describes the background of quality assurance for MDSD with a
focus on quality defect diagnosis that is needed in the VIDE research project (especially in
WP4). This overview was developed in Task 4.1 and summarizes the core concepts of quality
defects and quality defect diagnosis.

2.2 Software Quality
Today, the quality of software systems is very important in the development of software sys-
tems. While quality factors can be identified for every product, process, project, or person in a
software engineering organization the focus in this work package of the VIDE project lies on
the software product quality.

The quality of software systems can be subdivided into several smaller aspects that focus on
specific characteristics such as maintainability, performance, or usability. These quality as-
pects have two main addressees.

• The first addressee is the user of the software system who typically emphasizes quality
aspects such as usability or performance. Quality aspects mainly concerning the users are
also called external quality aspects. External quality aspects are typically defined by the
customer or through a user survey and codified in non-functional requirements.

• The second addressee is the developing software organization that emphasizes quality
aspects such as maintainability or portability of the system expressed as source code.
These quality aspects are called internal quality aspects. On the model layer similar quali-
ty aspects exists that describe that emphasize regarding the architects and analysts.

Other addresses of quality aspects are, for example, system operators (e.g., administrators)
that need an easily installable system. But in general every person involved in development,
administration, or usage activities of the software system has own specific quality aspects.

Today, many quality aspects of various granularity are defined and used differently in quality
models. Several of these quality aspects, that are relevant to this report, are described in the
following (excluding the “compliance” sub-characteristics) to give an impression of their fo-
cus:

• Maintainability : This quality aspect describes how easy or difficult it is to correct, adapt,
or perfect the software system. In (IEEE-610, 1990) maintainability is defined as “the ease
with which a software system or component can be modified to correct faults, improve
performance, or other attributes, or adapt to a changed environment.” In (ISO/IEC-9126-
1, 2003) maintainability is defined as “A set of attributes that bear on the effort needed to
make specified modifications” and sub-divided into the sub-characteristics Stability, Ana-
lyzability, Changeability, and Testability. Other sub-characteristics that might be asso-
ciated with maintainability are comprehensibility or inspectability (resp. reviewability).

• Reusability: This quality aspect describes how easy it is to reuse the system in another
software system or a variant of the software system. In (IEEE-610, 1990) reusability is de-
fined as “the degree to which a software module or other work product can be used in
more than one computing program or software system.” In (ISO/IEC-9126-1, 2003) reu-
sability is not defined as a quality characteristic or sub-characteristic.

• Performance: This quality aspect describes how fast the software system processes a task
and how fast it reacts on (user) input. In (IEEE-610, 1990) it is defined as “the degree to
which a system or component accomplishes its designated functions within given con-
straints”. In (ISO/IEC-9126-1, 2003) performance is a part of efficiency that is defined as
“a set of attributes that bear on the relationship between the level of performance of the

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

15

software and the amount of resources used, under stated conditions” and sub-divided into
the sub-characteristics Time Behavior and Resource Utilization.

• Portability : This quality aspect describes how easy it is to port, migrate, or recompile the
software system on a new platform. In (IEEE-610, 1990) portability is defined as “the
ease with which a system or component can be transferred from one hardware or software
environment to another”. In (ISO/IEC-9126-1, 2003) portability is defined as “A set of
attributes that bear on the ability of software to be transferred from one environment to
another” and sub-divided into the sub-characteristics Installability, Replaceability, Co-
Existence, and Adaptability.

Beside these quality aspects several other aspects of software models are important during
their development that have not an effect on the quality of the software (or model):

• Conformance: This aspect describes if the model complies with a defined set of specifi-
cations such as the well-formedness rules in UML or the Java specifications.

• Compilability: This aspect describes if the model might be used by a generator or trans-
formator to compiled it into a PSM or code model (e.g., Java).

If one wants to improve any of these aspects he first has to measure it and then apply tech-
niques that improve the status. Methods like GQM (Basili et al., 1994) give support in the
definition of metrics but one has to be careful not only to improve the values of the measured
metrics (i.e., address the symptoms).

Dromey suggests that in order to identify what quality aspect you want to improve one has to
find the corresponding “tangible properties” for the code (Dromey, 1996). A tangible property
is a property of the source code that one can measure using knowledge about the program-
ming language, hardware, and software environment.

Definition 1 Dromey’s Construction Theorem

 A violation of a tangible quality-carrying property will cause a quality defect
in the product. Any quality defect can be traced to a violation of a tangible,
quality-carrying property.

2.2.1 Software Quality Models
Several models to describe and systematize software quality have been developed during the
last forty years to support the communication, planning, controlling, and assessment of soft-
ware systems. Typically, the quality aspects as described in section 2.2 are used to create a set
of interrelated quality aspects that describe how a “good” or “healthy” software system of a
specific type (e.g., embedded driving assistance) should look like.

In order to improve the quality of a software systems first it has to be defined what quality
means in the specific context. One quality aspect (e.g., performance) might be of utmost im-
portance to a software system in one context (e.g., life-critical situations) but relatively irrele-
vant in another (e.g., compiler). Based upon a general quality model a product-specific quality
model has to be instantiated.

Several of these general quality models were developed until today as shown in Table 1. The
international standard ISO/IEC 9126 (ISO/IEC-9126-3, 2004) represents a general approach
that defines a quality model for software products. While there exists some critique about if
ISO/IEC 9126 categorization is correct and reliable in evaluating user satisfaction (Ho et al.,
2004) it is constantly improved. Currently, the new Standard (ISO/IEC-25000, 2005) is being
developed in the SQuaRe project that is targeted to replace ISO-9126.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

16

Table 1. Quality Aspects used in the different Quality Models (based on (Ortega et al., 2003))

 Boehm McCalls FURPS ISO 9126 Dromey

Testability x x x

Correctness x

Efficiency x x x x x

Understandability x x

Reliability x x x x x

Flexibility x x

Functionality x x x

Human Enginee ring x

Integrity/Secur ity x x

Interoperability x x

Process Maturity x

Maintainability x x x x x

Changeability x

Portability x x x x

Reusability x x

While all these models try to capture the subjective concept “quality” for software source
code, new quality models that capture the quality of models (i.e., CIMs, PIMs, or PSMs) from
the viewpoint of architects, analysts, or maintainers are still missing.

2.2.2 Software development process and maturity models
Beside the problem-oriented approach of diagnosis quality defects many other approaches are
known to improve the software development process and the resulting software quality. How-
ever, these process-oriented quality assurance techniques and quality defect diagnosis cannot
be seen in isolation. Quality defect diagnosis have to be integrated into a software develop-
ment process, such as for instance the Waterfall model, the Spiral model or model-driven de-
velopment processes (described in (Vide, 2007a)) in the VIDE project. Quality assurance
plays an important role in most of these process models. Independent from the software proc-
ess model used it is important to understand the maturity of the software development and the
quality standards archived.

A couple of frameworks have proposed to access the process maturity or an organisation or a
project. Examples for process maturity frameworks are Capability Maturity Model Integration
(CMMI) (SEI, 2006), Software Process Improvement and Capability Determination (SPICE)
or ISO/IEC 9000-3 (ISO, 2005) the software specific variant of ISO 9000. Common to most
process maturity frameworks is that the development process is evaluated and classified into
maturity levels. Quality assurance and automatic defect detection on model level as described
in this document supports organisation or project to increase the maturity level.

We’ll use the CMMI to illustrate the benefit of defect detection for process maturity (for a
short overview see http://en.wikipedia.org/wiki/Capability_Maturity_Model). CMMI utilizes
five maturity levels that build on top of one another. These levels describe best practices that
should be used by an organization. They are:

1. Initial : Initial state with no specific requirements.
2. Managed: Projects are managed and similar projects are successfully repeatable.
3. Defined: Projects are executed according to an (adapted) software development process

which is improved over time.
4. Quantitatively Managed: The software development effort effectively controlled using

statistical and other quantitative techniques, and is quantitatively predictable.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

17

5. Optimizing : Continuous improving process performance towards quantitative objectives.
The objectives are continually revised to reflect changing business objectives, and used as
criteria in managing process improvement.

Since software quality assurance by diagnosing quality defects contributes to predictable im-
prove product quality using statistical and other quantitative techniques the methods contrib-
utes partly to maturity level 2 (“Process and Product Quality Assurance”: diagnosing quality
defects), level 3 (“Decision Analysis and Resolution”: handing and deciding about quality
defects), level 4 (“Quantitative Project Management”: measurement & statistics about quality
defects), and level 5 (“Causal Analysis and Resolution”: root cause analysis of quality defects
and initiating preventive actions) (SEI, 2006).

2.3 Quality Defects and Quality Defect Diagnosis
The main concern of software quality assurance (SQA) is the efficient and effective develop-
ment of large, reliable, and high-quality software systems. While verification and validation
efforts in industry typically focus on functional aspects, using techniques such as testing or
inspection, other quality aspects are often neglected. However, the non-functional quality of a
software product is crucial for its evolution and maintenance by the same or another software
developer. Other techniques as software product analysis and measurement are either used to
measure software systems and interpret their quality based on a previously defined quality
model or to predict project characteristics based on experiences from past measurements.
From the deficits found by interpreting the quality characteristics (e.g., software metrics),
further actions are derived on an abstract level to improve the software quality.

Another approach in SQA is the diagnosis of explicitly defined defects such as anti-patterns,
design flaws, or code smells that represent system-independent defects with a negative effect
on a quality such as maintainability. Individual refactorings are used to remove these defects
and improve the defective parts without changing its functionality.

The techniques to diagnose quality defects (i.e., smells, antipatterns, flaws, etc.) are mainly
based upon research from the field of software refactoring that is very active and beginning to
address formalisms, processes, methods, and tools to make refactoring more consistent, plan-
able, scaleable, and flexible (Mens & Tourwe, 2004). As Bennett and Rajlich state in their
roadmap paper, the central research problem is the inability to change software easily and
quickly. Current research issues are being addressed by gathering more empirical information
about the nature of software maintenance. The removal of unnecessary complexity is sought
through the preservation and management of knowledge for future software maintenance and
restructuring of code (Bennett & Rajlich, 2000).

2.3.1 Automated Quality defect diagnosis techniques
Currently, several tools were being developed that automatically support parts of the refactor-
ing process. Some of these tools automate the realization of refactorings (e.g., “Extract Me-
thod”) – but the detection of places where to apply the refactoring (i.e., quality defects) is still
a manual process. Several techniques were developed for code clone detection (Bruntink et
al., 2004), obsolete parameters or inappropriate interfaces (Tourwe & Mens, 2003), and the
general processing of source code for of diagnosis and visualization of code smells (van Em-
den & Moonen, 2002).

While some techniques for the diagnosis of quality defects are already known (e.g., the “long
method” code smell or several “architectural smells” in the sotograph tool) techniques for
several other quality defects are currently unknown. This is especially true for quality defects
that are only diagnosable by analyzing several versions from a software repository.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

18

2.3.2 Quality defect handling methods
In addition, the handling of quality defects and removal activities in the lifecycle of a software
product are not well treated in the literature. For example, the ODC process consists of an
opening and closing process for the defect detection that uses information about the target for
further removal activities. Typically, removal activities are executed but changes, decisions,
and experiences are not documented at all – except for small informal comments when the
software system is checked into a software repository.

Software annotation languages used in source code such as JavaDoc or Doxygen can be ap-
plied to document the functionality and structure of the software system at the code level.
They are tailored for the automated generation of API documents based on a machine-
readable syntax. The handling of potential quality defects is not addressed such that accepted
quality defects are not presented over and over again and decisions are preserved. Language
extensions or mechanisms for machine-readable storing of information about symptoms, de-
fects, or treatments (change history) have not been published.

2.4 Software Quality Improvement Techniques
Software Inspections, and especially code inspections, are concerned with the process of ma-
nually inspecting software products in order to find potential ambiguities, functional, and non-
functional problems (Brykczynski, 1999). While the specific evaluation of code fragments is
probably more precise than automated techniques, the effort for the inspection is higher, the
completeness of an inspection regarding the whole system is smaller, and the number of quali-
ty defects looked after is smaller.

Software Testing and debugging is concerned with the diagnosis of defects regarding the
functionality and reliability as defined in a specification or unit test case in static and dynamic
environments.

Software product metrics are used in software analysis to measure the complexity, cohesion,
coupling, or other characteristics of the software product that are further analyzed and inter-
preted to estimate the effort of development or to evaluate the quality of the software product.
Tools for software analysis in existence today are used to monitor dynamic or static aspects of
software systems in order to manually identify potential problems in the architecture or
sources for negative effects on the quality (e.g., the M-System, ZD-MIS, or the Sotograph).
The automated tool-based detection of specific anomalies affecting the quality in software
products is relatively rare, to non-existent. Most of these tools (like Checkstyle, FindBugs,
Hammurapi, or PMD) analyze the source code of software systems to find violations against
project-specific programming guidelines, missing or overcomplicated expressions, as well as
potential language-specific functional defects or bug patterns. Nowadays, the Sotograph can
identify architectural smells that are based on metrics regarding size or coupling (Roock &
Lippert, 2006).

2.5 Beyond the State of the Art
Important parts of the work of the VIDE project contribute to the fields of refactoring, main-
tenance, and quality engineering for model-driven software development. The primary contri-
butions to the practice and theory will be:

• A catalogue of existing and the definition of new techniques for quality defect diagnosis
(i.e., deliverable D4.2). This includes techniques for the extraction, transformation, and in-
tegration of information from VIDE-based models to enable model-based quality defect
diagnosis techniques.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

19

• A formal model of quality defects on the PIM level that describes quality defects, their
structure, symptoms, affected qualities, and associated refactorings as well as their interre-
lations and dependencies (i.e., this deliverable D4.1a). The model will be usable to classi-
fy new quality defects, diagnose quality defects based on identified symptoms, and to con-
figure an optimal treatment (i.e., refactoring) plan.

• Development and evolution of a domain-specific quality defects model from the generic
model of quality defects for the domain of business application.

• An extension of the VIDE platform (based on the eclipse-IDE) for the analysis of software
models (to de developed in WP9). It will consists of a plug-in based architecture that is
easily extended and adaptable to other modeling languages (with respect to VIDE lan-
guage extensions), abstraction layers (e.g., other models in MDSD as the CIM), or ver-
sioning systems.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

20

3 Description of Research Approach and Methodology

This systematic literature review is based upon the frameworks as described for software en-
gineering by Kitchenham (Kitchenham, 2004), Biolchini et al. (Biolchini et al., 2005) and
Mendes et al. (Mendes, 2005) as well as guidelines for medical research by White et al.
(White & Schmidt, 2005), Pai et al. (Pai et al., 2004), and Khan et al. (Khan et al., 2001). A
systematic literature review is a means of identifying, evaluating, and interpreting all availa-
ble literature relevant to a particular research area. The goal of this review is to systematically
elicit all available literature on quality defects and quality defect diagnosis techniques. It was
used to help to reduce the influence of the reviewer’s own bias and supports this by deciding
in advance what evidence to use and how to use it, so these decisions are not influenced by
the evidence itself.

Systematic literature reviews play a central role in the gathering and structuring of scientific
knowledge. As science is a collective and cumulative endeavour, any theory, methodology, or
technology is suspect of validity threats and must be supported by evidence, as hard as possi-
ble. Moreover, all too often new knowledge, techniques, and methods are proposed and intro-
duced, without building on the existing body of knowledge. These problems can be somewhat
alleviated by collecting and structuring the available body of knowledge using the mechanism
of literature review. Systematic literature reviews help to make the implicit theories explicit
by identifying their commonalities and differences, and may even be an impulse for the unifi-
cation of existing theories to induce a new, more general theory.

This section describes the design of the systematic literature review in order to state the un-
derlying goals and make it possible to easily replicate or extend this literature review later on.

3.1 Background and General Objectives
This review is targeted to help to improve the situation for quality defect diagnosis in soft-
ware engineering in several ways. Firstly, as a means to summarize existing literature and
construct an objective and comprehensive overview about quality defects, related concepts,
and their diagnosis techniques. Secondly, to derive definitions of existing quality defect re-
lated concepts and synthesize a consistent and uniform definition of quality defects. Finally,
to identify gaps in the current research and body of knowledge, this might be used to deter-
mine where future research is needed.

3.2 Review Method
In order to systematically conduct the review we based the research method on the process as
defined by Barbara Kitchenham (Kitchenham, 2004). Therefore, the following phases were
conducted to realize this literature review:

• Background research: Initial scoping survey to identify the need for a review as well as
search terms for quality defects and their diagnosis techniques

• Review planning: Specification of the research question(s), required data, search terms,
and identification of search engines (i.e., data sources). This resulted into a review proto-
col that is part of this section.

• Identification of literature: Searching for literature in the search engines and retrieving
titles, abstracts, and reference material.

• Selection of literature: Reading of literature abstracts, including (i.e., selecting) and ex-
cluding literature, and obtaining full text versions of the selected literature. Analyzing of

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

21

the references in the obtained literature to identify further literature (i.e., repeat this phase
with the new list of literature)

• Quality Assessment: Reading the full papers, evaluating appropriateness, and identifica-
tion of bias.

• Data Extraction: Extraction of relevant data from the literature.

• Data synthesis: Structuring and systematization (descriptive / non-quantitative) of the
quality defects and quality defect diagnosis techniques found.

The systematic literature review was conducted from July 2006 to June 2007 using the tech-
niques described in the following subsections.

3.3 Review Questions
The review question or research aim of a systematic literature review focus on gathering and
interpreting evidence, deciding on the cause of a problem, predicting a possible outcome, de-
ciding on solutions to apply, or the determination of preventive measures. In software engi-
neering additional foci might be added that are concerned with the classification of literature
to a pre-defined model (e.g., as in (Laitenberger, 2002)) or the construction of an ontology as
it is the goal of this review.

The research questions in this systematic literature review are targeted to support the con-
struction of an ontology about quality defects and techniques for their diagnosis. This review
is focussed to answer the primary research question:

Which quality defects exist and to which extent are they diagnosable via (semi-
) automated techniques in the context of VIDE (i.e., especially behavioral and
data-intense QDs in PIMs based on UML with action languages)?

This question does not consists of the components condition/disease (i.e., the type or set of
quality defects), population/systems (i.e., the investigated (type of) systems), interven-
tion/method (i.e., the techniques itself), and outcome/effect (i.e., the effect of the intervention
on the condition) as described in (White & Schmidt, 2005). The primary question is not very
focused on a specific type of quality defect or diagnosis technique (e.g., as in “What is the
most efficient diagnosis technique to diagnose the ‘Long Method’ code smell in 10k-100k
large object-oriented embedded software systems?”) as there is not enough literature available
(based upon our knowledge from an initial scoping survey). In order to concretize the primary
question following secondary research questions are given:

Which quality defects exists resp. are described in the literature and under
which names are they known? (i.e., identifying existing quality defects and re-
lated concepts)

How do the concepts for quality defects differ, what artifacts are affected, and
where are gaps (i.e., missing defect description or diagnosis techniques)?

3.4 Data Sources and search terms
The search strategy applied included the following data sources for identifying as much as
possible of the relevant literature. The following journals, conferences, and workshops were
investigated from December 2006 back to January 1990:

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

22

• The conferences and workshops used an information source were: International Confe-
rence on Software Engineering (ICSE), Working Conference on Reverse Engineering
(WCRE), International Conference on Software Maintenance (ICSM), European Confe-
rence on Software Maintenance and Reengineering (CSMR), Technology of Object-
Oriented Languages and Systems (TOOLS), European Conference on Object-Oriented
Programming (ECOOP), Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), eXtreme Programming and Agile Processes in Software Engineering
(XP), European Software Engineering Conference and Foundations of Software Engineer-
ing (ESEC/FSE), Software Metrics Symposium (Metrics), Symposium On Applied Com-
puting (SAC), Symposium on Software Reliability Engineering (ISSRE), Aspect-Oriented
Software Development (AOSD), Asia-Pacific Software Engineering Conference (AP-
SEC), International Symposium on Empirical Software Engineering (ISESE), Internation-
al Symposium on Software Testing and Analysis (ISSTA)

• The journals used as an information source were: Transactions on Software Engineering
(TSE), IEEE Software (IS), Transactions on Software Engineering and Methodologies
(TOSEM), Information and Software Technology (IST), Journal of Systems and Software
(JSS), Software Practice and Experience (SPE), Software Testing Verification & Relia-
bility (STVR), Software Quality Journal (SQJ), Journal of Software Measurement (JSM),
Transactions on Architecture and Code Optimization (TACO), Automated Software Engi-
neering (ASE), Empirical Software Engineering (ESE), International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), Computing Surveys (CS), ACM,
Software and Systems Modeling (SOSYM), Software Engineering Notes (SEN), and the
Journal of Software Maintenance and Evolution (JSME).

Furthermore, the following search engines were used to browse through several conference
proceedings and journals as well as to find publications from other sources. These search en-
gines and the query language mechanics used to search in the titles, abstracts, and keywords
are:

• IEEE Xplore: The search engine for the literature by IEEE provides full text access to the
technical literature in computer science including many conferences and journals. Al-
though this search engine is capable to searching in the full text we only searched in gen-
eral in the appropriate metadata (i.e., document title, abstract, and index terms). In the
case of searching specific journals and conferences we included the full text search. The
query string, e.g., for the search term “code smell” had the form: “((smell<in>metadata)
AND (code<in>metadata))”.

• ACM Digital Library & The Guide: This publication search engine by ACM enables the
access to the collection of citations and full text from journals, conferences, and newsletter
articles published by ACM and other publishers. In order to widen the results we searched
in the full text of the publications. The query string, e.g., for the search term “code smell”
had the form "code smell". In special cases where too many papers were found we con-
strained the search to the title and abstract using the query “(title:code title:smell) (ab-
stract:code abstract:smell)”.

• INSPEC (via “fiz technik”): The access to the INSPEC bibliographic library for computer
science by the company fiz technik. As the query interpretation is very strict, plurals of
search terms had to be included, e.g., by using wildcards such as “code smel*”, and the
search was constricted on the title and the sections “Computers and control” and “Infor-
mation technology” of INSPEC.

• OCLC FirstSearch (incl. WorldCat, ECO, and ArticleFirst): The online computer library
center includes many books, journals, and conferences. The query string, e.g., for the

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

23

search term “code smell” had the form: “ti:’code smell’ OR ti:’code smells’” in the key-
word section (that includes “words from titles, subject headings, and notes”) .

• Springer Link: The search engine for all publications by springer including conferences,
journals, and the LNCS as well as LNI series. In order to widen the results we searched in
the full text of the publications. The query string, e.g., for the search term “code smell”
had the form “code smell” stated as a phrase via the “advanced search” form.

• DBLP: The digital bibliography & library project by the University of Trier, Germany,
provides access to computer science bibliographies of conferences, journal, and individual
persons. The search in this database was conducted on the titles of the publications using,
e.g., the term “title = "code smell"“ (via Advanced Search) to search for “code smell”.

• Citeseer: Another public bibliographic search engine and digital library like DBLP that is
hosted by the Pennsylvania State University, USA. We used the standard search available
that searches in the full text of the indexed publications. The query string, e.g., for the
search term “code smell” had the form "code smell or (code and smell)".

• Google Scholar: The internet-based search engine for online publications by Google is
used to diagnose either grey literature or publications and tools not listed in the commer-
cial indexing services above. As this search engines searches in the full text of publica-
tions, additional literature was found that did not include the search terms in their title, ab-
stract or keyword list. The search term was used as a simple phrase, e.g., “code smell”,
constrained on the section “Engineering, Computer Science, and Mathematics”.

• Amazon.com: The online book store was used to search for relevant books using the title
and subject search in the “advanced search” feature of the books section. A large amount
of irrelevant literature was reduced by focusing the search on the category “computers &
internet” and then “programming” or “computer science”. The search term was used as a
simple phrase, e.g., “code smell”.

• A9.com: Amazons full text book index was used to search for relevant books and chapters
that included a search term. The search term was used as a simple phrase, e.g., “code
smell”.

• Google Book Search: The book search engine provided by Google was used as A9 to find
relevant books and chapters that included a search term. The search term was used as a
simple phrase, e.g., “code smell”.

• Google Internet search: The global internet search engine by Google was used to find
technical reports, dissertations, etc. on the internet. While the index of the internet in the
search engine is not complete it is the best fit to search on the internet. The advanced
search capabilities were used to find full documents in PDF format containing the search
terms by using the query “filetype:pdf +<type> +<search term>” where “<type>” was re-
placed by the type (e.g., “dissertation”) and “<search term>” was replaced by the individ-
ual search term in phrase form (i.e., including quotations).

Finally, all relevant references cited in the selected publications (i.e., after the step described
in section 3.5) and the publication lists of the authors (using the DBLP author search) were
used to find additional literature.

In order to constrain the search only English literature was included in the review – even
when it was known that, for example, German literature on this topic was available. We ex-
cluded non-English literature as it is the main scientific language (i.e., every SE scientist can
understand its content). Nevertheless, to retrieve as much as possible of relevant literature
from these search engines several synonymous search terms were used:

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

24

• The search terms for the retrieval of quality defect related literature included “code
smell”, “bad smell”, “design flaw”, “antipattern”, “anti-pattern”, “antipractice”, “anti-
practice”, “antiidiom”, “anti-idiom”, “design heuristic”, “design characteristic”, “design
defect”, “pitfall”, “cliché”, “bug pattern”, “defect pattern”, “refactoring opportunity”,
“anomaly”, and “quality defect”. Furthermore, the very similar concepts “code style”,
“coding style”, ”code convention”, “coding convention”, “code rule”, and “coding rule”
were used.

These terms are based on knowledge acquired during previous unsystematic literature survey
and refined resp. extended during the initial scoping survey of the systematic literature re-
view.

3.5 Literature Selection and Literature Quality Assessment
The results from the literature collection (i.e., references to the papers) were then manually
read to identify and select relevant literature. Unfortunately, the literature on quality defect
diagnosis techniques is not always based on hard evidence and, therefore, no further quality
standard (e.g., requiring a controlled experiment in industry) were applied to filter the litera-
ture except that it had to include a quality defect, definition, taxonomy, or diagnosis tech-
nique.

However, much information is available on quality assurance techniques it has not been easy
to reconcile and consolidate information on quality defects due to the sheer volume of work
already available. In order to focus and sharpen the literature survey we included all literature
matching the abovementioned search terms for quality defects but excluded the following
quality defect related concepts:

• Functional defects (i.e., errors detected by testing an executable (part of) a system)

• Performance characteristics (i.e., failures to process in time or to process a heavy work-
load (e.g., many users) by testing an executable (part of) a system)

• Specific or non-abstract defects (i.e. specific to a software system)

• Pitfalls in form of case studies of projects, etc.

• Law, finance, procurement, and marketing related pitfalls, etc.

• Books with less than 5 pages about a concept, no described concept (instances)

• Literature solely about refactoring and “indirect” refactoring rationals (i.e., without expli-
cit descriptions of smells or other refactoring opportunities).

Furthermore, we excluded articles based on the following rules: (a) it takes a considerable
effort (money or time) to get the article and (b) duplicate publications will be identified by
cross-checking authors and diagnosis technique. Finally, as we do not synthesis a quantitative
statement from the literature we do not suspect publications to be invalid per se and, therefore,
did not reject grey (non-peer-reviewed) literature such as PhD theses or technical reports.

3.6 Data Extraction
In order to answer the primary and secondary research questions, data has to be extracted
from the identified and selected literature. Based upon the recommendations in (White &
Schmidt, 2005) and the research questions we extract the following data for the quality defect
related literature:

• Reference information: The author names and date of publication.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

25

• Name for the quality defect concept: The term or phrase used to name the quality defects
(e.g., code smell, bug pattern, or aspect smell).

• Formality of the description: The descriptions of the quality defects will be categorized in
the three categories informal, semi-formal, and formal. Informal for unstructured plain-
text descriptions, semi-formal for structured but potentially ambiguous text passages (e.g.,
sections for name, symptoms, …), and formal for unambiguous representations (e.g., in
first-order logic).

• Number of quality defects described: The amount of distinct quality defects described in
this publication for a specific artifact type.

• Definition of the quality defects: The definition of the quality defect used in this publica-
tion.

• List of the quality defects: The names of the quality defects.

• Description of the quality defects: The description of the quality defect.

• Design entity involved: The design entities involved in the quality defect (e.g., classes or
inheritance relations).

• Quality affected: The quality aspect of the artifact influenced by the quality defects (e.g.,
maintainability of source code or the performance of a process).

3.7 Data Synthesis Activities
The objectives of the descriptive or non-quantitative synthesis (Khan et al., 2001) is the col-
lection and unification of the terminology for quality defects and quality defect diagnosis
techniques. Key elements of the synthesis are typical names for quality defects, commonali-
ties of techniques (e.g., used metrics), similarities of the evaluation contexts, and the results of
the evaluations. The synthesis might indicate the absence of quality defects of a specific type
or diagnosis techniques for specific quality defects. Furthermore, it might demonstrate the
heterogeneity (i.e., variability) or homogeneity (i.e., similarity) of the diagnosis techniques in
terms of key characteristics, quality of the diagnosis, or effects.

The characterization of quality defects was build upon the analysis of the quality defects de-
scribed in the literature. First a list of the different types of quality defects, their definition,
and their (structured) templates were collected. Second the artifacts the quality defects appear
in, the (potential) quality aspects they affect, and the type of facet of the artifact they describe
(e.g., dynamic behavior) were identified.

The results of this literature survey are presented in the next section.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

26

4 Quality Defects and Related Concepts

Successful MDA is expected to make the models the main development artifacts, replacing
today’s programming languages analogous to the way high level programming languages
have previously replaced assembly languages (Mellor et al., 2004). When moving to a com-
pletely model based development approach the quality of the models from which the applica-
tions are generated becomes very important. In order to assist the modeler of a PIM during his
work information about possible threats to the quality (in respect to ISO 9126) of the PIM
should be indicated as early as possible. While the research on intelligent assistance in soft-
ware engineering started in the 1970th the maturity and integration of these techniques is lin-
gering but demanded by software engineers (Rech et al., 2007).

In this work package quality defects such as architectural smells, anti-patterns, and design
flaws are investigated explore new quality defects that might occur on the model level were
investigated. Quality defects often stem from experiences made by practitioners and consul-
tants in different software projects, domains, and environments. However, other techniques
for the extraction of these recurring problems exist such as knowledge discovery in databases
(Rech, 2004) or semi-automated techniques based on experience factories (Rech & Ras, 2007,
in work).

In VIDE, quality assurance knowledge for platform-independent models will be researched to
increase their quality and ease the development and maintenance of these models. The know-
ledge explored in this work package will be used to develop a module of VIDE in WP 9 that
discovers quality defects from the PIM and annotates its textual and visual representation Fur-
thermore, it will be used to enrich the visualization of the models in order to inform the de-
signers and maintainers about potential threats to model quality.

While some techniques for the discovery of quality defects in source code are already known,
the discovery of quality defects based on architectural information in early development phas-
es, such as design, are not well understood and open to further investigation. With the rise of
MDA the need for high-quality and maintainable software models will increase.

The first section gives an overview of quality defects and other information discovered by the
systematic literature review. The following section will go into more detail and list the quality
defects found grouped into the concepts they were described under.

4.1 Overview & Visualization of Concepts
Publications including comprehensive overviews about quality defects as well as classifica-
tions, taxonomies, ontologies, or templates of quality defects are very rare. Typically, classifi-
cations are used in books for collections of refactorings (Fowler, 1999), code smells (Wake,
2003) (Mäntylä et al., 2003), anti-patterns (Brown et al., 1998), design flaws (Riel, 1996a),
design characteristics (Whitmire, 1997), or bug patterns (Allen, 2002) as well as reengineer-
ing patterns (Demeyer et al., 2003). They all define proprietary and different formats for the
description of quality defects that are not compatible among each other and neglect informa-
tion about affected software qualities. There is no comprehensive taxonomy, ontology, or
model that helps to classify and distinguish quality defects, their symptoms, and treatments in
a uniform way (i.e., similar to the taxonomies in medicine or biology).

Defect classification schemes (Freimut, 2001) used in software measurement and testing such
as ODC are not designed to describe quality defects in a formal, consistent, and complete

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

27

way. They are designed to support the defect documentation and management and help in the
reporting about the software quality, the planning and tailoring of future quality improvement
activities (e.g., test planning), and the initiation of preventive measures in early development
phases.

4.1.1 Literature corpora overview
During the literature review as described in section 3 we extracted publications including pre-
defined search-terms from the body of software engineering literature. As depicted in Figure 1
we found 560 publications relevant to our topic that included either information on quality
defects or their diagnosis techniques. These findings included 61 books, 35 theses, 131 jour-
nal paper, 308 workshop and conference articles, as well as 25 reports, chapters, and webpag-
es.

Figure 1. Literature Type about Quality Defects

From this corpora of knowledge the main source for quality defects are books and (PhD) thes-
es. Typically, these publications list groups of quality defects relevant to one abstraction level
(e.g., design, test, or code) or quality aspect (e.g., performance antipatterns). However, some
of them make an all around sweep and present quality defects on multiple levels (e.g., man-
agement, coding, and reuse pitfalls).

Nevertheless, most quality defects are described informal and therefore problems arise as it is
not clear how to (best) refactor or treat them. A systematic and empirical investigation of
these quality defects – and especially their impact on the software quality – is advised.

The largest groups of publications are, as expected, workshop and conference papers. As pre-
sented in Figure 2 a more systematic analysis and presentations of quality defects and their
diagnosis techniques can be found in conferences such as ICSE (International Conference on
Software Engineering), CSMR (European Conference on Software Maintenance and Reengi-
neering), and ESEC/FSE (European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering).

Distribution of Publications

6
19

35
61

131

308

0

50

100

150

200

250

300

350

Chapters Reports Theses Books Journal
Paper

Conference
Paper

N
um

be
r

of
 P

ub
lic

at
io

ns

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

28

Figure 2. Conferences with contributions about quality defects

However, the co-publication analysis (i.e., represented by the lines – the thicker the more au-
thors presented at both conferences) shows that many workshops and conferences are not at-
tended by the same communities. For example, while ICSE and CSMR are both conferences
where many papers are published only few authors have papers (related to quality defects or
their diagnosis) on both conferences. But many authors publishing on the CSMR conference
do publish on CAVIS workshop.

Nevertheless, in all these communities and sub-communities many different names are used to
name these groups of quality defects. But are there really characteristics that can be used to
differentiate between them? And what types of quality defects are described in the literature?
Under which names are quality defects known and where do they differ? We observed that a
common terminology (Naming) could not be found – author are typically using striking
names for the defects.

In summary, we discovered approx. 800 quality defects in these larger collections alone.
While several other publications such as conference papers, reports, etc. additionally list sev-
eral other quality defects that are not described in these collections this number can be seen as
a first rough estimation. Furthermore, some quality defects described in one collection reoccur
in other collections under different names.

4.1.2 Available Information Structures for Quality Defects
Most larger collections of quality defects such as antipatterns, pitfalls, code smells, etc. use a
semi-structured template to present the individual quality defects. The Information encoded in
these structures has to be used to decide upon the applicability of these quality defects in our

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

29

given context (i.e., if they satisfy the given criteria). The core criteria for the identified quality
defects were system-independence, i.e., the described problem have to be independent from
the specific software system and its requirements.

Table 2 lists and compares the existing template formats used for different quality defects in
larger collections. As values for the criteria “�” was used to denote that a special slot exists
in the template and the content satisfies the requirements. The “�” symbol was used to de-
note that a slot does exists but the information is not sufficient for the requirements and “”
means that a slot does not exist, the information is not sufficient for the requirements, but the
information is available in more than half of the defects. Finally, the symbol “-“ denotes that
information is not or only sparely available (less than half of the defects). In this comparison
the following attributes and criteria were used:

• Formality : Captures the degree of formality the template adheres to. Informal templates
refer to single free-text blocks were quality defects are described solely in prose. If the
quality defect description is partitioned into several section with a specific focus (e.g.,
causes, treatments, forces, etc.) they are classified as semi-formal. Formal representations
allow reasoning by machines and are fully unambiguous (e.g., by using OWL or first-
order predicate logic).

• Name: A clear and precise name that communicates the problem and is based on a struc-
tured taxonomy (i.e., similar problem should be named in a similar way).

• Description: A unambiguous description of the core problem – eventually split in several
more specific sections (e.g., “anecdotal evidence”)

• Interrelation : Captures if relations to other defects are described.

• Causes: Captures if the causes for the quality defects are explained or referenced.

• Treatment: Captures if direct treatments (e.g., refactorings) are described to remove or
attenuate the defect.

• Effects: Captures if effects of the defects on the quality aspects are covered.

• Symptoms: Captures if identifiable characteristics (e.g., metrics) are stated that can be
used in the diagnosis.

• Diagnosis: Captures if techniques, thresholds or other means, that support the automated
diagnosis, are given.

• Indication : Captures if techniques or guidelines are given to decide on the treatment in a
given context.

• RCA: Captures if techniques are stated to identify or analyze the root causes of this de-
fect.

• Contra-diagnosis: Captures if information is given to decide or change if the diagnosis is
applicable in a specific situation.

• Preventions: Captures if techniques or guidelines are given to prevent this defect to
emerge.

• Principle: Captures if the underlying principle (or anti-principle) is stated that caused the
defect.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

30

Table 2. Information Content of QD templates used in larger collections

QD Source(s) Formality N
am

e

D
es

cr
ip

tio
n

In
te

rr
el

a-
tio

n

C
au

se
s

T
re

at
m

en
t

E
ffe

ct
s

S
ym

pt
om

s

D
ia

gn
os

is

In
di

ca
tio

n

R
C

A

C
on

tr
a

-
d

ia
gn

os
is

P

re
ve

n-
tio

ns

P
rin

c
ip

le

S
m

el
ls

Fowler, Kerievsky Informal � � - -  - - -  - - -

Wake Semi-formal � � - � � � �  - - � -

Rook & Lippert Informal � � - - - -   - - - -

A
nt

i-p
at

te
rn

s

Brown Semi-formal � � - � � � �  - - � -

Dudney Semi-formal � � - � � � �  - - � -

Tate Semi-formal � � - � � � � - - - - -

H
eu

ris
tic

s

Riel Informal � � - -  - -  - - - - -

Gibbon Informal � � � - � - - - � - - - 

Grotehen Semi-formal � � � � � � � � -

Frater Informal � - - - - - � - - - - - -

P
itf

al
ls

 Webster Semi- formal � � - - � � � � - - - � -

Daconta Informal � � - -  - - - - - - - -

O
th

er

Marinescu (Flaws) Semi-formal � � - - -  � � - - - -

Marinescu Lanza
(Flaws) Semi-formal � �  - �   � - - - -

Allen (Bug Pat-
terns) Semi-formal � � - � � - � - - - - � -

Bloch (Puzzles) Informal � � - -  -  - - - - - -

Johnson & Foote
(Rules) Informal � � - -  -   - - - - -

Robbins (Critics) Semi-formal � � - - � �  � - - - - -

Telles/Hsieh
(Bugs, Errors) Semi-formal � � - - - � � - - - - - -

Younessi (Design
Defects) Informal � � - - - - - - - - - - -

Visaggio (Ageing
Symptoms) Informal � � - - - - - - - - - - -

Hawkins (Illnesses) Semi-formal � � � - � - � - - - - � -

Lorenz & Kidd
(Thresholds) Semi- formal - -  - � - � � - - - - -

As we can see most quality defects are described in semi-formal templates with varying
grades of information content. True formal templates are currently not developed.

The classifications described in this section can be used on all discovered quality defects.
However, a comprehensive classification that satisfies all previously stated criteria is still
missing.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

31

4.1.3 Comments to the following collection
The literature survey was used to extract data as described in section 3.6 that can be used to
identify Quality Defects. In order to reduce the available information the following require-
ments were applied to filter the information stated for the quality defects. These requirements,
stated in decreasing priority, are:

6. The quality defects should be applicable on the PIM level in MDSD.

7. The quality defects should have a relation to data-intense software systems.

8. The quality defects should focus on behavioral aspects of the system.

9. The quality defects should be visualizable in a single (local) diagram (i.e., no multi-
diagram or distributed defects such as the code smell “Shotgun Surgery”)

In the following lists of quality defects we will denote the individual defect with a “�” if it is
fully applicable, with a “�” if it is partial applicable, with “” if it is irrelevant or counter-
productive (e.g., multi-location defects).

The final selection of quality defects that are targeted with diagnosis techniques (in D4.2) and
that build the basis for the diagnosis tools (in WP9) are described in section 6. Furthermore
the following information is included within the tables:

• Name: The original name of the quality defect as described in the source or a new name
based on the description.

• Type of Quality Defect: A rough classification of the quality defects into structural (Sys-
tem composition), semantical (Name/Identifier based), behavioral (Control flow / state-
ment based), historic (System evolution based, e.g., using CVS, SVN, …), communicative
(Message based), or layout (diagram based) quality defects. The type describes the main
source of information that can be used to diagnose the problem (rule-based, not necessari-
ly statistical).

• Design Entities involved: Larger entities involved in the quality defect – additionally the
required information from the main source of information such as classes, methods, para-
meters (method), attributes (class), notes, statements (method body), versions, calls (me-
thod body or associations), etc.. The design entities do also indicate the information re-
quired to diagnose the quality defects.

• Quality Aspects affected: Only top level aspects from ISO 9126 are used – functionality,
reliability, usability, efficiency, maintainability, and portability. Additionally, the aspects
compilability and conformance are used. As no empirical data is available to support the
effects a concretization to sub-characteristics of ISO 9126 (or another quality framework)
was not pursued.

• Description: Short explanation of the problem.
Most of the 43 concepts are used by more than one author and comprises of several individual
problems. This report summarizes information on the 22 concepts that are used in more than
one publication or that comprises of more than ten individual quality defects.

However, there are 21 more concepts that are either used only by very few authors or com-
prises of very few problems and several terms such as “design problem”, “design error”, “de-
sign fault”, “design failure”, “design malfunction”, “design degradation”, or “design deficien-
cy” were to general and did not result in any information on quality defect collections. The
following list of concepts include term that are often used but are a) rarely used (i.e., only by
one author), b) do not have many quality defects, or c) are on another level than software de-
sign or architecture (e.g., requirements analysis):

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

32

• Refactoring candidates (Kataoka et al., 2001) or Refactoring Opportunities (Melton &
Tempero, 2006) (Tourwé & Mens, 2003) are synonyms to smells and are associated with
one or more specific refactorings.

• Design Disharmonies is a concept used as an umbrella term similar to design flaws
(Marinescu & Lanza, 2006)

• Design Pattern Defects are used to describe recurring errors in the design of a software
that come from the absence or the bad use of design patterns. (Moha et al., 2005)

• Design mistakes is used rarely for development level problems (Becker, 2000a, 2000b)

• Dysfunctional patterns or bad patterns are a kind of anti-patterns, however, they repre-
sent “good” software patterns that are applied in a wrong context (Buschmann et al.,
2007)

• Errors and other quality defects with a focus on security are also described as Vulner-
abilities (e.g., used in (Livshits & Lam, 2005))

• Puzzlers are also described as Traps, Pitfalls, and Corner-Cases (Bloch & Gafter, 2005)

• The concept fallacies is used to describe worst-practices (i.e., anti-patterns) in the soft-
ware engineering discipline but not on the level of source code or models (Glass, 2003)

• The medicine-based term software cancer was used to describe problems on the man-
agement level (Boundy, 1993)

• Clichés (e.g., standard algorithmic fragments or code snippets – such as searching algo-
rithms, sorting algorithms, various data structures for representing sets, etc.) were used in
knowledge-based software development environments (Waters, 1994). In general, they
can be seen as a kind of precursors to software patterns.

• Pratfalls is a term sometimes used in conjunction with pitfalls (Wooldridge & Jennings,
1999)

• The concept Design Problem is used by (Munro, 2005) for problems similar to smells and
flaws.

• Bad design decisions is used in conjunction with smells – especially if these decisions do
occur in multiple systems.

• The term Anti-idioms is used for problems such as “NotWithin” (Schmidmeier, 2004) or
“DoubleCheckedLockingIsBroken” (c2.com).

• Anti-practices are basically process-oriented antipatterns (Kuranuki & Hiranabe, 2004)

• Inconsistencies is also a term used in conjunction with Rules (Liu et al., 2002)

• OOD Criteria (Coad & Edward, 1993) and OO Goodness Criteria (Yourdon, 1993) are
used for general guidelines such as minimize coupling, maximize cohesion, etc.

• Before design patterns became a hype and kind of standardized Tom Love used the con-
cept OOD “patterns” (Love, 1991) (Yourdon, 1993) (page 310) such as “Objects should
not access data defined in their superclasses”

Furthermore, several quality defects we found are platform-specific problems that appear on
the first impression as irrelevant to the platform-independent level. However, as models on
the PIM level are going to be transformed to the PSM level these problems should be taken
into consideration either while modeling the PIM or in the development of PIM to PSM trans-
formers. Being system-independent the consideration of these problems in general-purpose
transformers or quality-checking transformers (i.e., on the PSM level) seems better in order to
not overload the PIM level (that should not consider all platform-specific quality defects, e.g.,

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

33

for Ada or Cobol). Therefore, we integrated platform-specific quality defect concepts in this
report but did not describe every single defect.

Additionally, every missing design or architectural pattern (or style) might be described as an
“Absence of <Pattern>” quality defect (e.g., “Absence of Strategy” or “Absence of MVC”).
While some of these problems are describe under one concept or another a comprehensive
collection of all of the two thousand (Booch, 2007) architecture and design patterns is still
missing (and would require techniques for the identification of design pattern candidates in a
given context).

4.2 Ageing Symptoms
The concept “ageing symptoms” was used by Guiseppe Vissagio (Visaggio, 2001) to
represent problems of a software system during its evolution (i.e., aging). In general, ageing
symptoms are problems that are associated with one or more metric (i.e., concrete symptom)
in order to identify points during the monitoring where the system starts to degrade. In the
literature they are defined as follows:

• “Each [aging symtom] is specified by metrics and the results of the measurements made
suggest what operations should be undertaken to renew the software” (Visaggio, 2001)

In the following sections we will list most of these ageing symptoms that were found in the
literature survey. The first large collection of ageing symptoms were collected by Guiseppe
Vissagio (Visaggio, 2001).

Table 3. Ageing symptoms by (Visaggio, 2001)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Pollution Dynamic,
Structural

Calls Maintainability Parts of the software system do not
serve to realize functionality exploited
by the users.

�  � �

Duplicate programs Semantic Methods,
Statements

Maintainability,
Reliability

Identical source code �  � 

Obsolete programs. Structure Build Info,
Calls

Maintainability Programs that have source code but
no corresponding executable.

  � �

Sourceless pro-
grams.

Structure Build Info,
Calls

Maintainability Executable programs that have no
source code associated.

  � 

Useless compo-
nents.

Data Data Access Maintainability Component produces or modifies
useless reports (i.e., data, files, …)

� � � �

Dead data. Data Data Access,
Attributes

Maintainability Variables created but not used by
any component.

� � � �

Dead code. Control Statements,
Calls

Maintainability Statements that cannot be reached
by the control flow.

�  � �

Embedded know-
ledge

Semantic Methods,
Statements,
Names

Maintainability Knowledge about the system and
domain is spread over the whole
system

�  � 

Incomprehensible
data and modules.

Semantic Docu,
Names

Maintainability Variables or modules whose meaning
cannot be understood from the do-
cumentation.

�  � 

Missing capacities. Structure Functionality,
Methods

Maintainability Functionality that cannot be precisely
localized in the software components

�  � 

Poor lexicon Semantic Names Maintainability The name has only little lexical
meaning or does not communicate

� � � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

34

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

the real meaning/intent.

Inconsistent data
and module names.

Semantic Names Maintainability Data or modules whose name does
not express their meaning.

� � � �

Coupling Structure,
Control

Calls, Inhe-
ritance

Maintainability Parts are linked by an extensive
network of data or control flows.

� � � �

Pathological files. Structure Data Access Maintainability Files created or modifies by different
programs

� � � �

Control data. Structure Statements,
Data Access

Maintainability Data that create communication
among components

� � � �

Module complexity. Structure Statements Maintainability Complexity by too many (algorithmic
or procedural) if-statements

�  � �

Layered architec-
tures

Structure Architecture,
Calls

Maintainability Architecture consists of different
solutions that can no longer be sepa-
rated

�  � �

Useless Files. Data Statements,
Data Access

Maintainability A file not used or used by an useless
program

� � � �

Obsolete files. Data Statements,
Data Access

Maintainability The software uses a file but does not
create new records.

� � � �

Temporary files. Data Statements,
Data Access

Maintainability A temporary file is created, read but
not updated and deleted by the sys-
tem.

� � � �

Permanent files. Data Statements,
Data Access

Maintainability A file that is created, used, modified
but not cancelled (i.e., deleted)

� � � �

Anomalous files. Data Statements,
Data Access

Maintainability The records of the file are not created
but read, modified, and cancelled.

� � � �

Semantic redundant
data.

Semantic Names Maintainability Variables or data with synonymous
meaning or a “parent-child” inclusion

� � � 

Computational re-
dundant data.

Data Data Access Maintainability Datum A can be calculated using
other, available data (e.g. A = f(B,C))

� � � 

Structure data. Data Data Maintainability Data has no connection to the do-
main but supports the DB structure
(e.g., checksums)

� �  

Superimposed data
structure.

Data Statements,
Data Access

Maintainability Data structures that share the same
address space

� �  

4.3 Anomalies
A concept that origin from a general term is the “anomaly” concept. The term was used in a
IEEE standard (IEEE-1044, 1995) to describe anomal effects in a software system. Further-
more, the term is often used to describe unspecific situations in a software analysis (e.g., out-
lier). However, the term was additionally used in many other publications to describe concrete
system-independent problems. These anomalies represent problematic parts of the software
system that seem wrong, complicated, or cumbersome to an experienced developer. In gener-
al, anomalies are problems that are associated with one or more specific refactorings (i.e.,
concrete treatments) that might be applied to remove the anomalies. In the literature they are
defined as follows:

• “An anomaly is any condition that departs from the expected.” (IEEE-1044, 1995)

• “[anomalies are] properties inherent in implausible programs”(Kasyanov, 2001)

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

35

• “… anomalies which are symptomatic of programming errors” (Taylor & Osterweil,
1980)

Beside the anomalies on the code or design levels many other problems were described using
the anomaly metaphor. Today, we have anomalies on different abstraction layers, for devel-
opment phases, or technologies such as concurrent software (Taylor & Osterweil, 1980), dis-
tributed systems (Cheung & Kramer, 1993), or knowledge bases (Baumeister et al., 2004).

In the following sections we will list most of these anomalies that were found in the literature
survey. The first large collection of anomalies were collected by Kasyanov:

Table 4. Anomalies by (Kasyanov, 2001)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Non-initialized va-
riables.

Control Statements Maintainability,
Reliability

An "information incomplete" execu-
tion, having the property that the
value of a variable is referred to be-
fore any assignment to that variable.

�  � �

Infinite execution. Control Statements Maintainability,
Reliability

A program is unable to pass through
some of its points in its finite execu-
tions.

�  � �

Useless objects. Control Statements Maintainability A variable (or procedure, mode and
so on) has an explicit declaration but
no uses, or a statement belongs to
none of the program executions.

�  � �

Redundant actions Control Statements Maintainability,
Reliability

A given program contains a state-
ment that does not affect the results
of all program executions.

�  � �

Nonnatural con-
structions

Control Statements Maintainability Some language construction used in
a given program is more universal
and/or complicated than the program
actions represented by this construc-
tion.

�  � �

Conflicting execu-
tions

Control Statements Maintainability,
Reliability

Results of some collaterally eva-
luated fragments can depend on the
way in which their evaluations are
merged.

�  � 

Semantically inad-
missible or unde-
fined constructions

Control Statements Maintainability,
Reliability

An execution in which an index does
not lie within the bounds of an array,
illegal recursion, illegal side-effects,
etc.

�  � �

Absolute implausi-
bility

Control Statements Maintainability,
Reliability,
Functionality

A program is called an absolutely
implausible one if it has only mea-
ningless executions (i.e. it has no
executions without anomalies).

�  � �

Table 5. Concurrent Anomalies by (Taylor & Osterweil, 1980)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Referencing an
uninitialized varia-
ble.

Control Attributes,
Statements

Maintainability,
Reliability

An execution during which an event
sequence of the form “purp” (arbitrary
Program, Undefine, Reference, arbi-

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

36

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

trary Program) for some program
variable.

A dead definition of
a variable.

Control Attributes,
Statements

Maintainability,
Efficiency

An execution during which an event
sequence the form “pddp” (arbitrary
Program, Define, Define, arbitrary
Program) for some variable.

�  � �

Waiting for an un-
scheduled process.

Control Attributes,
Statements

Maintainability,
Efficiency,
Reliability

This anomaly is represented by the
event expression “puwp” (arbitrary
Program, Undefine, Wait, arbitrary
Program)

�  � �

Scheduling a
process in parallel
with itself.

Control Attributes,
Statements

Maintainability,
Efficiency,
Reliability

This anomaly is represented by the
event expression "pssp" (arbitrary
Program, Schedule event, Schedule
event, arbitrary Program)

�  � �

Waiting for a
process guaranteed
to have previously
terminated.

Control Attributes,
Statements

Maintainability,
Efficiency

The expression “pwwp” (arbitrary
Program, Wait, Wait, arbitrary Pro-
gram) is symptomatic of this condi-
tion.

�  � �

Referencing a vari-
able which is being
defined by a parallel
process.

Control Attributes,
Statements

Maintainability,
Reliability

For some variable both the event
sequence “ps0rdp” (P, S, Reference,
Define, P) and the event sequence
“ps0drp” (P, S, Define, Reference, P)
are possible.

�  � �

Referencing a vari-
able whose value is
indeterminate.

Control Attributes,
Statements

Maintainability,
Reliability

There exists a wait w0 and two sepa-
rate definition points for a given vari-
able, d1 and d2, such that both the
event expressions “pd1d2w0r” and
"pd2d1w0r" are possible.

�  � �

4.4 Anti-guidelines
Corrupt guidelines were used by Roedy Green in his essay “How To Write Unmaintainable
Code“ to describe how (not) to write good code (Green, 1996). We call the guidelines for un-
maintainable code simply “anti-guidelines”. These anti-guidelines represent problematic nam-
ing, comments, etc. in the software system that are misleading, wrong, complicated, or cum-
bersome to a developer or maintainer. In the literature they are defined as follows:

• “[anti-guidelines are] tips … on how to write code that is so difficult to maintain …”
(Green, 1996)

As many of these anti-guidelines are similar (i.e., naming problems) or platform-specific only
an excerpt of the 193 documented anti-guidelines in (Green, 1996) is given in the following
table:

Table 6. Anti-Guidelines for Unmaintainable Code by (Green, 1996)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

A.C.R.O.N.Y.M.S. Semantic Names Maintainability Use acronyms to keep the code
terse. Real men never define acro-
nyms; they understand them geneti-

� � � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

37

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

cally.

Reuse Names Semantic Names Maintainability Wherever the rules of the language
permit, give classes, constructors,
methods, member variables, parame-
ters and local variables the same
names.

� � � �

Recycle Your Va-
riables

Semantic Names Maintainability Wherever scope rules permit, reuse
existing unrelated variable names.

� � � �

Code That Masque-
rades As Comments
and Vice Versa

Semantic Names Maintainability Include sections of code that is com-
mented out but at first glance does
not appear to be.

� � � �

Code Names Must
Not Match Screen
Names

Semantic Names Maintainability Choose your variable names to have
absolutely no relation to the labels
used when such variables are dis-
played on the screen.

� � � �

Document How Not
Why

Semantic Names Maintainability Document only the details of what a
program does, not what it is attempt-
ing to accomplish.

� � � �

4.5 Anti-patterns
In the nineties of the last century a new concept was transferred from architecture to computer
science that helped to represent typical and reoccurring patterns of good and bad software
architectures. These design patterns (Gamma et al., 1994) were the start of the description of
many patterns in diverse software phases and products. Today, we have thousands of patterns
(Rising, 2000) for additional topics such as software reuse (Long, 2001), agile software
projects (Andrea et al., 2002) or pedagogies (http://www.pedagogicalpatterns.org/) (Abreu,
1997; Fincher & Utting, 2002). Many other patterns are stored in pattern repositories such as
the Portland pattern repository (PPR, 2005) or the hillside pattern library (HPL, 2005) and are
continuously expanded over conferences such as PLOP (Pattern Languages of Programming;
see http://hillside.net/conferences/).

The concept of patterns is used to describe the experience and knowledge that was acquired
during projects and have been proven beneficial.

Contrary to (design) patterns, anti-patterns (Brown et al., 1998) are descriptions of problems
that commonly occur in software products, processes and projects. Similar to patterns these
anti-patterns are described semi-formal based on different templates (Brown et al., 1998) that
consist of informal textual or graphical descriptions. However, while patterns typically state
and emphasize a single solution to multiple problems, anti-patterns typically state and em-
phasize a single problem that has potentially multiple solutions. In the literature they are de-
fined as follows:

• “An Antipattern is a literary form that describes a commonly occurring solution to a
problem that generates decidedly negative consequences” (Brown et al., 1998)

• “Antipatterns identify common mistakes” and “An Antipattern is defined as a ‘commonly
occuring solution to a problem that generates decidedly negative consequences’” (Brown
et al., 1999)

• "An 'antipattern' is similar to a pattern except that it is an obvious but wrong solution to a
problem." (Long, 2001)

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

38

• “… antipatterns describe solutions that have more negative consequences than positive
benefits.” (Laplante & Neill, 2006)

• "An antipattern is a repeated application of code or design that leads to a bad outcome"
(Dudney et al., 2002)

• "Anti-patterns, also called pitfalls, are classes of commonly-reinvented bad solutions to
problems. They are studied as a category so they can be avoided in the future, and so in-
stances of them may be recognized when investigating non-working systems." (Wikipedia,
http://en.wikipedia.org/wiki/Antipattern)

• "An AntiPattern is a pattern that tells how to go from a problem to a bad solution." (Wi-
kiWikiWeb, http://c2.com/cgi/wiki?AntiPattern)

In summary antipatterns are "bad", "negative", or "worst practices" that describe one problem
with potentially many solutions and patterns are "good", "positive", or "best practices" that
describe one solution with potentially many problems.

In the following sections we will list most of these anti-patterns that were found in the litera-
ture survey. The first large collection of anti-patterns were collected by William J. Brown,
Raphael C. Malveau, Hays W. “Skip McCormick III, and Thomas J. Mowbray (Brown et al.,
1998).

Table 7. Antipatterns by (Brown et al., 1998)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

The Blob (God
Class)

Structural Classes,
Associations

Maintainability,
Portability

Classes with too many functionality
and associations to other classes.

�  � �

Lava Flow Structural,
Control

Classes,
Statements,
Associations

Maintainability,
Portability

Old or dead code of deprecated or
speculative features.

�  � �

Functional Decom-
position

Structural Classes,
Associations

Maintainability,
Portability

Non-OO design is coded in OO lan-
guage – e.g., by using only one me-
thod in a class.

�  � �

Poltergeists Control,
Dynamic

Classes,
Statements,
Associations

Maintainability,
Portability

Classes have very limited roles and
life cycles – often starting processes
for other objects.

�  � �

Spaghetti code Structural,
Control

Classes,
Methods,
Calls

Maintainability,
Reliability

Classes call many other classes and
the coupling between classes is high.
The control flow is jumping through
too many classes without clear
boundaries.

�  � �

Cut & Paste Pro-
gramming

Semantic,
Control

Methods,
Statements

Maintainability,
Reliability

Code reuse by copying source
statements.

�  � 

Stovepipe system Structural,
Control

Packages,
Classes,
Statements

Maintainability Many different solutions and absence
of abstractions (e.g., large packages,
no layers, etc.)

�   �

Furthermore, many anti-patterns were described for J2EE, EJB, or Java. As these anti-patterns
are platform-specific only an excerpt of the 52 documented J2EE anti-patterns in (Dudney et
al., 2002), the XX EJB anti-patterns in (Tate et al., 2003), or the XX Java and J2EE anti-
patterns in (Tate, 2002) are given in the following tables:

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

39

Table 8. Antipatterns by (Dudney et al., 2002)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Localizing Data Structure Classes,
Statements

Portability Data is stored and handled in only
one location by one element.

� �  �

Multiservice Structure Classes,
Methods,
Interfaces

Maintainability A service (e.g., class or component)
with a large number of public inter-
faces (resp. responsibilities)

� �  �

Tiny Service Structure Classes,
Methods,
Interfaces

Maintainability,
Efficiency

A service that only implements a
subset of the necessary functionality
– resulting in the need to use multiple
services for one task.

� � � �

Too much Code Control Classes,
Methods

Maintainability,
Portability

Too much code ended up in the JSP
(or GUI representation).

� �  �

Sessions A-Plenty Control Classes,
Methods

Maintainability,
Portability

Using sessions for problems that
don’t need them

� � � �

Bloated Session Structure Classes,
Methods,
Interfaces

Maintainability A large Session Bean that imple-
ments too many different abstrac-
tions.

� �  �

Large Transaction Structure Methods Maintainability,
Efficiency

A transactional session method that
implements a long, complicated
process and involves a lot of re-
sources.

� � � �

Transparent Façade Structure,
Semantic

Classes,
Methods,
Interfaces

Maintainability A façade that directly matches the
underlying component – not a coars-
er-grained interaction.

� �  �

Table 9. Java Antipatterns by (Tate, 2002)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l
Too many web page
items

Structure,
Control

JSP, HTML
page

Efficiency Loading too many large items such
as graphics.

� �  �

Excessive Layering Structure Classes,
Inheritance,
Layers

Maintainability Far too many layers of abstraction –
e.g., of services or inheritance.

� �  �

Magic Servlet Structure Classes,
Methods,
Interfaces

Maintainability A servlet that does all or most of the
work itself.

� �  �

Monolithic JSP Structure Classes,
Calls, State-
ments

Maintainability A JSP that shows the absence of
model-view-controller separation.

� �  �

The Cachless Cow Control,
Dynamic

Statements Efficiency Content is very often reloaded with-
out using a cache

� � � �

Lapsed Listeners
Leak

Control Statements Efficiency,
Reliability

An event listener is registered without
being removed.

� � � �

The Leak Collection Control Statements Efficiency A collection keeps references to
objects that will not be used any-
more, until the collection is destroyed
late in the lifecycle.

� � � �

Connection Thrash-
ing

Control Statements Efficiency Connections to databases are conti-
nuously created and destroyed.

� � � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

40

Table 10. EJB Antipatterns by (Tate et al., 2003)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Local & Remote
Interfaces

Structure Classes,
Methods,
Interfaces

Maintainability A class that supports both local and
remote interfaces.

� �  �

Swallowing Excep-
tions

Structure,
Semantic

Classes,
Methods,
Exceptions

Maintainability,
Reliability

Exceptions are not handled but only
logged

� � � �

Narrow Servlet
Bridges

Structure Servlets,
Bridges

Maintainability Too many Bridges for the servlets � �  �

Fat Message Structure,
Control

Classes,
Statements

Efficiency The same message type is used for
all situations.

� � � �

Skinny Message Structure,
Control

Classes,
Statements

Efficiency Messages that don’t contain enough
information and require the reload of
additional information.

� � � �

Monolithic Consum-
er

Structure,
Control

Classes,
Statements

Maintainability Inlining business logic in classes that
consumes a message.

� � � �

Hot Potato Control,
Dynamic

Classes,
Statements

Efficiency A message is tossed back and forth –
sometimes because it was not ac-
knowledged.

� � � �

Face Off Structure Beans, Calls Maintainability,
Reliability

A client is directly accessing entity
beans.

�  � �

Hallal et al. have catalogued 38 anti-patterns that relate to multithreading, concurrency, and
synchronization in Java. As they have not provided an extensive description of these anti-
patterns we list only a subset described in their paper:

Table 11. Multithread Antipatterns by (Hallal et al., 2004)

Name
Type of

Quality De-
fect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Synchronized me-
thod call in cycle of
lock graph.

Control Classes,
Methods,
Statements

Efficiency,
Reliability

Synchronized methods call each
other (in a loop).

�  � �

Unsynchronized
spin-wait.

Control Classes,
Methods,
Statements

Efficiency,
Reliability

An unsynchronized loop, whose
exit condition is controlled by
another thread - resulting in the
exhaustive use of resources
(CPU) and thread stalls.

�  � �

Non synchronized
run() method.

Control Classes,
Methods,
Statements

Reliability Different threads are started for
an unsynchronized object that
implements the Runnable inter-
face.

�  � �

Internal call of a
method.

Control Classes,
Methods,
Statements

Efficiency,
Reliability

One thread gets the monitor
(lock) several times in a nested
way.

�  � �

wait() is not in loop. Control Statements Reliability wait() is used without a loop – but
the condition might already have
changed.

�  � �

Double call of the
start() method of a
thread.

Control Classes,
Methods,
Statements

Efficiency,
Reliability

The start() method call is used
more than once for the same
thread.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

41

Table 12. Performance Antipatterns by (Parsons & Murphy, 2004a, 2004b)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Too Many Remote
Calls

Structure,
Control

EJB Beans Efficiency Loading too many large items such
as graphics or data from remote
places (e.g., using getter methods).

� � � �

Aggressive Loading
of Entities

Structure,
Control

EJB Beans Efficiency The loading of an instance of a sin-
gle entity bean may result in the
loading of numerous entity beans
from the database, producing a large
entity bean graph.

� � � �

Smith and Williams (Smith & Williams, 2001, 2002, 2003) describe and list several perform-
ance antipatterns. However, as some of them are abstract and not applicable on the architec-
ture and design level only an excerpt is listed in Table 13.

Table 13. Performance Antipatterns by (Smith & Williams, 2001, 2002, 2003)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Empty Semi Trucks Structure,
Control

Classes,
Statements

Efficiency,
Reliability

Occurs when an excessive number of
requests is required to perform a
task.

� � � �

Roundtripping Structure,
Control

Classes,
Statements

Efficiency,
Reliability

Many fields in a user interface must
be retrieved from a remote system.

� � � �

Sisyphus Database
Retrieval

Structure,
Control

Classes,
Statements

Efficiency,
Reliability

Special case of The Ramp. Occurs
when performing repeated queries
that need only a subset of the results.

� � � �

More is Less Control,
Dynamic

Classes,
Statements

Efficiency,
Reliability

Too many processes relative to
available resources.

 � � �

“god” Class Structural Classes,
Attributes,
Associations

Efficiency Occurs when a single class either 1)
performs all of the work of an applica-
tion or 2) holds all of the application’s
data. Either manifestation results in
excessive message traffic that can
degrade performance.

� � � �

Excessive Dynamic
Allocation

Control,
Dynamic

Classes,
Statements

Efficiency Occurs when an application unnec-
essarily creates and destroys large
numbers of objects during its execu-
tion. The overhead required to create
and destroy these objects has a
negative impact on performance.

� � � �

Circuitous Treasure
Hunt

Control,
Dynamic

Classes,
Statements

Efficiency Occurs when an object must look in
several places to find the information
that it needs. If a large amount of
processing is required for each “look,”
performance will suffer.

� � � �

Finally, larger collections such as Reuse Antipatterns by (Long, 2001) or Managerial Antipat-
terns by (Laplante & Neill, 2006) are too general to apply to the architecture or design level.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

42

4.6 Bug Patterns
The concept “bug pattern” was coined by Eric Allen in the Book “Bug Patterns in Java” (Al-
len, 2002). These patterns represent problematic parts of the software system that seem
wrong, complicated, or cumbersome to an experienced developer. In general, bug patterns are
problems that are associated with one or more specific refactorings (i.e., concrete treatments)
that might be applied to remove the patterns. In the literature they are defined as follows:

• “[bug patterns are] recurring relationships between signaled errors and underlying bugs
in a program” (Allen, 2002)

• “A bug pattern is an abstraction of a recurring bug. In other words, a bug pattern is a
literary form that describes a commonly occurring error in the implementation of the
software design.” (Farchi et al., 2003)

• “Bug patterns are code idioms that are often errors.” (D. H. Hovemeyer, 2005)

The concept of bug patterns is used to describe the experience and knowledge that was ac-
quired by experts and have been proven beneficial.

Beside the bug patterns on the code or design levels many other problems were described us-
ing this metaphor. Today, we have bug patterns on different abstraction layers, for develop-
ment phases, or technologies such as concurrent bug patterns (Farchi et al., 2003), multi-
threaded systems (Copty & Shmuel, 2005), performance bug patterns (Galvans, 2006), or bug
patterns in general java systems (D. H. Hovemeyer, 2005).

In the following sections we will list most of these bug patterns that were found in the litera-
ture survey. The first large collection of bug patterns were collected by Eric Allen (Allen,
2002).

Table 14. Bug Patterns by (Allen, 2002)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l
The Rogue Tile Semantic Methods,

Statements
Maintainability,
Reliability

Bug seems to be fixed, but copy and
paste spread it all over the sources --
Use type system inheritance, not the
copy and paste derivate.

�  � 

The Dangling Com-
posite

Control Statements Reliability Code that uses a recursively defined
data type is signaling a NullPointe-
rException.

�  � �

The Null Flag Control Statements Reliability A code block that uses null pointers
as flags for exceptional conditions
signals a NullPointerException.

�  � �

The Double Descent Control Statements Reliability A ClassCastException is thrown
during recursion -- make only one
recurrent step at a time, check your
invariants.

�  � �

The Liar View Control Statements Reliability A GUI program passes a suite of
tests, but then exhibits behaviour that
should’ve been ruled out by those
tests.

  � 

Saboteur Data Control Statements Reliability Input data in an invalid format crash-
es your application - Always parse
input data, e.g. with regular expres-
sions or with a full featured parser
generator, never ever specify the
user behavior.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

43

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

The Broken Dis-
patch

Control Methods,
Statements

Maintainability,
Reliability

Overloading a method breaks some
test cases because the wrong im-
plementation will be called.

�  � �

The Impostor Type Control Classes,
Attributes,
Statements

Maintainability,
Reliability

Using special fields inside classes to
distinguish conceptually distinct sub-
types.

� � � �

The Split Cleaner Control Classes,
Statements

Maintainability,
Reliability

Not all resources are cleaned (espe-
cially when an exception is thrown) --
use try ... finally ...

�  � �

The Fictitious Im-
plementation

Control Classes,
Methods,
Statements

Maintainability,
Reliability

A certain implementation of an inter-
face breaks some invariants.

�  � �

The Orphaned
Thread

Control Classes,
Attributes,
Statements

Maintainability,
Reliability

A multithreaded program locks up
with or without printing a stack trace
to standard error.

�  � �

The Run-On Initiali-
zation

Control Classes,
Attributes,
Methods

Maintainability,
Reliability

Not all fields of a class are initialized
properly -- initialize all fields in the
constructor.

�  � �

Table 15. Bug Patterns by (Farchi et al., 2003)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Nonatomic Opera-
tions Assumed to
Be Atomic

Control Statements Reliability An operation that "looks" like one
operation in one programmer model
(e.g., the source code level) but ac-
tually consists of several unprotected
operations at the lower abstraction
levels (e.g., bytecode).

�  � �

Two-Stage Access Control Statements Reliability A sequence of operations needs to
be protected but the programmer
wrongly assumes that separately
protecting each operation is enough.

�  � �

Wrong Lock or No
Lock

Control Statements Reliability A code segment is protected by a
lock but other threads do not obtain
the same lock instance when execut-
ing.

�  � �

Double-checked
Locking

Control Methods,
Statements

Reliability When an object is initialized, the
thread local copy of the object’s field
is initialized but not all object fields
are necessarily written to the
heap. This might cause the object to
be partially initialized while its refer-
ence is not null.

�  � �

The sleep() Control Statements Reliability It is assumed that a child thread
should be faster than the parent
thread and an "appropriate" sleep() is
added to the parent thread. However,
the parent thread may still be quicker
in some environment.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

44

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Losing a Notify Control Statements Reliability A notify() is executed before its cor-
responding wait(), the notify() has no
effect and is lost.

�  � �

A "Blocking" Critical
Section

Control Statements Reliability A thread is assumed to eventually
return control but it never does. This
situation may occur in a critical sec-
tion protocol.

�  � �

The Orphaned
Thread

Control Statements Reliability A single, master thread drives the
actions of the other threads via mes-
sages, often by placing them on a
queue, that are then processed by
the other threads. If the master
thread terminates abnormally, the
remaining threads may continue to
wait on more input to the queue and
causing the system to hang.

�  � �

Table 16. Bug Patterns by (D. Hovemeyer & Pugh, 2004)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Cloneable Not Im-
plemented Correctly

Control Statements Reliability A class implements the Cloneable
interface and does not call su-
per.clone()

�  � �

Double Checked
Locking

Control Statements Reliability,
Maintainability

Usage of the double checked locking
pattern that doesn’t work

�  � �

Dropped Exception Control Statements Reliability A try-catch block where the catch
block is empty and the exception is
slightly discarded.

�  � �

Suspicious Equals
Comparison

Control,
Structure

Statements,
Inheritance,
Methods

Reliability,
Maintainability

Two objects of types known to be
incomparable are compared using
the equals() method.

�  � �

Bad Covariant Defi-
nition of Equals

Structure Statements,
Inheritance,
Methods

Reliability,
Maintainability

A covariant version of equals() does
not override the version in the Object
class, which may lead to unexpected
behavior at runtime

�  � �

Equal Objects Must
Have Equal Hash-
codes

Structure Statements,
Inheritance,
Methods

Reliability,
Maintainability

A class overrides equals() but not
hashCode().

�  � �

Inconsistent Syn-
chronization

Control Statements,
Attributes

Reliability Access is allowed to mutable fields
without synchronization - fields which
are sometimes accessed with the
lock held and sometimes without are
candidate instances of this bug pat-
tern.

�  � �

Static Field Modifia-
ble By Untrusted
Code

Control Statements,
Attributes

Reliability Untrusted code is allowed to modify
static fields, thereby modifying the
behavior of the library for all users.

�  � �

Null Pointer Derefe-
rence

Control Statements Reliability A null value might be dereferenced

�  � �

Redundant Compar-
ison to Null

Control Statements Reliability Comparisons in which the outcome is
fixed because either both compared

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

45

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

values are null, or one value is null
and the other non-null.

Non-Short-Circuit
Boolean Operator

Control Statements Reliability,
Maintainability

Use of a non-short-circuit boolean
operator where they intended to use
a short-circuiting boolean operator.

�  � �

Open Stream Control Statements Reliability A program opens an input or output
stream, without closing it.

� � � �

Read Return Should
Be Checked

Control Statements Reliability It is incorrectly assume that read()
methods always return the requested
number of bytes.

�  � �

Return Value
Should Be Checked

Control Statements Reliability The return value of a method call on
an immutable object is ignored.

�  � �

Non-serializable
Serializable Class

Structure,
Control

Classes,
Inheritance,
Attributes

Reliability Classes that implement the Serializ-
able interface but which cannot be
serialized – e.g., due to the fact that
the superclass of the class is not
serializable

�   �

Uninitialized Read
In Constructor

Control Statements Reliability An unitialized field is read before it is
written (in a constructor).

�  � �

Unconditional Wait Control Statements Reliability Code where a monitor wait is per-
formed unconditionally upon entry to
a synchronized block – i.e., a notifica-
tion performed by another thread
could be missed.

�  � �

Wait Not In Loop Control Statements Reliability A lock is not rechecked - there is a
window between the time that the
waiting thread is woken and when it
reacquires the lock, during which
another thread could cause the con-
dition to become false again.

�  � �

4.7 Critic Rules
The concept “critic rules” was one of the first concepts used in the diagnosis of problems in
software design. It was coined by Jason E. Robbins in his Ph.D. research (Robbins, 1999) and
was implemented in the ArgoUML software design environment. These critic rules represent
problematic parts of the software system that detects the break of C2 style guidelines. The
design environment does not critique the design so much as the objects in the design represen-
tation critique themselves. In general, critic rules are potential problems the designer should
reflect about with subjectively defined priorities, and that are associated with one or more
specific treatments (i.e., “add subclass”). In the literature they are defined as follows:

• “Critics are active agents that continually check the design for errors or areas needing
improvement” (Robbins, 1999)

• “[Critic rules] comment on high-level design issues rather than diagram completeness”
(Coelho & Murphy, 2007)

• “The output of a critic is a critique—a statement about some aspect of the model that does
not appear to follow good design practice.” (ArgoUML, 2007)

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

46

The following table list several of the critic rules described by Robbins et al. – however, some
rules were excluded as they commune comments by colleagues such as “Portability Question-
able” or check against stated goals such as “Not enough Reusable Components”.

Table 17. Design Critic Rules by (Robbins, 1998, 1999; Robbins et al., 1997, 1998a, 1998b; Rob-
bins et al., 1998c; Robbins & Redmiles, 1998, 2000)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Interface Mismatch Structure Classes,
Calls

Maintainability,
Compilability

Component needs certain messages
be sent or received.

�  � �

Direct Connection Structure Classes,
Calls

Maintainability,
Compilability

Violation of C2 style guideline – no
message bus is used to add compo-
nents after deployment.

�  � �

Missing Memory
Requirements

Control Requirement,
Statements

Efficiency,
Reliability

The memory required to run this
component has not been specified.

  � �

Component Choice Structure Classes Maintainability Other components could fit in place
of the existing component.

�   �

Too Much Memory Control Requirement,
Statements

Efficiency,
Reliability

Calculated memory requirements
exceed stated goals.

  � �

Too Many Compo-
nents

Structure Classes,
Calls

Maintainability There are too many components at
the same level of decomposition.

�   �

Generator Limitation ? Classes,
Calls

Compilability The code generator cannot make full
use of this component.

Invalid Connection Structure Classes,
Calls

Maintainability,
Compilability

Mandatory message signatures not
satisfied by adjacent components in
the conceptual architecture

�  � �

After the dissertation of Jason E. Robbins the critiques in ArgoUML were advanced and the
collection of critics was extended.

Table 18. Additional Critics in ArgoUML (ArgoUML, 2007)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

15.3.1. Wrap Data-
Type

Structure Classes Maintainability Wrong usage of DataTypes within
UML 1.4.

�   �

15.3.2. Reduce
Classes in diagram

Structure Classes,
Diagrams

Maintainability Too many classes on a diagram. �   �

15.3.3. Clean Up
Diagram

Structure Model ele-
ments, Dia-
grams

Maintainability Model elements are overlapping. �   �

15.4.1. Resolve
Association Name
Conflict

Structure Associations Compilability Two associations in the same na-
mespace have the same name

�   

15.4.2. Revise
Attribute Names to
Avoid Conflict

Structure Attributes Compilability Two attributes of a class have the
same name

�   �

15.4.3. Change
Names or Signatures
in a model element

Structure Attributes Compilability Two methods have the same signa-
ture

�   �

15.4.4. Duplicate Structure Associations Compilability The specified association has two �   �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

47

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

End (Role) Names
for an Association

(or more) ends (roles) with the same
name. One of the well-formedness
rules in UML 1.4 for associations, is
that all end (role) names must be
unique.

15.4.5. Role name
conflicts with mem-
ber

Structure Associations Compilability,
Maintainability

A suggestions that good design
avoids role names for associations
that clash with attributes or methods
of the source class. Roles may be
realized in the code as attributes or
operations, causing code generation
problems.

�   �

15.4.6. Choose a
Name (Classes and
Interfaces)

Structure Classes,
Names

Compilability,
Maintainability

The class or interface concerned
has been given no name (it will
appear in the model as Unnamed)

�   �

15.4.7. Choose a
Unique Name for a
model element
(Classes and Inter-
faces)

Semantic Associations,
Names

Compilability,
Maintainability

Suggestion that the class or inter-
face specified has the same name
as another (in the namespace),
which is bad design and will prevent
valid code generation.

�   �

15.4.8. Choose a
Name (Attributes)

Structure Attributes,
Names

Compilability,
Maintainability

The attribute concerned has been
given no name (it will appear in the
model as (Unnamed Attribute)).

�   �

15.4.9. Choose a
Name (Operations)

Structure Methods,
Names

Compilability,
Maintainability

The operation concerned has been
given no name (it will appear in the
model as (Unnamed Operation)).

�   �

15.4.10. Choose a
Name (States)

Structure States,
Names

Compilability,
Maintainability

The state concerned has been given
no name (it will appear in the model
as (Unnamed State)).

�   �

15.4.11. Choose a
Unique Name for a
(State related) model
element

Semantic States,
Names

Compilability,
Maintainability

The state specified has the same
name as another (in the current
statechart diagram), which will pre-
vent valid code generation.

�   �

15.4.12. Revise
Name to Avoid Con-
fusion

Semantic Names Maintainability Two names in the same namespace
have very similar names (differing
only by one character).

�  � �

15.4.13. Choose a
Legal Name

Semantic Names Compilability,
Conformance,
Maintainability

All model element names in Ar-
goUML must use only letters, digits
and underscore characters.

�  � �

15.4.14. Change a
model element to a
Non-Reserved Word

Semantic Names Compilability,
Conformance,
Maintainability

Suggestion that this model element's
name is the same as a reserved
word in UML (or within one character
of one), which is not permitted.

�   �

15.4.15. Choose a
Better Operation
Name

Semantic Methods,
Names

Conformance,
Maintainability

An operation has not followed the
naming convention that operation
names begin with lower case letters.

�   �

15.4.16. Choose a
Better Attribute
Name

Semantic Attribute,
Names

Conformance,
Maintainability

An attribute has not followed the
naming convention that attribute
names begin with lower case letters.

�   �

15.4.17. Capitalize
Class Name

Semantic Classes,
Names

Conformance,
Maintainability

A class has not followed the naming
convention that classes begin with
upper case letters.

�   �

15.4.18. Revise
Package Name

Semantic Package,
Names

Conformance,
Maintainability

A package has not followed the
naming convention of using lower
case letters with periods used to
indicated sub-packages.

�   �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

48

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

15.5.2. Add Instance
Variables to a Class

Structure Classes,
Attributes

Conformance,
Maintainability

No instance variables have been
specified for the given (non-
<<utility>>) class.

�   �

15.5.3. Add a Con-
structor to a Class

Structure Classes,
Methods

Reliability,
Maintainability

Not all of the classes attributes have
initial values and the class has no
constructor. Constructors initialize
new instances such that their
attributes have valid values.

�  � �

15.5.4. Reduce
Attributes on a Class

Structure Classes,
Attributes

Maintainability The class has too many attributes
for a good design, and is at risk of
becoming a design bottleneck.

�   �

15.6.1. Operations in
Interfaces must be
public

Structure Classes,
Methods

Compilability,
Maintainability

Non-public operations in Interfaces �   �

15.6.2. Interfaces
may only have oper-
ations

Structure Classes,
Attributes

Conformance An interfaces has attributes defined.
The UML standard defines interfac-
es to only have operations.

�   �

15.6.3. Remove
Reference to Specif-
ic Subclass

Structure Classes,
Attributes

Conformance A class should not reference its
subclasses directly through
attributes, operations or associa-
tions.

�   �

15.7.1. Reduce
Transitions on
<state>

Structure States Maintenance State is involved in so many transi-
tions it may be a maintenance bot-
tleneck.

�  � �

15.7.2. Reduce
States in machine
<machine>

Structure States Maintenance State machine has so many states
as to be confusing and should be
simplified

�  � �

15.7.3. Add Transi-
tions to <state>

Structure States Compilability State requires both incoming and
outgoing transitions

�  � �

15.7.4. Add Incoming
Transitions to <mod-
el element>

Structure States Compilability State requires incoming transitions �  � �

15.7.5. Add Outgoing
Transitions from
<model element>

Structure States Compilability State requires outgoing transitions �  � �

15.7.6. Remove
Extra Initial States

Structure States Compilability,
Conformance

There is more than one initial state
in the state machine or composite
state, which is not permitted in UML

�  � �

15.7.7. Place an
Initial State

Structure States Compilability,
Conformance

There is no initial state in the state
machine or composite state.

�  � �

15.7.8. Add Trigger
or Guard to Transi-
tion

Structure States, Tran-
sitions

Compilability,
Conformance

A transition is missing either a trig-
ger or guard, one at least of which is
required for it to be taken.

�  � �

15.7.9. Change Join
Transitions

Structure States, Tran-
sitions

Compilability,
Conformance,
Maintainability

The join pseudostate has an invalid
number of transitions. Normally
there should be one outgoing and
two or more incoming.

�   �

15.7.10. Change
Fork Transitions

Structure States, Tran-
sitions

Compilability,
Conformance,
Maintainability

the fork pseudostate has an invalid
number of transitions. Normally
there should be one incoming and
two or more outgoing.

�   �

15.7.11. Add
Choice/Junction
Transitions

Structure States, Tran-
sitions

Compilability,
Conformance,
Maintainability

The branch (choice or junction)
pseudostate has an invalid number
of transitions. Normally there should
be at least one incoming transition

�   �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

49

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

and at least one outgoing transition.

15.7.12. Add Guard
to Transition

Structure States, Tran-
sitions

Compilability,
Conformance,
Maintainability

Transition requires a guard �   �

15.7.14. Make Edge
More Visible

Structure States, Tran-
sitions

Maintainability An edge model element such as an
association or abstraction is so short
it may be missed.

�   �

15.7.15. Composite
Association End with
Multiplicity > 1

Structure Classes,
Attributes

Compilability An instance may not belong by
composition to more than one com-
posite instance.

�   �

15.8.1. Consider
using Singleton
Pattern for <class>

Structure Classes,
Attributes

Maintainability The class has no non-static
attributes nor any associations that
are navigable away from instances
of this class.

�   �

15.8.2. Singleton
Stereotype Violated
in <class>

Structure Classes,
Stereotypes

Conformance,
Functionality,
Reliability,
Maintainability

This class is marked with the «sin-
gleton» stereotype, but it does not
satisfy the constraints imposed on
singletons.

�   �

15.8.3. Nodes nor-
mally have no en-
closers

Structure Deployment Conformance,
Maintainability

Nodes should not be drawn inside
other model elements on the dep-
loyment diagram

�   �

15.8.4. NodeIns-
tances normally have
no enclosers

Structure Deployment Conformance,
Maintainability

node instances should not be drawn
inside other model elements on the
deployment diagram

�   �

15.8.5. Components
normally are inside
nodes

Structure Deployment Conformance,
Maintainability

Components represent the logical
entities within physical nodes, and
so should be drawn within a node.

�   �

15.8.6. Componen-
tInstances normally
are inside nodes

Structure Deployment Conformance,
Maintainability

Components instances represent the
logical entities within physical nodes,
and so should be drawn within a
node

�   �

15.8.7. Classes
normally are inside
components

Structure Deployment Conformance,
Maintainability

Classes, as model elements making
up components, should be drawn
within components on the deploy-
ment diagram

�   �

15.8.8. Interfaces
normally are inside
components

Structure Deployment Conformance,
Maintainability

Interfaces, as model elements mak-
ing up components, should be drawn
within components on the deploy-
ment diagram

�   �

15.8.9. Objects nor-
mally are inside
components

Structure Deployment Conformance,
Maintainability

Objects, as instances of model ele-
ments making up components,
should be drawn within components
or component instances on the dep-
loyment diagram.

�   �

15.8.10. LinkEnds
have not the same
locations

Structure Deployment Conformance,
Maintainability

A link (e.g. association) connecting
objects on a deployment diagram
has one end in a component and the
other in a component instance (since
objects can be in either).

�   �

15.8.11. Set classifi-
er (Deployment
Diagram)

Structure Deployment Conformance,
Maintainability

An instance (object) without an as-
sociated classifier (class, datatype)
on a deployment diagram.

�   �

15.8.12. Missing
return-actions

Control Sequence Compilability,
Conformance

A sequence diagram has a send or
call action without a corresponding
return action.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

50

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

15.8.13. Missing
call(send)-action

Control Sequence Compilability A sequence diagram has a return
action, but no preceding call or send
action.

�  � �

15.8.14. No Stimuli
on these links

Control Sequence Compilability,
Maintainability

A sequence diagram has a link con-
necting objects without an asso-
ciated stimulus (without which the
link is meaningless).

�  � �

15.8.15. Set Classifi-
er (Sequence Dia-
gram)

Control Sequence Compilability,
Maintainability

An object without an associated
classifier (class, datatype) on a
sequence diagram.

�  � �

15.8.16. Wrong
position of these
stimuli

Control Sequence Compilability,
Maintainability

The initiation of send/call-return
message exchanges in a sequence
diagram does not properly initiate
from left to right.

�  � �

15.9.1. Circular As-
sociation

Structure Association Compilability An association class has a role that
refers back directly to itself, which is
not permitted.

�   �

15.9.2. Make <asso-
ciation> Navigable

Structure Association Compilability The association referred to is not
navigable in either direction.

�   �

15.9.3. Remove
Navigation from
Interface via <asso-
ciation>

Structure Association Compilability Associations involving an interface
can be not be navigable in the direc-
tion from the interface.

�   �

15.9.4. Add Associa-
tions to <model ele-
ment>

Structure Association Compilability,
Maintainability

The specified model element (actor,
use case or class) has no associa-
tions connecting it to other model
elements.

�   �

15.9.6. Reduce As-
sociations on <model
element>

Structure Association Compilability,
Maintainability

The given model element (actor, use
case, class or interface) has so
many associations it may be a main-
tenance bottleneck.

�   �

15.11.1. Classifier
not in Namespace of
its Association

Semantic Association Compilability,
Conformance

All the classifiers attached to the
ends of the association should be-
long to the same namespace as the
association.

�   �

15.11.2. Add Ele-
ments to Package
<package>

Structure Package Maintainability The specified package has no con-
tent.

�   �

15.13.2. Class Must
be Abstract

Structure Classes,
Methods

Compilability A class that inherits or defines ab-
stract operations must be marked
abstract.

�   �

15.13.3. Add Opera-
tions to <class>

Structure Classes,
Methods

Maintainability The specified class has no opera-
tions defined.

�   �

15.13.4. Reduce
Operations on
<model element>

Structure Classes,
Methods

Maintainability The model element (class or inter-
face) has too many operations

�   �

15.14.1. Change
Multiple Inheritance
to interfaces

Structure Classes,
Inheritance

Maintainability A class has multiple generalizations,
which is permitted by UML, but can-
not be generated into Java code,
because Java does not support
multiple inheritance.

�   �

15.16.2. Remove
<class>'s Circular
Inheritance

Structure Classes,
Inheritance

Compilability A class inherits from itself, through a
chain of generalizations, which is not
permitted.

�   �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

51

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

15.16.4. Remove
final keyword or
remove subclasses

Structure Classes,
Inheritance

Compilability A class that is final has specializa-
tions, which is not permitted in UML.

�   �

15.16.5. Illegal Ge-
neralization

Structure Classes,
Inheritance

Compilability A generalization between model
elements of different UML metac-
lasses, which is not permitted.

�   �

15.16.6. Remove
Unneeded Realizes
from <class>

Structure Classes,
Inheritance

Maintainability A realization relationship both direct-
ly and indirectly to the same inter-
face (by realization from two inter-
faces, one of which is a generaliza-
tion of the other for example).

�   �

15.16.7. Define Con-
crete (Sub)Class

Structure Classes,
Inheritance

Maintainability A class is abstract with no concrete
subclasses, and so can never be
realized.

�   �

15.16.8. Define
Class to Implement
<interface>

Structure Classes,
Inheritance

Maintainability The interface referred to has no
influence on the running system,
since it is never implemented by a
class.

�   �

15.17.1. Remove
Circular Composition

Structure Classes,
Association

Compilability A series of composition relationships
that form a cycle, which is not per-
mitted.

�   �

15.17.2. Duplicate
Parameter Name

Structure Methods,
Parameters

Compilability A parameter list to an operation or
event has two or more parameters
with the same name, which is not
permitted.

�  � �

15.17.3. Two Aggre-
gate Ends (Roles) in
Binary Association

Structure Methods,
Parameters

Compilability Only one end (role) of a binary as-
sociation can be aggregate or com-
posite.

�   �

15.17.4. Aggregate
End (Role) in 3-way
(or More) Associa-
tion

Structure Associations Compilability Three-way (or more) associations
can not have aggregate ends (roles).

�   �

A recent development of critiques by Coelho and Murphy includes additional critiques that
motivate to reflect about the software design. However, several critiques seem very context-
specific (e.g., the “Plural Contained Class” rule would fire at every use of a container such as
Persons).

Table 19. Critic Rules by (Coelho & Murphy, 2007)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Class References
Subclass

Structure Classes,
Attributes,
Calls

Maintainability,
Portability

A class references a subclass of itself �   �

Superclass Refer-
ence

Structure Classes,
Calls

Maintainability,
Portability

A class references its superclass, but
not through an aggregation.

�   �

Circular Contain-
ment

Structure Classes,
Attributes

Maintainability,
Portability

There is a cycle in aggregation or
composition relationships

�   

Association Cycle Structure Classes,
Calls

Maintainability,
Portability

There is a cycle in association Rela-
tionships

�  � 

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

52

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Multiple Paths Structure Classes,
Attributes,
Calls

Maintainability,
Portability

There are two navigable paths from
one class to another

�  � �

Duplicated Super-
class Reference

Structure Classes,
Calls

Maintainability A class has an association that is
already defined by its superclass

�   �

Generalizable Ag-
gregation

Structure Classes,
Attributes,
Inheritance

Maintainability A class aggregates two classes that
share a superclass

�   �

Subclass and Su-
perclass Aggrega-
tion

Structure Classes,
Attributes,
Inheritance

Maintainability A class aggregates a class and a
subclass or superclass of that class

�   �

Unnecessary Reali-
zation

Structure Classes,
Attributes,
Inheritance

Maintainability A class realizes two interfaces that
extend each other

�   �

Plural Contained
Class

Semantic Class,
Names

Maintainability

The target of an aggregation or com-
position has a plural name (which
wrongly suggests that it is the con-
tainer)

�   �

Method in Attribute
Compartment

Semantic Classes,
Attributes,
Names

Functionality There are parentheses in the name
of an attribute, which may occur if the
user creates a method in the wrong
compartment

�   �

Get or Set Attribute
Prefix

Semantic Classes,
Attributes,
Names

Functionality,
Maintainability

An attribute name begins with get or
set, which suggests the user may
have put a method name in the
attribute compartment

�   �

Duplicate Class
Name

Semantic Classes,
Names

Functionality,
Maintainability

Two classes or interfaces in the de-
sign have the same name

�   

Highly Coupled
Design

Structure Classes,
Attributes,
Calls

Maintainability The number of associations, compo-
sitions, and aggregations has ex-
ceeded some constant multiple of the
number of classes

�   �

Class Has Too
Many Associations

Structure Classes,
Calls

Maintainability,
Portability

A class has more than some constant
number of associations to other
classes

�   �

Duplicated Mem-
bers

Structure Classes,
Attributes,
Methods

Maintainability Two non-related classes have at
least three members in common

�   

Missing Attribute Structure Classes,
Attributes,
Methods

Functionality A getter and setter are defined, but
no matching attribute exists

�   �

Unnecessary Ac-
cessors

Structure Classes,
Attributes,
Methods

Functionality,
Maintainability

A class has more than some constant
number of pairs of getter and setters,
which may be an unnecessary
source of clutter

�   �

Redeclared Super-
class Attribute

Structure Classes,
Attributes

Functionality,
Maintainability,
Reliability

A subclass redeclares an attribute
defined by its superclass.

�   �

4.8 Defect Patterns
The concept “Defect Pattern” was used by Taiga Nakamura in his “HPC Bug Base“ portal to
describe classes of recurring problems (as well as individual defects) in HPC. These defect
patterns represent problematic parts of distributed software systems (especially for high per-

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

53

formance computing) that seem wrong, complicated, or cumbersome to an experienced devel-
oper. In the literature they are defined as follows:

• “[defect patterns are] functional bugs, performance bottlenecks, portability problems,
bad practices, etc. in HPC “(Nakamura, 2007)

The concept of defect patterns is used to describe the experience and knowledge that was ac-
quired by experts or in empirical evaluations and we will list most of these defect patterns that
were found in the literature survey.

Table 20. Defect Patterns individuals by (Nakamura, 2007)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Missing Wait Control Statements Efficiency Send and receive without a wait
between.

�  � �

Bottleneck in Mes-
sage Scheduling

Control Statements Efficiency In the programming with explicit
message passing, inappropriate
message scheduling can cause per-
formance bottleneck.

�  � �

Bottleneck with File
I/O

Control Statements Efficiency When multiple processes access the
file or filesystem at the same time,
they can cause a performance prob-
lem.

� � � �

Calling omp get
num threads in a
Serial Section

Control Statements Efficiency,
Reliability

omp_get_num_threads() returns the
number of threads currently execut-
ing the parallel section where it is
called. If it is called in a serial section,
the return value is always 1.

�  � �

Calling upc free
from Multiple
Threads

Control Statements Efficiency,
Reliability

Only one thread may call upc_free for
each allocation. This is confusing
especially if the object was allocated
with upc_global_alloc, which is a
collective operation.

�  � �

Corrupted File Out-
put

Control Statements Efficiency HPC applications often need to write
to a file to store intermediate and/or
final results. If the data is written to
the same file by multiple
processes/threads at once, the file
content can get corrupted.

� � � �

Dependency on the
Number of
Processes

Control Statements Portability An implementation that only works
with specific number of processes is
not portable.

�  � �

Excessive Use of
Collective Commu-
nication

Control Statements Efficiency,
Portability

Collective communication is com-
monly used in parallel programming,
but there is a concern that it does not
scale up well when the number of
processes (or threads) increases.

�  � �

Hidden Serialization
in Library Functions

Control Statements Efficiency Library function implementation
sometimes contains internal serializa-
tion. In a parallel context, it can
cause a performance bottleneck.

�  � �

Inadequate Com-
munication Pattern

Control Statements Efficiency An inadequate communication pat-
tern (e.g., star pattern) can lead to a
performance overhead.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

54

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Memory Allocation
Failure Due to Inap-
propriate Compiler
Flags

Control Statements Efficiency Full memory access is sometime only
available if you compile with the
"right" flags. There are also no warn-
ing signs that you are running out of
memory until it happens.

   �

Message Type
Mismatch

Control Statements Reliability If the data type and the number of
elements do not match between
sender and receiver, it can cause a
failure at runtime.

�  � �

Missing MPI Final-
ize

Control Statements Conformance The MPI specification says that all
processes must call MPI_Finalize
before exiting.

�  � �

Missing upc barrier
before exit

Control Statements Reliability In a UPC program, upc_barrier
should be called before exit to pre-
vent an issue with some threads
exiting before others finish using the
data.

�  � �

Overlapped Memory
Areas

Control Statements Efficiency,
Reliability

Some MPI functions take a send
buffer and a recv buffer. The memory
area for these buffers may not over-
lap.

�  � �

Fragmented Mes-
sages

Control Statements Efficiency Messages between processes should
be aggregated into the chunks of
sufficient size to avoid the overhead
of connection handshaking and mes-
sage headers.

�  � �

Passing NULL to
MPI Init

Control Statements Reliability In the C version MPI_Init takes two
parameters - in MPI 1.1, calling
MPI_Init with NULL parameters in
come implementation can fail.

�  � �

Potential Deadlock Control Statements Efficiency,
Reliability

MPI_Send() and MPI_Recv() are the
source of potential deadlocks.

�  � �

Upc memget and
upc memput from/to
Multiple Threads

Control Statements Reliability Trying to copy data from/to multiple
different threads results in an error.

�  � �

Using the Same
Randomization
Seed in All
Processes

Control Statements Reliability,
Functionality

Some pseudo-random number libra-
ries require an explicit initilization with
a 'seed' which determines the actual
sequence to be generated.

�  � �

4.9 Defects, Bugs & Errors (Design)
The concepts (design-oriented) “defects”, “bugs” or “errors” are typically used as a demotic
term. However, several authors use the term to describe recurring and named problems. In the
literature they are defined as follows:

• “[A Design defect] is an imperfection in the software engineering work product that re-
quires rectification” (Younessi, 2002)

• “Software defects are requirement, design, and implementation errors in a software sys-
tem” (Telles & Hsieh, 2001)

• “Bugs are behaviour of the system that the software development team (developers, tes-
ters, and project managers) and customers have agreed are undesirable” (Telles & Hsieh,
2001)

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

55

• “A consistency defect is a mismatch between overlapping diagrams.” (Christian F. J.
Lange, 2006)

Beside the defects on the code levels many other problems were described using the defect
metaphor. For example, (Moha & Guéhéneuc, 2005) used the term Software architectural
defects are a concept used as an umbrella term similar to design flaws.

The concept of “bugs” was used by Telles and Hsieh in the Book “The Science of Debug-
ging” (Telles & Hsieh, 2001) to describe concrete locations where debugging should take
place. They constructed a classification of bugs that starts with abstract classes such as re-
quirement, design, implementation, process, build, deployment, documentation, and future
planning bugs. Thereafter, they describe several more specific bug classes that describe recur-
ring problems and mostly are on the level of other quality defects. These bugs mostly
represent functional problems of the software system that are associated with one or more
specific approach of debugging.

Table 21. Defect Bug classes by (Telles & Hsieh, 2001)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Memory or resource
leaks

Control Classes,
Data

Efficiency Memory is allocated and used but
never freed

� � � �

Logic Errors Semantic Methods,
Statements

Functionality,
Reliability

Code is syntactically correct but does
not do what is expected.

�  � �

Coding Errors Semantic Methods,
Attributes,
Parameters

Maintainability,
Reliability

A simple problem in writing the code. �  � �

Memory Overruns Control Classes,
Data

Efficiency Using memory that does not belong
to the system.

  � �

Loop Errors Control Methods,
Statements

Functionality,
Reliability

Problems with loops such as infinite,
nonprocessed, off-by-one, and im-
properly loops.

�  � �

Conditional errors Control Methods,
Statements

Functionality,
Reliability

Poorly written conditional logic due to
misunderstanding or mis-placement
of nested conditionals.

�  � �

Pointer Errors Control Methods,
Statements

Functionality,
Reliability

Pointers get messed up and do not
point to where they should.

�  � �

Allocation / Deallo-
cation Errors

Control Methods,
Statements

Functionality,
Reliability

The order of allocation and de-
allocation is incorrect.

�  � �

Multithreaded Errors Control Methods,
Statements

Functionality,
Reliability

Two threads try to access or modify
the same memory address.

 � � 

Timing Errors Control Timing, Se-
quence,
Statements

Functionality,
Reliability

Events were designed to occur at a
certain time but doesn’t.

�  � 

Distributed Applica-
tion Errors

Control Deployment,
Interaction,
Statements

Functionality,
Reliability

An error in the interface between any
two applications in a distributed sys-
tem.

� � � 

Storage Errors Data Data, State-
ments

Functionality,
Reliability

A persistent storage device encoun-
ters an error and is unable to pro-
ceed.

� �  �

Integration Errors Control Calls Functionality,
Reliability

The integration of two subsystems
causes an error.

� � � 

Conversion Errors Control Calls Functionality,
Reliability,
Maintainability

Data formats are used in a wrong
way (esp. between components)

� � � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

56

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Hard-coded
Lengths/Sizes

Control Statements Maintainability,
Reliability

Constants that appear multiple times
in the system

� � � 

Versioning Bugs Historic Versions Functionality,
Reliability,
Maintainability

Change of functionality or data for-
mats between versions

� � � 

Inappropriate Reuse
Bugs

Control,
Data

Statements,
Data

Functionality,
Reliability,
Maintainability

Inappropriate reuse of code or com-
ponents.

� � � 

Boolean Bugs Control Statements Functionality,
Reliability,
Maintainability

Misunderstandings about what a
Boolean expression (e.g., true and
false) means in the code.

�  � �

The concept of “errors” was used by many authors in to describe problems in software sys-
tems. Livshits and Lam use it to describe security errors (resp. security vulnerabilities) (Liv-
shits & Lam, 2005). These errors represent recurring problems of a software system.

Table 22. Security Errors by (Livshits & Lam, 2005)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

SQL injection Control Statements Functionality
(Security)

Pass input containing SQL com-
mands to a database server for ex-
ecution

� � � �

Cross-site scripting Control Statements Functionality
(Security)

Exploit applications that output un-
checked input verbatim to trick the
user into executing malicious scripts

�  � �

HTTP response
splitting

Control HTTP re-
sponse

Functionality
(Security)

Exploit applications that output input
verbatim to perform Web page de-
facements or Web cache poisoning
attacks

�  � �

Path traversal Control URL input
parameters

Functionality
(Security)

Exploit unchecked user input to con-
trol which files are accessed on the
server

�  � �

Command injection Control Statements Functionality
(Security)

Exploit user input to execute shell
commands.

�  � �

Parameter tamper-
ing

Control Statements Functionality
(Security)

Pass specially crafted malicious
values in fields of HTML forms

� � � �

URL manipulation Control URL input
parameters

Functionality
(Security)

Use specially crafted parameters to
be submitted to the Web application
as part of the URL.

� � � �

Hidden field mani-
pulation

Control URL input
parameters

Functionality
(Security)

Set hidden fields of HTML forms in
Web pages to malicious values

� � � �

HTTP header tam-
pering

Control URL input
parameters

Functionality
(Security)

Manipulate parts of HTTP requests
sent to the application

� � � �

Cookie poisoning Control Statements,
Cookie
access

Functionality
(Security)

Place malicious data in cookies,
small files sent to Web-based appli-
cations

� � � �

The concept of “design defects” was used by Houman Younessi in the book “Object-oriented
Defect Management” (Younessi, 2002). These defects represent problematic parts of the
software system that are associated with one or more specific UML diagram (e.g., statement

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

57

diagrams). Some of them are very function-oriented – i.e., if this defect does exist the model
shouldn’t compile.

Table 23. Design Defects by (Younessi, 2002), Chapter 6

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Null Diagram State State dia-
gram

Maintainability Nothing happens between the start
and end state.

�  � �

Trap state State State dia-
gram

Functionality,
Maintainability,
Reliability

A state that can be entered but never
exited (i.e., no path to the stop state).

�  � �

Tightly Circular State State dia-
gram

Maintainability A tightly circular or reflexive form due
to a limited number of states (i.e., all
states build a small circle).

�  � �

Disjoint States State State dia-
gram

Maintainability Independent state paths/streams in
one diagram

�  � �

Deadlock State State dia-
gram

Maintainability The next transition from a state can-
not logically take place.

�  � �

Conflict State State dia-
gram

Maintainability The transition from a guard or sync
point cannot logically take place

�  � �

God state State State dia-
gram

Maintainability One event causes many resulting
events (e.g., a very small fan-in to
fan-out ratio)

�  � �

Hub state State State dia-
gram

Maintainability Many independent fan-in events and
many independent fan-out events
(e.g., a fan-in fan-out ratio near to 1)

�  � �

Minion state State State dia-
gram

Maintainability Many events causes only one or very
few resulting events (e.g., a very
large fan-in to fan-out ratio)

�  � �

Furthermore, Younessi lists many design defects in his inspection checklists (see appendix C
od (Younessi, 2002)).

Table 24. Design Defects by (Younessi, 2002), Appendix C

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Global Variables Structure,
Control

Calls Maintainability There exists an externally declared
variable that is referenced within a
function but has not been passed in
as a parameter.

�  � �

Poor Naming Con-
ventions

Semantic Names Maintainability Identifiers are too long, consist of
single characters (except loop index-
es), or resemble a keyword.

� � � �

Redundant Declara-
tions

Structure,
Control

Statements Maintainability Variables, parameters, or functions
that are declared in one class, func-
tion, or compound statement but
never actually used in that context.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

58

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Input Coupling Structure,
Control

Statements Maintainability A variable that is assigned a value via
an input, but is not modified or refe-
renced before being passed to a
user-defined function as a function
call argument.

�  � �

Magic Numbers Control Attributes,
Statements

Maintainability There exist numbers other than -1, 0,
or 1 in a program statement.

� � � 

Hidden Loops Control Statements Maintainability,
Reliability

A guarded variable from a loop guard
or a branch guard is modified within a
single branch of a guarded state-
ment, is modified within the loop
body, or is assigned a value inde-
pendent of itself within an "if" state-
ment branch (if this variable is not a
loop guard variable, it must occur in
the guard of the branch).

� � � �

Uninitialized Va-
riables

Control Statements Functionality,
Reliability

There exists a variable that has not
been explicitly initialized prior to its
first use in an expression.

�  � �

Lax Grouping Control Statements Maintainability Identical subexpressions in each
expression of two conditional (if)
statements, but there are no state-
ments between the guards of the two
(if) statements that modify the va-
riables occurring in the aforemen-
tioned subexpressions.

�  � �

Zero Iteration Defect Control Statements Functionality,
Reliability

A variable occurs in a loop body (not
in a guard), that: a) is not initialized
before the loop, and b) is assigned
but not referenced within the loop
body, and c) after being assigned,
does not appear in an inner loop.

�  � �

Superfluous Va-
riables in Loop:
(Does Not Apply to
Loop Control Varia-
ble)

Control Statements Maintainability Temporary variables in a loop that do
not save time in computation or a
non-accumulative assignment to a
variable in a loop that appears (just
once) in the right-hand side of a sub-
sequent assignment statement.

�  � �

Loops That May
Make No Progress

Control Statements Maintainability There exist no variables from the loop
guard of a loop that are updated
within the body, except inside another
guarded command.

�  � �

Redundant Loop
Computations

Control Statements Maintainability There exists a subexpression that is
evaluated within a loop and involves
variables that are not changed within
the loop (these variables are global to
the loop body scope).

�  � �

Loop Guard Too
Complex

Control Statements Maintainability There exists a loop statement that
contains more than two conditional
constructs within its loop guard.

� � � �

Loop Contains Post-
termination Struc-
ture

Control Statements Maintainability A loop body that contains a condi-
tional (if) statement, whose block's
last statement breaks out (e.g., a
break statement).

�  � �

Redundant Condi-
tional Assignment

Control Statements Maintainability An equality guard component for a
conditional statement that matches

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

59

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

an assignment statement that it
guards, but the variables in the guard
are not modified prior to the execu-
tion of the matching assignment.

Self-Assignment Control Statements Maintainability An assignment statement in which
the left-hand side and right-hand side
are identical

�  � �

Dispersed lnitializa-
tion

Control Statements Maintainability A variable that is a control variable of
a loop, initialized more than five
statements away from where it is
employed in the loop, not referenced
or modified after the initialization and
before the loop.

�  � �

Premature Initializa-
tion

Control Statements Maintainability,
Efficiency

A loop control variable for an inner
nested loop that is initialized twice:
once before entering the external
loop and once before entering or on
leaving the inner loop.

�  � �

Redundant Accumu-
lation

Control Statements Maintainability There exist two or more congruent
accumulative statements within a
loop that are of the form i = i + c1 and
j = j + c2, where c1 = c2.

�  � �

Redundant Test on
Loop Exit

Control Statements Maintainability An extra guard to test the exit condi-
tion of the guarded loop after a loop
statement. Between the guard and
the loop exit, there exist no state-
ments to change the vaiiables that
occur in the guard.

�  � �

Redundant Guard Control Statements Maintainability A subexpression within a loop of a
conditional statement that has pre-
viously been established for the given
execution path.

�  � �

Readjustment of
Loop Variable on
Exit

Control Statements Maintainability An expression or statement that
readjusts a loop variable on exit from
a loop.

�  � �

Redundant Internal
Guard

Control Statements Maintainability A guard component that is applied
more than once in a loop body with-
out changing its component va-
riables.

�  � �

Statement Duplica-
tion

Control Statements Maintainability A statement that occurs more than
once within a loop body, although
between these duplicated state-
ments, the variables they contain are
not changed.

�  � 

Duplicate Output Control Statements Maintainability There exists a variable that is output
via an output function and unmodified
before being output again by another
output function.

� � � 

Function Comments Semantic Notes /
Comments

Maintainability No comments describing the class,
attribute, or function's job, either
before or after the functions heading.

�  � �

Multiple Exits from a
Function

Control Statements Maintainability,
Reliability

There exists more than one exit
statement within a function body.

�  � 

Unassigned Ad-
dress Parameter

Control Statements Maintainability There exists an address parameter
that is not assigned to a value within
a function.

�  � 

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

60

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Function Side Ef-
fects

Control Statements Maintainability,
Reliability

A function that returns a value; and
there exists: An address parameter
that may be used to change the con-
tents of a corresponding actual pa-
rameter; or an external variable that
is changed inside this function.

�  � �

Amended Nonad-
dress Parameter

Control Statements Maintainability There exists a nonaddress parameter
that is amended inside the body of a
function.

�  � �

Redundant Guard
Test

Control Statements Maintainability A variable that occurs in two relation-
al expressions joined by the (AND)
operator.

�  � �

Indirectly Termi-
nated Loops

Control Statements Maintainability,
Reliability

A single variable that is used as a
guard of an iterative statement, as-
signed within a guarded statement
(selection or iterative statements)
within the loop body.

�  � �

Dual-Purpose Vari-
able Usage

Control Statements Maintainability,
Reliability

There exists a variable that is mod-
ified in the body of a loop, then reas-
signed after the loop.

�  � �

Double Initialization Control Statements Maintainability,
Efficiency

A loop variable that is initialized more
than once prior to its use in a loop,
although the variable is not refe-
renced between the statements in
which it is initialized.

�  � 

Subscript Within
Bounds

Control Statements Maintainability,
Reliability

There exists an array the subscripts
for which exceed the bounds.

�  � �

Noninteger Sub-
script

Control Statements Maintainability,
Reliability

Subscripts of an array should always
be integers.

�  � �

Incorrect Initializa-
tion

Control Statements Maintainability,
Reliability

Arrays and strings are usually re-
quired to be set to default values.

�  � �

Procedure That
Returns a Value as
a Parameter

Control Statements Maintainability,
Reliability,
Portability

A procedure that has been specified
to return no value but has an address
parameter that is assigned within the
body (i.e., side-effect).

�  � �

Operation with No
Visible Effect

Control Statements Maintainability An operation that has no effect (i.e.,
side-effect or return value).

�  � �

Overloaded Loop
Index

Control Statements Maintainability,
Reliability

There exists an inner loop that
changes an outer loop control varia-
ble.

�  � �

Mixed-Mode Com-
putation

Control Methods,
Statements

Maintainability,
Reliability

Types do not conform for correct
computation.

�  � �

Division by Zero Control Statements Reliability The denominator of operation has not
been guarded against evaluating to
zero.

�  � �

Integer Division Control Statements Reliability Integer division truncates the re-
mainder

�  � �

External Object
Attribute Hard-
Coded

Control Attributes,
Statements

Maintainability,
Portability

The attributes of external objects
(e.g., a file) have been explicitly hard-
coded.

�  � �

Function Has No
Return Value

Control Methods Maintainability,
Reliability

A (nonvoid) function that contains a
return statement with no return value.

�  � �

Unused Input Control Statements Maintainability A variable that is assigned a value via
an input function, not used or refe-
renced until being assigned another

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

61

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

value by another input function.

Unmodified Output Control Statements Maintainability,
Reliability

There exists a variable that is as-
signed a value from an input function,
unmodified before being output again
by an output function.

�  � �

Identifiers in Scope
Are Character Simi-
lar

Semantic Names Maintainability,
Reliability

Two or more entities (functions, va-
riables, parameters, …) with similar
names.

�  � 

Identifiers in Scope
Differing in Case

Semantic Names Maintainability,
Reliability

Two or more entity names (functions,
variables, parameters, …) differ only
in case.

�  � 

McCabe's Cyclo-
matic Complexity

Control Statements Maintainability A cyclomatic complexity value of
more than 5 indicates that the func-
tion is too complex and should be
reduced, if possible.

�  � �

Unacceptable Initia-
lization of Global
Variables

Control Statements Maintainability A global variable that is initialized in
its variable declaration without the
use of the appropriate keyword.

�  � �

Local Variables Not
Declared within
Their Minimal Scope

Control Statements Maintainability Local variables that are declared for a
block, not referenced at the top level
of that block, but within an inner block
(at a lower level).

�  � �

Unintentional Empty
Loop

Control Statements Maintainability There exists a loop within an empty
body.

�  � �

Inconsistent Use of
Delimiters

Control Statements Maintainability There exists a body within a condi-
tional (if-else) statement that is en-
closed in delimiters (e.g., a com-
pound statement), whereas the other
body counterpart is not a compound
statement.

�  � �

Multiple Breaks in
Loop

Control Statements Maintainability There exists more than one break
statement within the body of an itera-
tive statement.

�  � �

Redeclaration of
Identifiers

Control Attributes,
Variables,
Parameters,
Statements

Maintainability The name of an entity (i.e., class
variable, parameter, etc.) is re-
declared as a local variable in a lower
block (e.g., as a local variable)

�  � �

No Break at End of
Multiple Branching
(case) Statement

Control Statements Maintainability,
Reliability

The last statement in the body of a
multiple branching statement is not a
break statement.

�  � �

Default Is Not the
Last Label in a
Multiple Branch

Control Statements Maintainability,
Reliability

A multiple branch statement that
where the default label does not
occur as the last label.

�  � �

Noncompound
Multiple Branch
Body

Control Statements Maintainability,
Reliability

There exists a multiple branch state-
ment where its body statement is not
a compound statement.

�  � �

Multiple Branch
Statement Fall-
Through

Control Statements Maintainability,
Reliability

There exists a top-level case (or
default) labeled statement within the
body of a multiple branch statement,
which is not the first case (or default)
labeled statement in the body, and is
not preceded by a break statement.

�  � �

Goto Statements
Considered Harmful

Control Statements Maintainability,
Reliability

There exists a goto statement within
the body of a function.

�  � �

Allocating Nonavail- Dynamic Available Maintainability, Memory has been allocated where �  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

62

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

able Memory Memory,
Statements

Reliability,
Efficiency

system memory has been exhausted.

Memory Is Deallo-
cated Improperly.

Control Statements Maintainability,
Reliability,
Efficiency

Memory has been deallocated with-
out using a removal routine (e.g.,
destructor), using the proper removal
routine, or in an object by another
object.

�  � �

The Assignment
Operator Returns
Unexpected Type

Control Methods,
Statements

Maintainability,
Reliability

The type of the object and that of the
return type of the assignment opera-
tor do not match.

�  � �

Assignment Opera-
tor Attribute Missing

Control Statements Maintainability,
Reliability

Attributes have been omitted while
overloading the assignment operator.

�  � �

Passing Derived
Class Objects by
Value

Structure Classes,
Parameters

Maintainability,
Reliability

A derived class passed by value is
not treated as a base class (it should
be)

�   �

Out-of-Order Initiali-
zation of Base
Classes

Structure Classes,
Inheritance,
Statements

Maintainability,
Reliability

In most multiple-inheritance situa-
tions, the order of declaration of base
classes matters.

�   �

Inheriting the same
feature from more
than one class

Structure Classes,
Inheritance

Maintainability,
Reliability

The branch from which the feature is
to be inherited has not been made
explicit.

�   �

Improper Exception
Management

Structure Methods,
Exceptions,
Statements

Maintainability,
Reliability

An exception propagates beyond the
scope, is ignored, is passed from a
server to a client improperly, or is
wrong. Exception-handling mechan-
ism is missing, incorrect, or falls into
an infinite loop.

�  � �

lmproper Inherit-
ance Implementa-
tion

Structure Classes,
Inheritance

Maintainability,
Reliability

An unnecessary or inappropriate
feature has been inherited by a sub-
class. Subclass violates the invariant
of its superclass. Subclass violates
the precondition of the superclass.
Subclass implements specification or
restriction. A feature that is supposed
to be implemented in a subclass is
missing. Superclass is not initialized.
Superclass initialization is incorrect.
Visibility rules have been violated.

�   �

lmproper Assertion Control Methods,
Statements

Maintainability,
Reliability

Precondition not checked at entry.
Postcondition not ensured at exit.
Class invariant not checked at con-
struction, at entering a precondition,
and at exit Modal assertions not
checked (for modal classes).

�  � �

Use of Instance
Operators with
Expanded Types

Control Methods,
Statements

Maintainability,
Reliability

An instance operator has been used
with an expanded type (primitive
type)

�  � �

The \ Character
Misrepresented

Control Statements Maintainability,
Reliability

The \ character has not been
represented as string \\.

�  � �

Substring Extraction
Offsets Used Incor-
rectly

Control Statements Maintainability,
Reliability

The substring offsets have been used
in a relative fashion, as opposed to
two zerobased offsets: one pointing
to the start, the other to the character
one past the end.

�  � �

Strings Have Been
Compared Using

Control Statements Maintainability,
Reliability

Strings not intern()-ed have been
compared using the == operator.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

63

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

incorrect Operator

Static Method As-
sumed Dynamic

Control Statements Maintainability,
Reliability

Static method has been assumed to
be selected dynamically.

�  � �

lncorrect Overriding
of Methods in Con-
structor

Structure,
Control

Methods,
Statements

Maintainability,
Reliability

An overridden constructor contains a
method that uses the subclasses
fields but has not been initialized in
that constructor.

�  � �

Default Logical
Value Assumed

Control Methods,
Statements

Maintainability,
Reliability

A statement has assumed return of
logical value without comparison.

�  � �

A Reference to a
Final Feature Mi-
sused

Control Attributes,
Statements

Maintainability,
Reliability

A feature declared as final allows
change of data values in an object
because it is called by reference and
not by value.

�  � �

Expanded Type
Overflow

Control Statements Reliability An overflow without warning occurred
with respect to a type such as int,
long, float, or double.

�  � �

Return Type De-
clared for Construc-
tor

Structure Method Reliability A constructor has been declared with
a return type.

�   �

void Type Declared
for Constructor

Structure Method Maintainability,
Reliability

A constructor has been declared with
a void return type.

�   �

The + Operator Control Statements Maintainability,
Reliability

The + operator has mistakenly been
used by the system to imply concate-
nation when addition was intended or
vice versa.

�  � �

Array Problems Control Statements Maintainability,
Reliability

No space has been allocated for
array. No objects assigned to each
array location. The type of array
object and type of array element
incompatible.

�  � �

Casting Over Non-
expanded Types

Control Statements Maintainability,
Reliability

Casting has been used to work over
nonexpanded types (objects other
than primitives).

�  � �

Lange and Chaudron investigated to what extent designers detect consistency defects and to
what extent defects cause different interpretations by different readers. The defects they inves-
tigated are listed in Table 25.

Table 25. Defects by (Christian F. J. Lange & Chaudron, 2006; Christian F. J. Lange et al., 2006)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects affected Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Message without
Name (EnN)

Semantic Sequences Compilability In sequence diagrams arrows
representing messages exchanged
by objects should be annotated with
a name that describes the message.

�  � �

Message without
Method (EcM)

Structure Sequences,
Calls

Compilability No correspondence between the
message name and a provided
method name.

�  � �

Message in the
wrong direction (ED)

Structure Sequences,
Calls

Compilability This inconsistency occurs if there is
a message from an object of class A

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

64

 to an object of class B but the me-
thod corresponding to the message
is a member of class A instead of
class B.

Class not instan-
tiated in SD (CnSD)

Structure Sequences,
Classes

Compilability No class instantiation in a sequence
diagram of a class that is defined in
a class diagram of the model.

�  � �

Object has no Class
in CD (CnCD)

Structure Sequences,
Classes

Compilability This inconsistency occurs if there is
an object in a sequence diagram
and no corresponding class is de-
fined in any class diagram.

�  � �

Use Case without
SD (UCnSD)

Structure Use cases,
Sequences

Compilability,
Conformance

A use case that is not illustrated by
any sequence diagram.

�  � �

Multiple definitions
of classes with
equal names (Cm)

Semantic Use cases,
Sequences

Compilability,
Maintainability

More than one class has the same
name in a single model. The differ-
ent classes may be defined in the
same diagram or in different dia-
grams.

�   �

Method not called in
SD (MnSD)

Structure Use cases,
Sequences

Maintainability A method of a class is not called as
a message in any sequence dia-
gram.

�  � �

4.10 Error Patterns
The concept “error patterns” was used by Andy Longshaw and Eoin Woods to describe more
managerial problems (Longshaw & Woods, 2004). These error patterns are intended to help
with system-wide decisions about how to handle domain or technical errors. In the literature
they are defined as follows:

• “[error patterns] relate to the use of error generating, handling and logging mechanisms
– particularly in distributed systems.” (Longshaw & Woods, 2004)

• “[error patterns] provide a landscape in which sensible and consistent decisions can be
made about when to raise errors, what types of error to raise, how to approach error
handling and when and where to log errors.” (Longshaw & Woods, 2004)

In the following table we list error patterns that were found in the literature. The main large
collection of error patterns was collected by (Longshaw & Woods, 2004, 2005).

Table 26. Error Patterns by (Longshaw & Woods, 2004, 2005)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Big Outer Try Block Control Classes,
Statements

Maintainability Exceptional conditions are rarely
anticipated in the design of the sys-
tem and should be handled before
the crash of the system.

� �  �

Log at Distribution
Boundary

Semantic Classes Maintainability Propagating technical errors between
system tiers results in error details
ending up in locations (such as end-
user PCs) where they are difficult to
access and in a context far removed
from that of the original error.

� �  �

Log Unexpected
Errors

Semantic Classes Maintainability Standard or common exceptions
should be handled separately from
unexpected or rare ones.

� �  �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

65

Make Exceptions
Exceptional

Semantic Classes Maintainability Exceptions are used to indicate ex-
pected error conditions occurring -
calling code becomes much more
difficult to understand.

� �  �

Split Domain and
Technical Errors

Semantic Maintainability Missing differentiation between “do-
main errors” and “technical errors”.
Technical errors (e.g., DB problems)
must be handled while domain errors
(e.g., Missing customer name) can
be ignored.

� �  �

Unique Error Iden-
tifier

Control Classes,
Statements

Maintainability If an error on one tier in a distributed
system causes knock-on errors on
other tiers you get a distorted view of
the number of errors in the system
and their origin.

� �  �

Hide Technical
Detail from Users

Semantic Classes Maintainability,
Usability

The technical details of errors may
cause unnecessary concern and
support overhead.

� � � �

Ignore Irrelevant
Errors

Semantic Classes Maintainability Technical errors or exceptions do not
denote a real problem and so report-
ing them can just be confusing or
irritating for support staff.

� �  �

Single Type for
Technical Errors

Structure Classes,
Inheritance

Maintainability,
Reliability

Exception Hierarchy with far too few
Classes.

� �  �

4.11 Fault Patterns
The concept “fault patterns” is similar in name to design patterns but is more similar to coding
or design defects. Fidel Nkwocha and Sebastian Elbaum used the term to describe problems
in end-user programming environments such as Matlab while Alexander used it for inherit-
ance and polymorphism problems. These fault patterns represent problematic parts of the
software system that produce faulty or uncompilable code. In the literature they are defined as
follows:

• “Fault patterns are code idioms that may constitute faults.” (Nkwocha & Elbaum, 2005)

• “[Fault patterns] are useful because they indicate the possible presence of faults that re-
sult from the use of inheritance and polymorphism.” (Alexander et al., 2002)

Table 27. Fault Patterns (in Matlab) by (Nkwocha & Elbaum, 2005)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Definition without a
Usage: Def!Used

Control Attributes,
Statements

Maintainability,
Efficiency

A variable is declared and allocated,
but never used – i.e., memory was
unnecessarily allocated.

� �  �

Usage without a
previous Definition:
Used!Def

Control Attributes,
Statements

Maintainability,
Reliability,
(Usability)

A variable is being utilized before its
definition – resulting in late discovery
in an interpreter.

� � � �

File may not get
Closed: FO-
pened!Close

Control Statements Maintainability,
Reliability

A “file opening" statement is not
followed by a corresponding “file
closing” statement – sometimes be-
cause open streams may lead to
undefined behavior, may claim re-
sources for longer than necessary, or
may just cause failures if other opera-
tions are performed (e.g., open,

� � � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

66

share).

Unmatched Re-
turned Values: URe-
turns

Control Statements Maintainability,
Reliability

A function returns an unexpected
number of output or returned values
were ignored.

�   �

Unreachable Func-
tions: Function!Used

Structure Statements Maintainability Functions that are not invoked
throughout the program.

�   �

Switch without a
Default:
Switch!Otherwise

Control Statements Maintainability,
Reliability

A switch statement without a default
Clause – i.e., the default behavior is
missing when the switch values do
not occur.

�  � �

Improper Exception
Handling: Try!Catch

Control Statements Maintainability,
Reliability

A try without its corresponding
catch

�  � �

Likely Infinite Loop:
InfLoop

Control Statements Maintainability,
Reliability

A looping structure with no obvious
exit strategy.

�  � �

Table 28. Fault Patterns by (Alexander et al., 2002)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

ITU Inconsistent
Type Use (context
swapping)

Structure Classes,
Inheritance,
Methods

Maintainability,
Reliability

A descendant class does not override
any inherited method - thus, there
can be no polymorphic behavior.

�  � �

SDA State Definition
Anomaly (possible
post-condition viola-
tion)

Structure,
Semantic

Classes,
Inheritance,
Methods

Maintainability,
Reliability

Refining methods implemented in the
descendant must leave the ancestor
in a state that is equivalent to the
state that the ancestor’s overridden
methods would have left the ancestor
in.

�  � �

SDIH State Defini-
tion Inconsistency
(due to state varia-
ble hiding)

Structure Classes,
Inheritance,
Attributes

Maintainability,
Reliability

A local variable is introduced to a
class definition where the name of
the variable is the same as an inhe-
rited variable.

�  � �

SDI State Defined
Incorrectly (possible
post-condition viola-
tion)

Structure,
Semantic

Classes,
Inheritance,
Attributes

Maintainability,
Reliability

If the computation performed by an
overriding method isn’t semantically
equivalent to the overridden method,
then subsequent state dependent
behavior in the ancestor will likely be
affected - the externally observed
behavior of the descendant will be
different from the ancestor.

�  � �

IISD Indirect Incon-
sistent State Defini-
tion

Structure,
Semantic

Classes,
Inheritance,
Attributes

Maintainability,
Reliability

A descendant adds an extension
method that defines an inherited
state variable – resulting in a data
flow anomaly by having an effect on
the state of the ancestor that is not
semantically equivalent to the over-
ridden method.

�  � �

4.12 Flaws
One of the commonly used umbrella terms for smells and antipatterns on the software design
level is “design flaw”. While only few problems are themselves called or categorized as flaws
other problems are typically subsumed with this term. In general, flaws are problems that are
associated with one or more design principle or heuristic. In the literature they are defined as
follows:

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

67

• “The structural characteristic of a design entity or design fragment that expresses a devi-
ation fen set of criteria typifying the high-quality of a design” (Marinescu, 2002)

The flaw concept is used to describe problems that reduce the quality of a software system
(mostly on the structural design level).

Beside the flaws on the code or design levels many other problems were described using the
flaw metaphor. Today, we have flaws on different abstraction layers, for development phases,
or technologies such as design flaws (Marinescu, 2002) or security flaws (Petroni & Arbaugh,
2003).

Table 29. Design Flaws by (Marinescu, 2002)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Feature Envy Structure Classes,
Calls

Maintainability A method that is more interested in
data of another class than the one of
its own.

�  � �

God Method Structural Classes,
Methods

Maintainability,
Portability

A method that centralizes the func-
tionality in a class.

�  � �

Data Class Structure Classes,
Attributes,
Methods

Maintainability Classes that do almost exclusively
store information for other classes.
Optionally, these classes have getter
and setter methods for the attributes.

� �  �

God Class Structural Classes,
Associations

Maintainability,
Portability

Classes with too many functionality
and associations to other classes.

�  � �

Shotgun Surgery Historic Versions,
Classes

Maintainability,
Portability

Several classes are changed in a
group every time a specific kind of
change is to be made.

�   

God Package Structural Packages,
Associations

Maintainability,
Portability

Packages with too many client pack-
ages.

�  � �

Wide Subsystem
Interface

Structure Subsystem Maintainability The interface to a subsystem is too
large (too many open packages and
classes)

�   �

Lack of Bridge Structure Classes Maintainability Absence of the Bridge Pattern �   �

Lack of Strategy Structure Classes Maintainability Absence of the Strategy Pattern �   �

Table 30. Design Flaws by (Marinescu & Lanza, 2006)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

God Class Structural Classes,
Associations

Maintainability,
Portability

Classes with too many functionality
and associations to other classes.

�  � �

Feature Envy Structure Classes,
Calls

Maintainability A method that is more interested in
data of another class than the one of
its own.

�  � �

Data Class Structure Classes,
Attributes,
Methods

Maintainability Classes that do almost exclusively
store information for other classes.
Optionally, these classes have getter
and setter methods for the attributes.

� �  �

Brain Method Structural Classes,
Methods

Maintainability,
Portability

A method that centralizes the func-
tionality in a class.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

68

Brain Class Structural Classes,
Methods

Maintainability,
Portability

A class that tends to accumulate an
excessive amount of intelligence,
usually in the form of several me-
thods affected by Brain Method.

�  � �

Significant Duplica-
tion

Semantic Methods,
Statements

Maintainability,
Reliability

Identical code passages are distri-
buted over the whole system

�  � 

Intensive Coupling Structural Methods,
Calls

Maintainability,
Portability

A method is tied to many other close
operations in the system

�  � �

Dispersed Coupling Structural Methods,
Calls

Maintainability,
Portability

A method is tied to many other distri-
buted operations in the system

�  � �

Shotgun Surgery Historic Versions,
Classes

Maintainability,
Portability

Several classes are changed in a
group every time a specific kind of
change is to be made.

�   

Refused Parent
Bequest

Structure Classes,
Attributes,
Methods

Maintainability Subclasses that inherit attributes and
methods that they do not use.

�  � �

Tradition Breaker Structure Classes
Inheritance

Maintainability The interface of a class breaks the
inherited “tradition”, e.g., has an
excessive increase.

�  � �

4.13 Heuristics
Beside the explicit description of problems the literature has a large corpus of heuristics and
characteristics that should be applied – esp. on the object-oriented design level. While many
of them are descriptions of positive practices or (code) structures / designs (e.g., “Minimize
Fanout in a class”) several of them are negations of negative practices (e.g., “Do not create
god classes”). Similar to patterns we can not unconditionally use or invert a heuristic and find
a bad or worst practice. However, in the case of these negated heuristics it is possible. In gen-
eral, bad heuristics are problems that are associated with one or more design principle. In the
literature they are defined as follows:

• “[Heuristics] are meant to serve as warning mechanisms which allow the flexibility of
ignoring heuristic as necessary” (Riel, 1996b)

• “[Heuristic is] A small and legible piece of design expertise that delivers experience from
the expert to the novice in the most effective manner.” (Gibbon, 1997)

• “A heuristic is a rule of thumb. It is an advice on how to use design techniques in order to
solve design problems. It provides guidelines for finding appropriate solutions.” (Grote-
hen, 2001)

The bad heuristic concept is used to describe problems that reduce the quality of a software
system (mostly on the design level).

Beside the bad heuristics on the code or design levels many other problems were described
using the heuristic metaphor. Today, we have bad heuristics on different abstraction layers,
for development phases, or technologies such as heuristics for object-oriented systems (Riel,
1996b) (Shadrin, 2005) and interactive systems (Cockton & Gram, 1996).

In the following sections we will list most of these bad heuristics that were found in the litera-
ture survey. The first larger collection of bad heuristics was collected by Arthur J. Riel:

Table 31. Heuristics by (Riel, 1996b)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

69

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

#2.1: All data should
be hidden within its
class.

Structure Classes Maintainability The classes gives access on far too
many information

� �  �

#2.2: Users of a
class must be de-
pendent on its pub-
lic interface, but a
class should not be
dependent on its
users.

Structure Classes,
Association

Maintainability,
Portability

A class depends on its users. �  � �

#2.3: Minimize the
number of messag-
es in the protocol of
a class.

Structure Classes,
Methods

Maintainability,
Portability

Too many methods �   �

#2.4: Implement a
minimal public inter-
face which all
classes understand

Semantic Classes,
Inheritance,
Methods

Maintainability,
Portability

Too many similar methods in unre-
lated classes (e.g. operations such
as copy (deep versus shallow),
equality testing, pretty printing, pars-
ing from a ASCII description, etc.).

�   

#2.5: Do not put
implementation
details such as
common-code pri-
vate functions into
the public interface
of a class.

Structural Classes,
Methods

Maintainability,
Portability

The complexity of the class interface
is too big. Methods in the class inter-
face that are not used. Methods that
are used by other methods (i.e.,
common code) in the interface.

�  � �

#2.6: Do not clutter
the public interface
of a class with
things that users of
that class are not
able to use or are
not interested in
using.

Structure Classes,
Methods

Maintainability,
Portability

Methods in a class interface that
cannot be used.

�  � �

#2.7: Classes
should only exhibit
nil or export coupl-
ing with other
classes

Structure Classes,
Methods

Maintainability,
Portability

A class should only use operations in
the public interface of another class
or has nothing to do with that class.

�  � �

#2.8: A class should
capture one and
only one key ab-
straction.

Structure,
Semantic

Classes,
Methods,
Interfaces

Maintainability A class with a large number of public
responsibilities (e.g., interfaces).
Multi-Noun class names.

� �  �

#2.9: Keep related
data and behavior in
one place.

Structure Classes,
Methods,
Statements

Maintainability Classes that dig data out of other
classes using getter-methods

� � � �

#2.10: Spin off non-
related information
into another class
(i.e. noncommuni-
cating behavior).

Structure Classes,
Methods,
Statements

Maintainability A subset of methods works on a
subset of attributes (i.e. different
responsibilities)

�  � �

#2.11: Be sure the
abstraction that you
model are classes
and not simply the
roles objects play.

Structure,
Semantic

Classes,
Methods,
Names

Maintainability A class that incorporate two or more
behaviors based on a role (e.g.,
Person’). Classes with different
names but similar or identical beha-
vior (e.g., Mother and Father).

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

70

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

#3.1: Distribute
system intelligence
horizontally as un-
iformly as possible

Structure Classes,
Methods,
Statements

Maintainability The top level classes in a design
should share the work uniformly.

�  � �

#3.2: Do not create
god classes/objects
in your system.

Structural,
Semantic

Classes,
Associations,
Names

Maintainability,
Portability

Classes with too many functionality
and associations to other classes. Be
very suspicious of an abstraction
whose name contains Driver, Man-
ager, System, or Subsystem.

�  � �

#3.3: Beware of
classes that have
many accessor
methods defined in
their public inter-
face,

Structural Classes,
Methods,
Names

Maintainability,
Portability

Classes with too many functionality
and associations to other classes.
Many accessor methods imply that
related data and behavior are not
being kept in one place.

�  � �

#3.4: Beware of
classes which have
too much non-
communicating
behavior

Structure Classes,
Methods,
Statements

Maintainability Methods which operate on a proper
subset of the data members of a
class. God classes often exhibit lots
of non-communicating behavior.

�  � �

#3.5: The model
should never be
dependent on the
interface. The inter-
face should be
dependent on the
model.

Structure Classes,
Methods,
Statements

Maintainability In applications which consist of an
object-oriented model interacting with
a user interface, the model should
never be dependent on the interface.
The interface should be dependent
on the model.

�  � �

#3.6: Model the real
world whenever
possible.

Semantic Names Maintainability Names do not match the real world �   �

#3.7: Eliminate
irrelevant classes
from your design.

Structure Classes,
Attributes,
Methods

Maintainability Classes that do almost exclusively
store information for other classes.
Optionally, these classes have ac-
cessor or print methods.

� �  �

#3.8: Eliminate
classes that are
outside the system.

Structure Classes,
Methods,
Statements

Maintainability A class with methods that aren’t used
or required.

�  � �

#3.9: Do not turn an
operation into a
class.

Semantic Names Maintainability Be suspicious of any class whose
name is a verb or derived from a
verb. Especially those which have
only one piece of meaningful beha-
vior (i.e. do not count sets, gets, and
prints).

�   �

#3.10: Agent
classes are often
placed in the analy-
sis model of an
application.

Structure Classes,
Methods,
Statements

Maintainability A decoupling class with more me-
thods than data that uses a class
with more data than method and is
used by a third class.

�  � �

#4.1: Minimize the
number of classes
with which another
class collaborates.

Structure,
Control

Classes,
Methods,
Calls, State-
ments

Maintainability Too many classes are linked to this
class by an extensive network of
data or control flows.

�  � �

#4.2: Minimize the
number of message
sends between a
class and its colla-

Structure,
Control

Classes,
Methods,
Calls, State-
ments

Maintainability Too many messages are send be-
tween this class and a collaborator

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

71

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

borator.

#4.3: Minimize the
amount of collabora-
tion between a class
and its collaborator,
i.e. the number of
different messages
sent.

Structure,
Control

Classes,
Methods,
Calls, State-
ments

Maintainability Too many different messages are
send between this class and a colla-
borator

�  � �

#4.4: Minimize fa-
nout in a class

Structure,
Control

Classes,
Methods,
Calls, State-
ments

Maintainability The product of the number of mes-
sages defined by the class and the
messages they send is too high.

�  � �

#4.5: If a class con-
tains objects of
another class then
the containing class
should be sending
messages to the
contained objects

Structure,
Control

Classes,
Attributes,
Methods,
Calls, State-
ments

Maintainability The containment relationship should
always imply a uses relationship.

�  � �

#4.6: Most of the
methods defined on
a class should be
using most of the
data members most
of the time.

Structure,
Control

Classes,
Attributes,
Methods,
Calls, State-
ments

Maintainability Attributes are not (enough) used by
the methods in a class.

�  � �

#4.7: Classes
should not contain
more objects than a
developer can fit in
his or her short term
memory. A favorite
value for this num-
ber is six.

Structure Classes,
Attributes

Maintainability Too many Objects in a class �   �

#4.8: Distribute
system intelligence
vertically down
narrow and deep
containment hierar-
chies.

Structure,
Control

Classes,
Inheritance,
Methods,
Statements

Maintainability The classes in an inheritance hie-
rarchy should share the work un-
iformly.

�  � �

#4.9: When imple-
menting semantic
constraints, it is best
to implement them
in terms of the class
definition.

Control Classes,
Attributes

Maintainability Semantic constraints on a class
(instantiation) not within the construc-
tor.

�  � �

#4.10: When im-
plementing seman-
tic constraints in the
constructor of a
class, place the
constraint test in the
constructor as far
down a containment
hierarchy as the
domain allows.

Control Classes,
Inheritance,
Methods,
Statements

Maintainability Unnecessary constraints in a class
that belongs to a subclass

�  � �

#4.11: The semantic
information on

Structure Classes,
Attributes,

Maintainability Semantic information encoded in the
same class it is needed

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

72

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

which a constraint is
based is best placed
in a central third-
party object when
that information is
volatile.

Methods,
Statements

#4.12: The semantic
information on
which a constraint is
based is best de-
centralized among
the classes involved
in the constraint
when that informa-
tion is stable.

Control Classes,
Inheritance,
Methods,
Statements

Maintainability Semantic information encoded in the
classes that needs it.

�  � �

#4.13: A class must
know what it con-
tains, but it should
never know who
contains it.

Structure Classes,
Attributes,
Methods

Maintainability The contained class should not have
a reference on the containing one.

�   �

#4.14: Objects
which share lexical
scope should not
have uses relation-
ships between
them.

Structure Classes,
Attributes,
Calls, State-
ments

Maintainability Classes shared as objects in other
classes (i.e., its fields) should not use
each other.

�   �

#5.1: Inheritance
should only be used
to model a speciali-
zation hierarchy.

Structure,
Control

Classes,
Inheritance,
Calls, State-
ments

Maintainability Inheritance is used instead of con-
tainment.

�  � �

#5.2: Derived
classes must have
knowledge of their
base class by defini-
tion, but base
classes should not
know anything
about their derived
classes.

Structure,
Control

Classes,
Inheritance,
Calls, State-
ments

Maintainability Base classes with access to or con-
taining a derived class.

�  � �

#5.3: All data in a
base class should
be private, i.e. do
not use protected
data.

Structure,
Control

Classes,
Attributes

Maintainability Non-private attibutes in a base class �   �

#5.4: Theoretically,
inheritance hierar-
chies should be
deep, i.e. the dee-
per the better.

Structure Classes,
Inheritance

Maintainability The inheritance tree is not depth
enough.

�   �

#5.5: Pragmatically,
inheritance hierar-
chies should be no
deeper than an
average person can
keep in their short
term memory.

Structure Classes,
Inheritance

Maintainability The inheritance tree is too depth. A
popular value for this depth is six.

�   �

#5.6: All abstract Structure Classes, Maintainability An abstract class must have children. �   �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

73

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

classes must be
base classes.

Inheritance

#5.7: All base
classes should be
abstract classes.

Structure Classes,
Inheritance

Maintainability An abstract class inherits from
another base class.

�   �

#5.8: Factor the
commonality of
data, behavior,
and/or interface as
high as possible in
the inheritance
hierarchy.

Structure,
Semantic

Classes,
Inheritance,
Attributes,
Methods

Maintainability Commonalities between all related
classes should be shared in a com-
mon ancestor.

�   �

#5.9: If two or more
classes only share
common data (no
common behavior)
then that common
data should be
placed in a class
which will be con-
tained by each
sharing class.

Structure,
Semantic

Classes,
Inheritance,
Attributes,
Methods

Maintainability Data commonalities between some
related classes should be shared in a
contained class.

� �  �

#5.10: If two or
more classes have
common data and
behavior (i.e. me-
thods) then those
classes should each
inherit from a com-
mon base class
which captures
those data and
methods.

Structure,
Semantic

Classes,
Inheritance,
Attributes,
Methods

Maintainability Commonalities between unrelated
classes should be shared in a com-
mon ancestor.

�   �

#5.11: If two or
more classes only
share common
interface (i.e. mes-
sages, not methods)
then they should
inherit from a com-
mon base class only
if they will be used
polymorphically.

Structure,
Semantic

Classes,
Inheritance,
Usage

Maintainability Classes implementing an interface
that is not needed or used.

�   �

#5.12: Explicit case
analysis on the type
of an object is
usually an error.

Structure,
Control

Classes,
Inheritance,
Statements

Maintainability,
Reliability

Case or Switch statements are used
to differentiate between different
classes.

�  � �

#5.13: Explicit case
analysis on the
value of an attribute
is often an error.

Structure,
Control

Classes,
Atrributes,
Statements

Maintainability,
Reliability

Case or Switch statements are used
to differentiate between different
attribute values (e.g., states).

�  � �

#5.14: Do not model
the dynamic seman-
tics of a class
through the use of
the inheritance
relationship.

Structure,
Control

Classes,
Statements

Maintainability,
Reliability

An attempt to model dynamic seman-
tics with a static semantic relation-
ship will lead to a toggling of types at
runtime.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

74

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

#5.15: Do not turn
objects of a class
into derived classes
of the class.

Structure Classes Maintainability Be very suspicious of any derived
class for which there is only one
instance.

�  � �

#5.16: If you think
you need to create
new classes at
runtime, take a step
back and realize
that what you are
trying to create are
objects. Now gene-
ralize these objects
into a class.

Control Classes Maintainability Creation of classes at runtime �  � �

#5.17: It should be
illegal for a derived
class to override a
base class method
with a NOP method,
i.e. a method which
does nothing.

Structure Class, Inhe-
ritance

Maintainability A method is overridden with an emp-
ty method.

�  � �

#5.18: Do not con-
fuse optional con-
tainment with the
need for inheritance,
modeling optional
containment with
inheritance will lead
to a proliferation of
classes.

Structure Class, Inhe-
ritance

Maintainability Containment modeled as inheritance �   �

#5.19: When build-
ing an inheritance
hierarchy try to
construct reusable
frameworks rather
than reusable com-
ponents.

Semantic Classes,
Inheritance,
Names

Portability Inheritance hierarchy could be more
general to fit the domain instead of
the system.

�   �

#6.1: If you have an
example of multiple
inheritance in your
design, assume you
have made a mis-
take and prove
otherwise.

Structural Classes,
Inheritance

Maintainability A class inherits from two or more
classes (i.e., multiple inheritance)

�   �

#6.2: Whenever
there is inheritance
in an object-oriented
design ask yourself
two questions: 1)
Am I a special type
of the thing I'm
inheriting from? and
2) Is the thing I'm
inheriting from part
of me?

Semantic Classes,
Inheritance,
Names

Maintainability Inheritance is not based on a specia-
lization concept (e.g., is-a)

� �  �

#6.3: Whenever you
have found a mul-
tiple inheritance

Structural Classes,
Inheritance

Maintainability One base class is derived from
another base class above a class

�   �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

75

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

relationship in an
object-oriented
design be sure that
no base class is
actually a derived
class of another
base class, i.e.
accidental multiple
inheritance.

#7.1: When given a
choice in an object-
oriented design
between a contain-
ment relationship
and an association
relationship, choose
the containment
relationship.

Structural Classes,
Calls

Maintainability Try to change associations into con-
tainments, if possible.

�   �

#8.1: Do not use
global data or func-
tions to perform
bookkeeping infor-
mation on the ob-
jects of a class,
class variables or
methods should be
used instead.

Structure,
Control

Attributes,
Calls

Maintainability An externally declared variable that
is referenced within a class but is not
an attribute within the class.

� � � �

#9.1: Object-
oriented designers
should never allow
physical design
criteria to corrupt
their logical designs.

Semantic Classes Maintainability Design should be understandable
and not necessarily 100% perfect
regarding the real world

�   �

#9.2: Do not change
the state of an ob-
ject without going
through its public
interface.

Structural Classes Maintainability The classes gives access on
attributes responsible to hold the
state

� �  �

Table 32. Heuristics by (Gibbon, 1997)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

CC1 Limit the num-
ber of methods per
class

Structure Classes,
Methods,
Statements

Maintainability,
Portability

A class with far too many methods,
attributes, and consequently respon-
sibilities.

�   �

CC2 Limit the num-
ber of attributes per
class

Structure Classes,
Attributes

Maintainability A class with far too many attributes. �   �

CC3 Limit the mes-
sages that an object
can receive

Structure,
Control

Classes,
Usage

Maintainability A class with far too many incoming
messages (users).

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

76

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

CC4 Minimise com-
plex methods

Control Methods Maintainability A class with too much complexity
(e.g., too many complex methods)

�  � �

CC5 Limit enabling
mechanisms that
breach encapsula-
tion

Structural Classes,
methods

Maintainability The classes gives access on far too
many information via methods

� �  �

CC6 Hide all imple-
mentation details

Structural Classes Maintainability The classes gives access on far too
many information

� �  �

CU1 Limit the num-
ber of collaborating
classes

Structural Methods,
Calls

Maintainability,
Portability

Too many classes are coupled
among each other.

�  � �

CU2 Restrict the
visibility of interface
collaborators

Structural Classes Maintainability The interface gives access on far too
many information

� �  �

CA1 The aggregate
should limit the
number of aggre-
gated

Structural Classes,
Attributes

Maintainability Too many aggregated classes � �  �

CA2 Restrict access
to aggregated by
clients

Structural,
Control

Classes,
Calls

Maintainability Too many aggregated attributes are
accessed by clients

� � � �

RA1 Aggregation
hierarchies should
not be too deep

Structure Classes,
Attributes,
Inheritance

Maintainability The inheritance tree for classes that
are aggregated is too depth.

�   �

RA2 The leaf nodes
in an aggregation
hierarchy should be
small, reusable and
simple

Structure Classes,
Inheritance,
Methods

Maintainability,
Portability

A leaf class with far too many me-
thods, attributes, and consequently
responsibilities.

�   �

RA3 Stability should
descend the hie-
rarchy from rich
aggregates to their
building blocks

Structure,
Historic

Classes,
Inheritance,
Attributes,
Versions

Maintainability,
Portability

The stability of an aggregation hie-
rarchy relies upon the stability of its
leaf nodes and the extent to which its
uppermost aggregates have encap-
sulated them.

�   

CI1 Limit the use of
multiple inheritance

Structure Classes,
Inheritance

Maintainability The amount of classes with multiple
inheritance should be 0.

�   �

CI2 Prevent over-
generalisation of the
parent class

Structure Classes,
Methods,
Statements

Maintainability A base class that isn’t doing much. �  � �

RI1 The inheritance
hierarchy should not
be too deep

Structure Classes,
Inheritance

Maintainability The inheritance tree is too depth. �   �

RI2 The root of all
inheritance hierar-
chies should be
abstract

Structure Classes,
Inheritance

Maintainability A base class should be abstract. �   �

RI5 Strive to make
as many interme-
diary nodes as
possible abstract.

Structure Classes,
Inheritance

Maintainability An abstract class inherits from
another base class.

�   �

RI6 Stability should
ascend the inherit-
ance hierarchy

Structure,
Historic

Classes,
Inheritance,
Versions

Maintainability,
Portability

The stability of a hierarchy relies
upon the stability of its base classes.

�   

RI7 Inheritance is a
specialisation hie-

Semantic Classes,
Inheritance,

Maintainability Inheritance is not based on a specia-
lization concept (e.g., is-a)

� �  �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

77

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

rarchy Names

Table 33. Heuristics by (Grotehen, 2001)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

A class in a con-
tainment hierarchy
should only depend
from its child
classes

Structure,
Control

Classes,
Inheritance,
Calls, State-
ments

Maintainability A class should neither depend from
its container or from one of its sibl-
ings. A class should not depend from
classes below its siblings.

�  � �

Every attribute
should be hidden
within its class

Structure Classes,
Attributes,
Calls

Maintainability Do not use attributes in the public
interface of a class.

�  � �

A client-server de-
pendency between
two classes should
not Lead to depen-
dencies from the
server to the client

Structure Classes,
Attributes,
Methods,
Calls

Maintainability Do not use attributes or methods in
the public interface of a client class in
its server class. Do not inherit from a
client class. Do not send messages
to instances of a derived class.

�  � �

Avoid dependencies
from database
classes to their
clients

Structure Layers, Calls Maintainability,
Portability

Avoid relationships from database
classes to classes outside the data-
base. Use callback functions or event
mechanisms if communication from a
database to its clients is required.

�  � �

A class should cap-
ture one and only
one key abstraction
with All its informa-
tion and all its beha-
viour

Structure,
Semantic

Classes,
Methods,
Interfaces

Maintainability Do not distribute knowledge about a
key abstraction among many classes.
Do not model different key abstrac-
tions in a single class.

� �  �

Do not create unne-
cessary classes to
model roles

Structure,
Semantic

Classes,
Methods,
Names

Maintainability Classes that are too similar (and
probably related). Model only one
class for an entity with different roles
and provide the role information in
other ways e.g. in state attributes.

�  � �

Avoid pure accessor
methods

Structural Classes,
Methods,
Names

Maintainability,
Portability

Try to minimize the number of me-
thods which only return or change an
attribute of their class. Instead of
pure accessor methods use methods
which implement some interesting
behavior of the instance.

�  � �

Avoid additional
relationships from
base classes to their
Derived classes

Structure,
Control

Classes,
Inheritance,
Calls, State-
ments

Maintainability Avoid associations and using rela-
tionships that lead to a dependency
from a base class to its derived class.

�  � �

Avoid classes with
properties implying
redundancies

Semantic Classes,
Methods,
Attributes

Maintainability,
Reliability

Data is stored redundantly in multiple
classes. This heuristic is similar to
3nf (Third normal form in Databases).

� �  �

Avoid multivalued
dependencies

Semantic Attributes Maintainability Eliminate every multivalued depen-
dency.

� �  �

Convert associa- Structure Associations Maintainability Replace loose relationships by rela- �  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

78

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

tions, and uses
relationships in the
Strongest contain-
ment relationship
wherever possible

tionship that restrict visibility. Avoid
many loose relationships. The appli-
cation of this heuristic converts a
given class hierarchy into a narrow
and deep containment hierarchy.

Avoid contained
instances that have
to be modified Con-
currently

Structure,
Control

Classes,
Methods,
Statements

Maintainability,
Efficiency

Avoid a class specification where
different contained instances have to
be modified by concurrent transac-
tions (e.g., because of (static) class
variables).

�   �

All properties of the
base class interface
must be usable in
Instances of its
derived classes in
every location
where a base Class
instance is expected

Structure Class, Inhe-
ritance

Maintainability The interface of a derived class
should fully implement its base class
interface. If a base class instance is
expected, no additional properties of
a derived class should be needed.

�  � �

Common properties
of instances should
be defined in a
single Location

Semantic,
Structure

Classes,
Inheritance,
Attributes,
Methods

Maintainability Avoid properties that have the same
meaning and are defined in different
locations. Move common properties
in derived classes to the base class.

�   �

Instable classes
should not be base
classes

Structure,
Historic

Classes,
Inheritance,
Attributes,
Versions

Maintainability,
Portability

Classes that depend on many other
classes should not be base classes.
Classes that are instanciable should
not be base classes

�   �

Do not misuse inhe-
ritance for sharing
attributes

Structure,
Semantic

Classes,
Inheritance,
Attributes,
Methods

Maintainability Avoid using inheritance if you intend
to share only the attributes of the
inherited base class among the de-
rived classes. Use association of
aggregation of a shared instance for
sharing attributes.

� �  �

The overloading
should define only
differences to the
overloaded method

Structure Classes,
Methods,
Statements

Maintainability Analyze exactly the differences in
both methods than describe these
differences in the overloading me-
thod.

�  � �

Avoid case analysis
on properties of
instances

Structure,
Control

Classes,
Atrributes,
Statements

Maintainability,
Reliability

Avoid case analysis on attributes of
an instance. Avoid case analysis on
attributes of an instance, which influ-
ence its behavior.

�  � �

Prefer typing by
attribute before
typing by inherit-
ance

Structure,
Control

Classes,
Inheritance,
Statements

Maintainability,
Reliability

If the differences are small the differ-
ing instances should be modeled in
the same class. Attributes should be
used to model the differences.

�  � �

A method should
use only classes of
attributes of its
class, classes of its
parameters, or
classes of instances
locally created.

Strucutre,
Control

Classes,
Methods,
Calls

Maintainability Use of too many foreign classes. This
is an application of the law of Deme-
ter. The implementers of a method
should only use this restricted set of
classes in the method implementa-
tion.

�  � �

4.14 Illnesses
The medicine-based term illness was used by Hawkins in the book “” to describe problems on
the management level (Hawkins, 2003). These software illnesses represent problematic parts

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

79

of the software system that seem wrong, complicated, or cumbersome to an experienced de-
veloper. In general, illnesses are abstract problems that mostly cannot be pinpointed directly
in the source code or a software model. In the literature they are defined as follows:

• “[Illnesses are] a metaphor for describing programming errors” (Hawkins, 2003)
While some illnesses are general problems, e.g., in the development process they do consist of
several smaller individual problems that are directly associated with the architecture, design,
or code. Illnesses such as “NIH syndrome” were not excluded even if the refusal of external
code is more a productivity problem (and has no negative of the quality of the resulting sys-
tem per se).

Table 34. Illnesses by (Hawkins, 2003)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Premature Optimi-
zation

Semantic Statements,
Comments

Maintainability,
Portability

Optimizing too early in the develop-
ment process, e.g., by uncommunica-
tive code.

�  � �

CAP Epidemic Semantic Methods,
Statements,
Comments

Maintainability,
Portability

Duplicating code or comments using
Copy And Paste (CAP)results in
distributed changes and bugs.

�  � 

NIH Syndrome Semantic External
components

(Productivity) Fear of (re-)using external code or
libraries.

�   �

Complexification Semantic Classes,
Methods

Efficiency Making a solution more complex than
it has to be

�  � �

Over Simplification Structure Classes,
Methods,
Statements

Maintainability Making a solution too simple than it
has to be and creating too many
small methods and classes.

�  � �

Docuphobia Semantic Notes /
Comments

Maintainability Writing too few or uncommunicative
comments and documentation

�  � �

”i” Semantic Comments,
Names

Maintainability Usage of uncommunicative names
for variables or redundant comments

�  � �

Hardcode Semantic Attributes,
Names

Maintainability,
Portability

Hard-coded numbers and strings in
the code

�   �

Brittle Bones Semantic Methods,
Statements

Maintainability,
Reliability

Applications build on buggy libraries,
instable cores, or brittle frameworks
with missing, unused, overly different,
or overly complex features.

�  � �

Requirement Defi-
ciency

Semantic,
Structure

Requirement
document

Maintainability,
Reliability

Unfinished, incomplete, vague, ab-
stract, or large requirements

   �

Myopia Semantic Classes,
Methods

Maintainability,
Reliability,
Portability

Unfinished problems with sub-optimal
solutions (quick-fixes, workarounds,
etc.).

�  � �

4.15 Metric Thresholds
A relatively basic concept of defects is captured with the “threshold” concept. While metrics
are often used to assess the software quality or to predict the project development sometimes
thresholds are used to describe concrete problems. Lorenz and Kidd used this term in their
book “Object-oriented software metrics” to describe problems in object-oriented software
system that should be removed (Lorentz & Kidd, 1994). In the literature they are defined as
follows:

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

80

• “A measurement value that has been determined through project experiences to be signif-
icant in terms of desirable or undesirable designs, with some margin of error.” (Lorentz
& Kidd, 1994)

Table 35. Metric Thresholds by (Lorentz & Kidd, 1994)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

(Optimum) Number
of Key Classes

Structure Classes Maintainability A system should consist of 20-40%
key classes (i.e., classes central to
the business domain)

�   �

(Optimum) Number
of support classes

Structure Classes Maintainability A system should consist of one to
three times as much support classes
(i.e., classes providing basic service
or interface capabilities)

�   �

(Optimum) Number
of subsystems

Structure Classes Maintainability There shouldn’t be too many subsys-
tems (i.e., collections of classes that
supports a set of end-user functions)

�   �

(Optimum) Number
of message sends

Structure Method,
Calls

Maintainability,
Portability

There shouldn’t be more than nine
messages send by a method.

�  � �

(Optimum) Number
of statements

Structure Method,
Statements

Maintainability There shouldn’t be more than seven
statements in a method.

�  � �

(Optimum) Lines of
Code

Structure Method,
Statements

Maintainability There shouldn’t be more than six
(Smalltalk) or 24 (C++) lines of code
in a method.

�  � �

(Optimum) Method
complexity

Control Method,
Statements

Maintainability Methods shouldn’t have a complexity
over 65 (based on defined weights).

�  � �

(Optimum) Number
of public instance
methods in a class

Structure Class, Me-
thods

Maintainability There shouldn’t be more than 20
public instance methods in a class.

�   �

(Optimum) Number
of instance methods
in a class

Structure Class, Me-
thods

Maintainability There shouldn’t be more than 20
instance methods in a class (40 in UI
classes).

�   �

(Optimum) Number
of instance variables
in a class

Structure Class,
Attributes

Maintainability,
Portability

There shouldn’t be more than 3 in-
stance variables in a class (9 in UI
classes).

�   �

(Optimum) Number
of class methods in
a class

Structure Class, Me-
thods

Maintainability There shouldn’t be more than 4 class
methods (i.e., static) in a class.

�   �

(Optimum) Number
of class variables in
a class

Structure Class,
Attributes

Maintainability There shouldn’t be more than 3 class
variables (i.e., static) in a class.

�   �

(Optimum) Class
hierarchy nesting
level

Structure Class, Inhe-
ritance

Maintainability The inheritance hierarchy level
should be lower than 6.

�   �

(Optimum) Number
of abstract classes

Structure Class Maintainability A system should consist of 10-15%
abstract classes

�   �

(Optimum) Use of
inheritance

Structure Class, Inhe-
ritance

Maintainability The amount of classes with multiple
inheritance should be 0.

�   �

(Optimum) Number
of methods overrid-
den by a subclass

Structure Class, Inhe-
ritance

Maintainability The amount of methods overridden
should be less than 3.

�   �

(Optimum) Number
of methods inherited
by a subclass

Structure Class, Inhe-
ritance

Maintainability The amount of methods inherited
should be high.

�   �

(Optimum) Number Structure Class, Inhe- Maintainability The amount of methods added �   �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

81

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

of methods added
by a subclass

ritance should be between 1 and 20 (de-
pends on the inheritance level).

(Optimum) Class
cohesion

Structure Class, Me-
thods,
Attributes,
Calls

Maintainability The message connections within a
class and the use of instance va-
riables.

�   �

System Global Structure Class, Inhe-
ritance

Maintainability There should be at most only one
system global, class variable, or pool
dictionary

�   �

Average number of
parameters per
method

Structure Methods,
Parameters

Maintainability The average amount of parameter
per method should be less than 0.7

�  � �

Use of friend func-
tions

Structure Class, Me-
thods, Calls

Maintainability The amount of friend classes should
be 0.

�  � �

Average number of
comment lines per
method

Structure Methods,
Statements,
Comments

Maintainability The average amount of comment
lines per method should be less than
1.

�  � �

Average number of
commented meth-
ods

Structure Methods,
Statements,
Comments

Maintainability The average amount of commented
methods should be between 65%
and 100%.

�  � �

Class Coupling Structure Class, Me-
thods,
Attributes,
Calls

Maintainability The message connections between
classes via methods and instance
variables.

�   �

4.16 Negative Patterns
Furthermore, the concept “Negative Pattern” is very similar to the antipattern concept – as
antipatterns these patterns represent problematic parts of the software system that seem
wrong, complicated, or cumbersome to an experienced developer. In general, these negative
patterns are problems that are associated with one or more specific refactorings (i.e., concrete
treatments) that might be applied to remove the pattern. In the literature they are defined as
follows:

• “[negative patterns] can be expressed in negative form: ‘avoid XYZ’ …[and] have a cor-
responding positive pattern: ‘avoid XYZ, do PQR instead’” (Veryard, 2001)

The concept of negative patterns is used to describe the experience and knowledge that was
acquired by experts and have been proven beneficial. In the following sections we will list
most of these negative patterns that were found in the literature survey. Several unexplained
or non-product focused problems such as “Avoid single point of failure” were excluded from
the list.

Table 36. Negative Patterns collected by (Veryard, 2001)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Avoid GOTO (GO-
TO considered
harmful)

Control Statements Maintainability,
Reliability

There exists a goto statement within
the body of a function.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

82

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Avoid executing
data

Control Statements Maintainability,
Reliability,
Functionality

Execution of (or jumps to) system
parts that might have been data.

�  � �

Avoid hard-coding
data into program

Control Statements Maintainability,
Reliability

Constant numbers or Strings that
appear multiple times in the system

� � � 

Cycles lead to dead-
locks

Structure Classes,
Calls

Maintainability,
Portability

There is a cycle in the call structure � � � 

Minimize Use of
Interrupts

Control Statements Maintainability,
Portability

Too many interrupts �  � �

Globals Considered
Harmful

Structure,
Control

Calls Maintainability There exists an externally declared
variable that is referenced within a
function but has not been passed in
as a parameter.

�  � �

Hyperspaghetti
Objects and Sub-
systems

Structural Classes,
Methods,
Calls

Maintainability,
Reliability

Classes call many other classes and
the coupling between classes or
subsystems is high

�  � �

Don't Interrupt an
Interrupt

Control Statements Reliability Interrupting an interrupt �  � �

Avoid inhibiting
garbage collection

Control Statements Reliability Changing the behavior of garbage
collection

�  � �

Avoid excessive
initialization over-
head

Control Statements Maintainability,
Efficiency

Doing too much work upfront. �  � �

Explicit Invocation -
Tight Coupling

Control Statements Maintainability,
Portability

Components and Classes are
coupled too tighly

�   �

Implicit Collabora-
tion Protocols -
Code Pollution

Control Statements Maintainability,
Portability

Implicit (rather than explicit) reflection
of time-ordered collaboration proto-
cols.

�   �

4.17 Pitfalls
A relatively old concept “pitfall” was used often in the 80th and 90th of the last century to de-
scribe problems in different situations. Bruce F. Webster used this term in his book to de-
scribe problems in object-oriented software development and systems (Webster, 1995). These
pitfalls represent problematic parts of the software system that seem wrong, complicated, or
cumbersome to an experienced developer. In general, pitfalls are problems that are associated
with one or more specific refactorings (i.e., concrete treatments) that might be applied to re-
move the pitfalls. In the literature they are defined as follows:

• “[pitfalls] threaten to undermine the acceptance and use of object-oriented development
before its promise can be achieved” (Webster, 1995)

• “A pitfall is code that compiles fine but when executed produces unintended and some-
times disastrous results” (Daconta et al., 2000; Daconta et al., 2003)

• “[pitfalls are] the knowledge of which will be useful in instructing new programmers and
in developing tools to aid in multi-threaded programming.” (Choi & Lewis, 2000)

The concept of pitfalls is used to describe the experience and knowledge that was acquired by
experts and have been proven beneficial.

Beside the pitfalls on the object-oriented code or design levels many other problems were
described using the pitfall metaphor. Today, we have pitfall on different abstraction layers, for

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

83

development phases, or technologies such as pitfalls in real-time systems (Stewart, 1999),
java programs (Daconta et al., 2000), or multi-threaded systems (Choi & Lewis, 2000).

In the following sections we will list most of these pitfalls that were found in the literature
survey. The first larger collection of pitfalls was collected by Bruce F. Webster:

Table 37. Pitfalls by (Webster, 1995)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Confusing is-a, has-
a and is-
implemented-using
relationships

Semantic Inheritance,
Names

Maintainability Inheritance is not based on one
specialization concept (e.g., is-a) or
mixes several forms of inheritance
in one inheritance tree.

� �  �

Confusing interface
inheritance with
implementation
inheritance

Semantic Classes,
Inheritance,
Names

Maintainability,
Reliability

Inheritance from interfaces and
“real” classes is confused or
changed by using own implemented
methods.

�  � �

Using Inheritance
badly (Violate en-
capsulation)

Semantic Classes,
Inheritance

Maintainability A base class is subclasses just to
get access to its attributes and me-
thods

�   �

Using Inheritance
badly (Invert is-a by
multiple inheritance)

Structural Classes,
Inheritance

Maintainability A class inherits from two or more
classes and generate a kind of
superclass (by derivation)

�   �

Using Inheritance
badly (Using mul-
tiple inheritance)

Structural Classes,
Inheritance

Maintainability A class inherits from two or more
classes (i.e., multiple inheritance)

�   �

Having base
classes do too much
or to little

Structural Classes,
Methods,
Attributes

Maintainability A (concrete) base class implements
too much or too little behavior.

�   �

Not preserving base
class invariants

Structural,
Behavioral

Classes,
Statements

Maintainability,
Reliability

Invariants, assertions, or other in-
formation from the base class is not
“inherited” in the subclass

� � � �

Converting non-
object code straight
into objects

Structural Classes,
Methods,
Attributes

Maintainability Classes that look like modules,
libraries, data containers, or single
functions.

� � � �

Letting objects be-
come bloated

Structural Classes,
Methods,
Attributes

Maintainability Classes have too many data mem-
bers and methods or have very
large methods.

�  � �

Letting objects ooze Structural Classes,
Visibility

Maintainability The information gives access on far
too many information

�   �

Creating swiss army
knife objects

Historic Versions,
Classes

Maintainability A class or class hierarchy is
changed for different reasons over
time (again and again).

�  � �

Creating hyperspa-
ghetti objects and
subsystems

Structural Classes,
Methods,
Calls

Maintainability,
Reliability

Classes call many other classes and
the coupling between classes is
high (and not clearly separated by
components such as layers)

�  � �

Copying objects Control Classes,
Statements

Reliability,
Maintainability

Objects are copied in a wrong man-
ner (e.g., to swallow, by assignment,
slicing, etc.)

� � � �

Testing objects for
quality and identity

Control Statements Reliability,
Maintainability

Multiple checks if a object is “null” � � � �

Not keeping track of
objects

Control Statements Reliability,
Efficiency,
Maintainability

Information (objects) are disposed
by one object but not another object.

� � � �

Consuming memory Control Statements Efficiency Construction of object with many � � � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

84

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

inadvertently large instance variables

Confusing switch
statements and
polymorphism

Structure,
Control

Statements Maintainability,
Reliability

Switch statements o if-the-else
cascades are used to differentiate
between object types.

�  � 

Another group of pitfalls was collected by Daconta et al. for the Java language. As these pit-
falls are platform-specific only an excerpt of the 50 documented pitfalls in (Daconta et al.,
2000) and the 50 pitfalls in (Daconta et al., 2003) is given in the following table:

Table 38. Java Pitfalls by (Daconta et al., 2000) (Daconta et al., 2003)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Hidden Fields Structure Classes,
Attributes,
Inheritance

Maintainability,
Reliability

A field in a subclass overrides the
field of the same name in a super-
class.

�   �

Forward References Control Statements Compilability Referencing a local variable in the
same scope before it is defined.

�  � �

Use StringBuffer
instead of ‘+’

Control Statements Efficiency Using concatenation for Strings   � �

Too many Submits Control HTML, JSP,
Statements

Efficiency,
Reliability

Duplicated submits as the processing
is too slow

 � � �

Pitfalls on a similar language-specific level are known for programming languages such as C
(Koenig, 1989), more Java (Laffra, 1996), or technologies such as Jarkarta tools (Dudney &
Lehr, 2003).

4.18 Principles (Design Principles)
One of the commonly used terms for best practices on the software architecture and design
level are “principles”. In general, principles are guidelines that should be followed, However,
the absence of a principle or their inversion represent problematic (micro-)structures in the
software design that have a negative impact on the quality of a software system (i.e., the soft-
ware design). In the literature they are defined as follows:

• “[principles] govern the micro-structure of object-oriented software applications” (Mar-
tin, 2000)

• “design principles can provide us with valuable tips for curing architecture smells.”
(Roock & Lippert, 2006)

One of the best known sets of principles was collected by Robert C. Martin. He envisioned
principles as the abstract root of more specific heuristics.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

85

Table 39. Principles collected by (Martin, 2000) and (Roock & Lippert, 2006)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

DRY - Don’t Repeat
Yourself

Semantic Methods,
Statements

Maintainability,
Reliability

Do not write the same or similar
code more than once. Also called
“Once and Only Once“ principle.

�  � 

SCP - Speaking Code
Principle

Semantic Names,
Comments

Maintainability The code should communicate its
purpose. Comments in the code
could indicate that the code commu-
nicates its purpose insufficiently.

� � � �

OCP - Open Closed
Principle

Structure Classes,
Inheritance

Maintainability Software entities (classes, modules,
functions, etc.) should be open for
extension, but closed for modifica-
tion.

�   �

LSP - Liskov Substitu-
tion Principle

Structure Classes,
Inheritance,
Attributes,
Methods

Maintainability One instance of a class must be
usable for all instances where the
type is the superclass. Not only is it
required that the compiler translates
the source code, but after the mod-
ification the system must still func-
tion correctly.

�   �

DIP - Dependency
Inversion Principle

Structure Classes,
Inheritance,
Calls

Maintainability High-level concepts shall not depend
on low-level con-
cepts/implementations. The depen-
dency should be vice versa, because
high-level concepts are less liable to
change than low-level concepts. One
can introduce additional interfaces to
adhere to the principle.

�   �

ISP - Interface Segre-
gation Principle

Structure Classes,
Inheritance,
Calls

Maintainability Interfaces should be small. The
methods of single interfaces should
possess a high number of couplings.

�   �

REP: Reuse/Release
Equivalency Principle

Unknown Classes,
Inheritance,
Calls

Portability The elements that are reused are
the elements that will be released.

   �

CRP: Common Reuse
Principle

Unknown Classes,
Inheritance,
Calls

Portability The classes of a package are reused
as a whole.

   

CCP: Common Clo-
sure Principle

Historic Versions,
Classes

Maintainability,
Portability

The classes of a package shall be
closed against the same type of
changes. If a class must be
changed, all classes of the package
must be changed as well.

�   

ADP: Acyclic Depend-
encies Principle

Structure Packages,
Calls

Maintainability,
Portability

The dependency structure between
packages shall be acyclic.

�  � 

SDP: Stable Depend-
encies Principle

Structure Packages,
Calls

Maintainability,
Portability

A package shall only depend on
packages that are at least as stable
as itself.

�  � �

SAP: Stable Abstrac-
tions Principle

Historic Versions,
Classes

Maintainability,
Portability

The more stable a package is, the
more abstract it should be. Instable
packages should be concrete.

�   �

TDA: Tell, Don‘t Ask Structure Calls, State-
ments

Maintainability,
Efficiency

Don’t ask an object about an object,
but tell it what to do. Similar to the
“Law of Demeter“: Each object shall
only talk to “friends,” i.e. only to
objects that it retains as fields or
receives as parameters.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

86

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

SOC: Separation Of
Concerns

Structure Classes,
Methods,
Interfaces

Maintainability Do not mix several concerns within
one class.

� �  �

Further, more basic principles were described by (Coad & Nicola, 1993) (Appendix C) that
represent potential threats to object-oriented source code. However, as many of these princi-
ples are not applicable to architecture and design products only an excerpt is listed.

Table 40. Principles by (Coad & Nicola, 1993)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

The “-er-er” principle Semantic Names Maintainability Class names that end in “-er” (e.g.,
Changer, Controller, etc.) do proba-
bly not represent real objects.

�  � �

The throw out the
middle man prin-
ciple

Structure Calls, State-
ments

Maintainability,
Efficiency

Throw out objects that do nothing
more than take a request and pass it
on to another object.

�  � �

The strip search
principle

Semantic Names Maintainability Compound (CamelCase) names
should be analyzed for similarity with
other names.

� � � 

The “it’s my name;
generalize it” prin-
ciple

Semantic Names Maintainability Class names should be as general as
possible (and reasonable)

� � � 

The “more than just
a data hider” prin-
ciple

Structure Class,
Attributes,
Methods

Maintainability An object acts as just a data hider
when another object sends it a mes-
sage.

� �  �

The “don’t butt into
someone else’s
business” principle

Control Statements Efficiency,
Maintainability

Objects shouldn’t send other objects
a message to peek at its values and
then another to get the work done.

�  � �

4.19 Puzzles / Puzzlers
A relatively new concept “puzzle” was used by Bloch and Gafter in their book to describe
problems in object-oriented Java systems (Bloch & Gafter, 2005). These puzzles represent
platform-specific problems of the software system that appear correct but are unknowingly
wrong, complicated, or cumbersome. In general, puzzles are problems that are associated with
one or more idiosyncrasies of the (Java) programming language. In the literature they are de-
fined as follows:

• “Puzzles exploit counterintuitive or obscure behaviors that can lead to bugs” (Bloch &
Gafter, 2005)

As these puzzles are platform-specific only an excerpt of the 95 documented puzzles in
(Bloch & Gafter, 2005) (not including the 81 more general traps in appendix A) is given in
the following table:

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

87

Table 41. Puzzles by (Bloch & Gafter, 2005)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Puzzle 2: Time for a
change

Control Statements Reliability,
Functionality

Not all decimals can be represented
by floating point

� � � �

Puzzle 11: The last
Laugh

Control Statements Reliability,
Functionality

The + operator performs string con-
catenation if and only if one of its
operands is of type String.

� � � �

Puzzle 25: Incle-
ment Increment

Control Statements Reliability,
Functionality

Do not assign the same variable
more than once in a single expres-
sion.

�  � �

Puzzle 29: Bride of
Looper

Control Statements Reliability,
Functionality

Once a float reaches NaN further
computations might get corrupted.

� � � �

Puzzle 47: Well,
Dog my Cats!

Control Statements Reliability,
Functionality

A single copy of each static field is
shared among its declaring class and
subclasses.

�  � �

Puzzle 59: What’s
the difference?

Control Statements Reliability,
Functionality

Integer literals beginning with a “0”
are interpreted as octal values.

� � � �

While these are platform-specific problems they are nevertheless relevant to the platform-
independent level. As models on the PIM level are going to be transformed to the PSM level
these problems should be taken into consideration either while modeling the PIM or in the
development of PIM to PSM transformators. Being system-independent the consideration of
these problems in general-purpose transformers or quality-checking transformers (i.e., on the
PSM level) seems better in order to not overload the PIM level (that should not consider all
platform-specific quality defects, e.g., for Ada or Cobol).

4.20 Rules (Design Rules)
The concept “rules” is used by Johnson and Foote to describe problems in object-oriented
languages such as Smalltalk. These rules represent guidelines how these systems should be
build. In the literature they are defined as follows:

• “[rules] help the designer create standard protocols, abstract classes, and object-oriented
frameworks.” (Johnson & Foote, 1988)

• “[rules] include both good practices for this kind of design and specific requirements
from the stakeholders for this system. ”(Liu et al., 2002)

Johnson & Foote present several design rules for developing better, more reusable object-
oriented programs.

Table 42. Design rules by (Johnson & Foote, 1988)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Recursion Introduc-
tion

Structure,
Semantic

Classes,
Associations,
Calls, Names

Maintainability If one class communicates with a
number of other classes, its interface
to each of them should be the same
(i.e., similar naming of methods).

�   �

Eliminate Case
Analysis

Structure,
Control

Statements Maintainability It is almost always a mistake to check
the class of an object.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

88

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Reduce the Number
of Arguments

Structure Methods Maintainability,
Efficiency

Messages that have a dozen or more
arguments are hard to read (except
constructors).

�  � �

Reduce the Size of
Methods

Structure Methods,
Statements

Maintainability,
Reliability

It is easier to subclass a class with
small methods, since its behavior can
be changed by redefining a few small
methods instead of modifying a few
large methods.

�  � �

Hierarchies should
be Deep and Nar-
row

Structure Classes,
Inheritance

Maintainability A well developed class hierarchy
should be several layers
deep.

�   �

The Top of the
Hierarchy should be
Abstract

Structure Classes,
Methods,
Inheritance

Maintainability Inheritance for generalization or code
sharing usually indicates the need for
a new subclass.

�   �

Minimize accesses
to variables.

Structural Classes Maintainability Classes can be made more abstract
by eliminating their dependence on
their data representation.

� �  �

Subclasses should
be specializations

Structure,
Semantic

Classes,
Inheritance

Maintainability Subclass redefines method, adds no
new ones, or

�   �

Split Large Classes Structure Classes,
Methods,
Statements

Maintainability Large classes should be viewed with
suspicion and held to be guilty of
poor design until proven innocent.

�   �

Factor Implementa-
tion differences into
subcomponents

Structure,
Semantic

Classes,
Methods,
Statements

Maintainability If some subclasses implement a
method one way and others imple-
ment it another way then the imple-
mentation of that method is indepen-
dent of the superclass. It is likely that
it is not an integral part of the sub-
classes and should be split off into
the class of a component.

�   �

Separate Methods
that do not Commu-
nicate

Structure Classes,
Methods,
Calls

Maintainability A class should almost always be split
when half of its methods access half
of its instance variables and the other
half of its methods access the other
half of its variables.

�  � �

Send messages to
components instead
of to self.

Structure Classes,
Methods,
Calls

Maintainability An inheritance-based framework can
be converted into a component-
based framework black box structure
by replacing overridden methods by
message sends to components.

�   �

Reduce implicit
parameter passing.

Structure Classes,
Methods,
Attributes

Maintainability A class is hard to split into two parts
because methods that should go in
different classes access the same
instance variable.

�  � �

Liu collected several production rules to identify inconsistencies in UML models. However,
several rules such as cleanup-rules are not listed due to their specific nature.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

89

Table 43. Inconsistency Rules by (Liu et al., 2002)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

An object is absent
from the specialized
sequence diagram.

Structure Sequence Maintainability If feature A is a specialization of
feature B illustrated in the corres-
ponding diagrams, then an inconsis-
tency occurs if an object that appears
in B’s diagram, is absent from that of
A.

�  � �

Conflicting states
reachable in state
diagrams.

Structure State Reliability When two features have overlapping
specifications, conflicting states may
be reached simultaneously.

�  � 

No Attributes may
have the same
name within a Clas-
sifier.

Structure Classes,
Attributes

Compilability Attributes with the same name �   

A design model
should obey the
Law of Demeter.

Structure Classes,
Attributes

Conformance,
Maintainability

When a Singleton pattern is used in a
design, no other class objects should
keep a reference to the singleton
class object. (A Singleton pattern is
recognized if the class has a static
method returning an instance of the
class and a static attribute that stores
instances of this class.)

�   �

Furthermore, Liu described further rules in her master thesis. We list the one not described in
Table 43.

Table 44. Inconsistency Rules by (Liu, 2002)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l
An object of a beha-
vioral diagram is
undefined in class
diagrams.

Structure Classes,
Objects,
Behav. Dia-
grams

Compilability Definition of an object is missing in
the class diagrams.

�   �

A message of a
behavioral diagram
is undefined in the
corresponding class
definition.

Structure Classes,
Methods,
Behav. Dia-
grams

Compilability Definition of a method is missing in
the class diagrams.

�  � �

A message in a
behavioral diagram
has a parameter
that is absent from
its correspondence
in the class dia-
gram.

Structure Classes,
Methods,
Behav. Dia-
grams

Compilability Definition of a parameter is missing in
the class diagrams.

�  � �

A message in a
behavioral diagram
is missing a para-
meter whose cor-
respondence exists
in the class dia-
gram.

Structure Classes,
Methods,
Behav. Dia-
grams

Compilability Definition of a parameter is missing in
the class diagrams.

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

90

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

A message is ab-
sent (from the spe-
cialized sequence
diagram)

Structure Sequence Maintainability If feature A is a specialization of
feature B illustrated in the corres-
ponding diagrams, then an inconsis-
tency occurs if a message that ap-
pears in B’s diagram, is absent from
that of A.

�  � �

The Associatio-
nEnds must have a
unique name within
the Association.

Structure Associations Compilability Association Ends have the same
name.

�   

At most one Associ-
ationEnd may be an
aggregation or
composition.

Structure Associations Compilability Multiple association Ends are aggre-
gation or composition.

�   

When multiple
classes in a pack-
age are accessed
from outside the
package, a Façade
pattern can be used
and a Façade class
should be placed as
a common interface
to the package.

Structure Classes,
Calls

Maintainability Missing Façade class. �  � �

4.21 Sins (Code sins)
The concepts (design-oriented) “sins” are typically used as a term to emphasize the problems
accompanied with quality defects. Several authors use the term to describe recurring and
named problems.

Furthermore, at least in German the concept “code sin” (ger. “Code Sünden”) is used as a
wrapper for code smells and design flaws (Simon et al., 2006).

The concept of “sins” was used by Howard in the book “19 Deadly Sins of Software Securi-
ty” (Howard et al., 2005) to describe concrete situations where security holes are opened un-
knowingly or by lax behaviour of the developers.

Table 45. Security Sins by (Howard et al., 2005)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Buffer Overrun Control Statements Functionality A program allows input to write
beyond the end of the allocated buf-
fer.

� � � �

Format String Prob-
lems

Control Statements Functionality Input from an untrusted user is al-
lowed to pass through a format
String; this can result in anything
from arbitrary code execution to
spoofing user output.

� � � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

91

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Integer Overflows Control Statements Functionality,
Reliability

Integer overflow crashes and logic
errors due to failure to check the
range on integer types.

�   �

SQL Injection Control Statements,
Queries

Functionality,
Reliability

Building SQL statements with input
from untrusted or unknown users –
i.e., they can "inject" their own com-
mands into the SQL statements.

� � � �

Command Injection Control Statements Functionality,
Reliability

Untrusted user input is passed to a
compiler or interpreter, or worse, a
command line shell.

� � � �

Failing to handle
Errors

Control Statements Functionality,
Reliability

A program's error handling strategy
leads to the program crashing, abort-
ing, or restarting – a weakness ex-
ploited in denial of service attacks.

� � � �

Cross-site Scripting Control Statements Functionality,
Reliability

Unvalidated input from the user is
echoes directly back to the users
(e.g., via a web page) – giving it
access to anything your website
could do, including retrieving cookies,
etc.

� � � �

Failing to protect
network traffic

Semantic Statements Functionality Transmitting data over the network,
even if that data is not private - at-
tackers can eavesdrop, replay, spoof,
etc. any unprotected data sent over
the network.

� � � �

Use of magic URLs
and Hidden Form
fields

Control Statements,
HTML

Functionality Passing sensitive or secure informa-
tion via the URL query string or hid-
den HTML form fields.

� � � �

Improper use of
SSL and TLS

Semantic Statements Functionality Using most SSL and TLS APIs with-
out checking for certificates from lax
authorities, subtly invalid certificates,
or stolen/revoked certificates.

 �  �

Use of weak pass-
word-based sys-
tems

Semantic Statements Functionality Using passwords without consider-
ing risks such as phishing, social
engineering, eavesdropping, key-
loggers, brute force attacks, etc..

 �  �

Failing to store and
protect data security

Semantic Statements Functionality Information spends more time stored
on disk than in transit – without
equivalent permissions and encryp-
tion for any data stored.

 �  �

Information leakage Semantic Statements,
HTML

Functionality Giving helpful feedback allows at-
tackers to learning about the internal
details the system (e.g., if the pass-
word or name was invalid)

 �  �

Improper File
Access

Semantic Data Access Functionality An attacker can slip changes in files
from a filesystem (e.g., new file or a
link), particularly if the files are ac-
cessed over the network.

 �  �

Trusting network
name resolution

Control DNS Access Functionality Domain names on a server or
workstation are overridden and sub-
verted with a local HOSTS file.

 �  �

Race conditions Control Statements Functionality,
Reliability

A race condition occurs when two
different execution contexts are able
to change a resource and interfere
with each other.

� � � 

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

92

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Unauthenticated key
exchange

Control Statements Functionality Exchanging a private key without
properly authenticating the enti-
ty/machine/service that the system is
exchanging the key with.

� � � �

Cryptographically
strong random
numbers

Control Statements Functionality Use of weak (e.g., small) random
numbers an attacker can use to
breach the security of the system.

�  � �

Poor Usability Semantic Security
features

Functionality Security only works if the secure way
also happens to be the easy way.

�   

4.22 Smells
The concept “smell” or “bad smell” was coined by Kent Beck and Martin Fowler in the Book
“Refactoring: Improving the Design of Existing Code” (Fowler, 1999). These smells
represent problematic parts of the software system that seem wrong, complicated, or cumber-
some to an experienced developer. In general, smells are problems that are associated with
one or more specific refactorings (i.e., concrete treatments) that might be applied to remove
the smells. In the literature they are defined as follows:

• “[Smells] … suggest (sometimes they scream for) the possibility of refactoring” (Fowler,
1999)

• “Smells (especially code smells) are warning signs about potential problems in code. Not
all smells indicate a problem, but most are worthy of a look and decision.” (Wake, 2003)

• “[Smells] are present when the existing system structure hampers or even prevents mod-
ifications.” (Roock & Lippert, 2006)

• “Code smell is a popular expression among Extreme Programming practitioners corres-
ponding to signs that suggest that some parts of the code are problematic or violate pro-
gramming guidelines.” (Correa & Werner, 2004)

• “A common category of problem in your code that indicates the need to refactor it” (Am-
bler & Sadalage, 2006)

• "… code smell is any symptom that indicates something may be wrong. It generally indi-
cates that the code should be refactored or the overall design should be reexamined."
(Wikipedia, http://en.wikipedia.org/wiki/Code_smell)

• "A code smell is a hint that something has gone wrong somewhere in your code. Use the
smell to track down the problem." (WikiWikiWeb, http://c2.com/cgi/wiki?CodeSmell)

Beside the smells on the code or design levels many other problems were described using the
smell metaphor. Today, we have smells on different abstraction layers, for development phas-
es, or technologies such as architecture smells (Roock & Lippert, 2006), test smells (Deursen
et al., 2001), aspect smells (Monteiro & Fernandes, 2006), database smells (Ambler & Sadal-
age, 2006), OCL smells (Correa & Werner, 2004), projects smells (Elssamadisy & Schalliol,
2002), or user story smells (Cohn, 2004).

In the following sections we will list most of these smells that were found in the literature
survey. The first large collection of smells were collected by Kent Beck and Martin Fowler
(Fowler, 1999).

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

93

Table 46. Bad smells in code (Fowler, 1999)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Alternative classes
with different inter-
faces

Semantic,
Control

Classes,
Methods,
Statements,
Names

Maintainability Two classes are doing similar thing
and have similar interfaces but use
different method names, method
structures, or are not related (i.e., are
not using a shared superclass or
interface).

�  � 

Comments Semantic Notes /
Comments

Maintainability Superfluous or redundant description
of the software.

�  � �

Data class Structure Class,
Attributes,
Methods

Maintainability Classes that do almost exclusively
store information for other classes.
Optionally, these classes have getter
and setter methods for the attributes.

� �  �

Data clumps Structure,
Message

Class,
Attributes,
Parameters,
Local Va-
riables

Maintainability Data items (i.e., attributes, parame-
ters, local variables, etc.) that appear
in groups all over the system (e.g., id,
surename, forename, salary).

� � � 

Divergent change Historic Versions,
Classes

Maintainability A class is changed for different rea-
sons over time.

�  � �

Duplicated code Semantic Methods,
Statements

Maintainability,
Reliability

Identical code passages are distri-
buted over the whole system

�  � 

Feature envy Structure Classes,
Calls

Maintainability A method is occupied more with data
and methods in other classes than its
own.

�  � �

Inappropriate Inti-
macy

Structure Classes,
Attributes,
Calls

Maintainability Classes access far too many internal
parts (attributes or methods) of other
classes.

�  � �

Incomplete library
class

Structure Classes Maintainability,
Portability

An external (library) class that misses
some functionality but cannot be
changed)

�  � �

Large class Structure Classes,
Methods,
Statements

Maintainability,
Portability

A class with far too many methods,
attributes, and consequently respon-
sibilities.

�   �

Lazy class Structure Classes,
Methods,
Statements

Maintainability A class that isn’t doing much. �  � �

Long method Structure Methods,
Statements

Maintainability,
Reliability

A very large method. �  � �

Long parameter list Structure Methods Maintainability,
Efficiency

A method with too many parameters. �  � �

Message chains Structure Calls, State-
ments

Maintainability,
Efficiency,
Portability

One object asks another object for
data in a third object (and so on).

�  � �

Middle man Structure Calls, State-
ments

Maintainability,
Efficiency

A method delegates the functionality
to another method (or class).

�  � �

Parallel inheritance
hierarchies

Historic,
Structure

Classes,
Inheritance

Maintainability Creating a subclass in one hierarchy
requires the creation of another sub-
class in a different hierarchy

�   

Primitive obsession Structure Attributes,
Parameters,
Local Va-
riables

Maintainability Far too many primitive types are
used (in a class or method)

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

94

Refused bequest Structure Classes,
Attributes,
Methods

Maintainability Subclasses that inherit attributes and
methods that they do not use.

�  � �

Shotgun surgery Historic Versions,
Classes

Maintainability,
Portability

Several classes are changed in a
group every time a specific kind of
change is to be made.

�   

Speculative general-
ity

Structure Relations,
Calls, Inhe-
ritance

Maintainability,
Portability,
Reliability

Classes, methods, attributes, or code
passages do only exist for future,
potential features

�  � �

Switch statements Structure,
Control

Statements Maintainability,
Reliability

Similar Switch statements are used
to differentiate between behavior in
different classes.

�  � 

Temporary field Semantic,
Control

Statements Maintainability,
Reliability

Fields are only set at specific times
and the time when the content is
valid is nondeterministic.

�  � �

Table 47. Code smells by (Wake, 2003)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Type Embedded in
Name

Semantic Names Maintainability Type information is redundantly en-
coded in the name / identifier of an
attribute, method, etc.

� � � �

Uncommunicative
Name

Semantic Names Maintainability The name does not communicate the
intent (e.g., short names, abbrevia-
tions, …).

� � � �

Inconsistent Names Semantic Names Maintainability Names are not consistent throughout
the system.

� � � 

Complicated Boo-
lean Expression

Structure Statements Maintainability Complex condition involving Boolean
operators (“and”, “or”, “not”).

� � � �

Magic Numbers Control Statements Maintainability,
Reliability

Constants that appear multiple times
in the system

� � � 

Null Check Control Statements Reliability Multiple checks if a object is “null” � � � �

Special Case Control Statements Maintainability,
Reliability

Check for particular values or states
before doing work

� � � �

Simulated Inherit-
ance (Switch
Statement)

Structure,
Control

Statements Maintainability,
Reliability

Similar Switch statements are used
to differentiate between behavior in
different classes.

�  � 

Table 48. Code smells by (Kerievsky, 2005)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Indecent Exposure
(aka: Unnecessary
Openness)

Structural Classes Maintainability The classes (or packages, etc.) gives
access on far too many information

� �  �

Solution Sprawl Semantic Classes,
Statements

Maintainability Many small features are realized
without consolidating or using exist-
ing features (i.e., methods)

�  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

95

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Combinatorial Ex-
plosion

Structural Classes,
Methods,
Statements

Maintainability Code duplication for many slightly
different features (e.g., queries)

� � � 

Oddball Solution Semantic Classes,
Names,
Statements

Maintainability Different solutions do exist for the
same problem.

� � � 

Conditional Com-
plexity

Control Statements Maintainability Large and complex conditional
statements (i.e., if, switch etc.)

� � � �

Table 49. Code smells by (Tourwé & Mens, 2003)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Obsolete Parameter Structural,
Behavior

Classes,
Methods,
Parameters

Maintainability,
Reliability

Parameter are not used in any of
implementations of the given class

� � � �

Inappropriate Inter-
faces

Structural Classes,
Methods

Maintainability,
Reliability

Differences between common inter-
faces of direct subclasses and the
interface of the root class.

�   �

Table 50. Architecture smells (Roock & Lippert, 2006)

Name Type of
Quality
Defect

Design Ent i-
ties in-
volved

Quality As-
pects af-

fected

Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l
Obsolete Classes,
Unused Element
(Class)

Structure Classes,
Calls

Maintainability Classes are not in the control path
and not used in the system.

�  � �

Treelike Dependen-
cy Hierarchies

Structure Classes,
Calls

Maintainability Classes are only used by one other
class.

�  � �

Static Cycles
(Class)

Structure Classes,
Calls

Maintainability,
Portability

Classes are used in a cycle �  � 

Visibility of Depen-
dency Graph

Structure Classes,
Calls

Maintainability,
Portability

Internal information of classes is
used by other classes

�  � 

Type Queries Structure,
Control

Classes,
Statements

Maintainability,
Reliability

The type of an object is identified
programmatically.

�  � 

List-like Inheritance
Hierarchies

Structure Classes,
Inheritance

Maintainability Classes have only one subclass �   �

Subclasses do not
redefine methods

Structure Classes,
Inheritance

Maintainability Subclasses redefine no methods of
the superclass

�  � �

Hierarchy without
polymorphy

Structure Classes,
Inheritance

Maintainability Inheritance hierarchies without poly-
morphy. Superclasses that are used
only sparely or never.

�   �

Parallel Inheritance
Hierarchies

Historic,
Structure

Classes,
Inheritance

Maintainability Creating a subclass in one hierarchy
requires the creation of another sub-
class in a different hierarchy

�   

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

96

Name Type of
Quality
Defect

Design Ent i-
ties in-
volved

Quality As-
pects af-

fected

Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Deep inheritance
Hierarchy

Structure Classes,
Inheritance

Maintainability The inheritance tree is too depth. �   �

Unused Elements
(Package)

Structure Packages,
Calls

Maintainability Packages are not in the control path
and not used in the system.

�  � �

Static Cycles
(Package)

Structure Packages,
Calls

Maintainability,
Portability

Packages are used in a cycle �  � 

Package too small Structure Package Maintainability A package with far too few classes
(or other types – e.g., enums) and
consequently responsibilities.

�   �

Package too large Structure Package Maintainability A package with far too many classes
(or other types – e.g., enums) and
consequently responsibilities.

�   �

Deep or Unba-
lanced Package
Hierarchy

Structure Packages,
Inheritance

Maintainability A package hierarchy that is too deep
or unbalanced.

�   �

Packages Not
Clearly Named

Semantic Package
Namess

Maintainability,
Reliability

Package names that occur multiple
times in the system or that does not
communicate its intention.

�  � �

No Subsystems Structure Subsystem Maintainability No subsystems defined �   �

Subsystem too large Structure Subsystem Maintainability Subsystem with far too many pack-
ages.

�   �

Subsystem too
small

Structure Subsystem Maintainability Subsystem with far too few pack-
ages.

�   �

Too many Subsys-
tems

Structure Subsystems Maintainability Too many subsystems defined. �   �

Subsystem-API
Bypassed

Structure Subsystem,
Calls

Maintainability,
Reliability

Clients are bypassing the subsystem-
API.

�  � �

Subsystem-API too
Large

Structure Subsystem Maintainability Subsystem-API with far too many
open packages.

�   �

Static Cycles (Sub-
system)

Structure Subsystems,
Calls

Maintainability,
Portability

Subsystems are used in a cycle �  � �

Overgeneralization Structure Subsystems,
Calls

Maintainability,
Reliability

Clients need to reimplement many
“real” / non-abstract functionality.

�  � �

No Layers Structure Layers Maintainability No layers defined �   �

Upward references
between Layers

Structure Layers, Calls Maintainability,
Portability

Lower-level layers use upper-level
layers

�  � �

Strict Layers Vi-
olated

Structure Layers, Calls Maintainability,
Portability

Upper-level layer skipped middle-
level and used lower-level layer.

�  � �

Inheritance between
protocol-oriented
Layers

Structure Layers, Inhe-
ritance

Maintainability,
Portability

Classes in layers inherit from another
or have a common superclass.

�   �

Too many Layers Structure Layers Maintainability Too many layers defined. �   �

References be-
tween Vertically
Separated Layers

Structure Layers, Calls Maintainability,
Portability

Layers use sister-layers. �  � �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

97

Table 51. OCL smells by (Correa & Werner, 2004)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Magic Literal Control OCL code Maintainability Numeric or string literal that appears
in the middle of an OCL expression
without explanation.

� � � �

And Chain Control OCL code Maintainability Complex Boolean expression (esp.
AND)

�  � �

Long Journey Structure,
Control

OCL code Maintainability An OCL expression that traverses
many associations between different
classes of the model.

�  � �

Rules Exposure Structure,
Control

OCL code Maintainability Business rules details are specified in
the pre- or postconditions of system-
level operations.

�  � �

Duplicated Code Structure,
Control

OCL code Maintainability Duplicated OCL expressions. �  � �

Table 52. Database smells by (Ambler & Sadalage, 2006)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Multi-purpose col-
umn

Data
structure

DB Column,
(Attribute)

Reliability,
Maintainability

A column is used for several purpos-
es. (Similarily, an attribute in a data
class.)

� � � �

Multi-purpose table Data
structure

DB Table,
(Class,
Attributes)

Reliability,
Maintainability

A table is used to store several types
of entities. (Similarily, a class is used
to store different types of objects)

� � � �

Redundant data Data
structure

Database,
(Classes,
Attributes)

Reliability,
Maintainability

Data is stored in different places
(e.g., birthday).

� � � �

Tables with too
many columns

Data
structure

DB Table,
Class,
Attributes

Maintainability Items consist of too much data and
table probably lacks cohesion.

� �  �

Tables with too
many rows

Data DB Data,
Instances

Efficiency Table encompasses too much infor-
mation.

� �  �

"Smart” columns Data
structure

DB Data Reliability,
Maintainability

Data in Columns is encoded – e.g.,
data type is embedded in a number.

� � � �

Fear of change Mental Database Maintainability Afraid to change the database.  �  

4.23 Styles, Conventions, and Rules
Finally, another set of concepts that is associated with quality defects are styles, conventions,
or rules for source code or software models. Behind every of these conventions or guidelines
stands a reasonable rationale or a typical recurring problem in a software system. However,
they are mostly used to check or improve the inner “structure” of methods while antipatterns
and smells are more concerned with the structure of the software design expressed in classes,
packages, or layers. Typically, these styles are targeted to improve or assure the readability
and maintainability of a software system. In the literature they are defined as follows:

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

98

• “[conventions are] guidelines for creating effective UML diagrams … [and] are based on
proven principles that will lead to diagrams that are easier to understand and work with.”
(Ambler, 2006)

In the following sections we will list important collections of these styles that were found in
the literature survey. The first larger collection of (bad) styles relevant to software design was
collected by Ambler. While most of the 300 styles are applicable to MDSD we will only list
an excerpt of the styles.

Table 53. Style conventions by (Ambler, 2006)

Name
Type of
Quality
Defect

Design Enti-
ties in-
volved

Quality As-
pects af-

fected
Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

9. Minimize the
number of bubble
types

Structure Diagrams Maintainability A diagram that holds more than six
elements (bubbles).

�   �

10. Include White
Space in a diagram

Layout Diagrams Maintainability Elements in a diagram that are too
close together

�   �

12. Avoid many
close lines

Layout Diagrams Maintainability Several lines close together are hard
to follow.

�   �

16. Reorganize large
Diagrams into sev-
eral smaller ones

Structure Diagrams Maintainability Diagram is too large �   �

23. Name common
Elements consistent-
ly across diagrams

Semantic Diagrams Maintainability One modeling element appears
under different names

�   

26. Apply color or
different fonts spa-
ringly

Layout Diagrams Maintainability More than six colors in a single dia-
gram

�   �

27. Describe dia-
grams with notes

Structure Diagrams Maintainability Missing comments / notes about the
diagram

�   �

35. Prefer Naming
conventions over
Stereotypes

Semantic,
Structure

Names Maintainability A stereotype such as <<getter>>
was used instead of naming the
method appropriately (e.g., “get…”)

�   �

58. Begin Use-case
names with a strong
verb

Semantic Names Maintainability A use case that begins with no or a
weak verb (i.e., too general such as
“process”)

�   �

63. Name actors
with singular do-
main-relevant nouns

Semantic Names Maintainability A name should accurately reflect its
role within your model.

�   �

76. Avoid more than
two levels of use
case Associations

Structure Diagrams Maintainability Too many associations (e.g., in-
cludes) for a use case.

�   �

80. Place the inherit-
ing use case below
the base use case

Layout Diagrams Maintainability Inheritance order should flow from
top to bottom

�   �

96. Prefer complete
singular nouns for
class names

Semantic Classes,
Names

Maintainability Names should not contain abbreva-
tions or verbs and should be in sin-
gular form.

�   �

97. Name Opera-
tions with strong
verbs

Semantic Classes,
Names

Maintainability An operation that begins with no or a
weak verb (i.e., too general such as
“process”)

�   �

112. Model relation-
ships horizontally

Layout Relationship Maintainability Relations with the exception of inhe-
ritance should be associated hori-
zontally.

�   �

114. Model Collabo- Structural Collaboration Maintainability Missing relationship that describes �   �

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

99

ration between two
elements only when
the have a relation-
ship

the collaboration

125. Name unidirec-
tional Associations in
the same direction

Semantic Association Maintainability An association from A to B where the
name implies the other direction
(e.g., Item -usedBy-> List should be
Item <-uses- List)

�   �

137. A subclass
should inherit every-
thing

Structure Classes Maintainability Subclasses that reject attributes or
methods from their parents.

�  � �

154. Make packages
cohesive

Structure Packages,
Calls

Maintainability Anything within a package should
make sense when considered with
the rest of the package contents.

�  � �

156. Avoid cyclic
dependencies be-
tween packages

Structure Packages,
Calls

Maintainability,
Portability

Packages are used in a cycle �  � 

158. Strive for left to
right ordering of
messages

Layout Diagrams Maintainability Message flow that is unordered and
makes a zig-zag.

�   �

213. Name transition
events in past tense

Semantic Names Maintainability Names of results of events are al-
ready processed.

�   �

224. Apply connec-
tors to avoid un-
wieldy activity edges

Layout,
Structure

Diagrams Maintainability Diagrams with too many lines can be
simplified using connectors.

�   �

248. Have fewer
than five swim lanes

Structure Diagrams Maintainability Too many activity partitions. �   �

287. Indicate
attribute values to
clarify instances

Semantic Objects Maintainability Objects are not easily discriminable
and Attributes are uncommunicative.

�   �

Other style conventions for programming languages such as C++ (Sutter & Alexandrescu,
2004), C# (Baldwin et al., 2006) or Java (Vermeulen et al., 2000) are very similar and mostly
platform-specific.

Additionally, tools such as Findbugs, PMD, Checkstyle, etc. have large collections of styles
they are checking. However, as these are not in the main focus of the VIDE project we will
not list them.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

100

5 Domain-specific Quality Defects

This section addresses Task 4.3 “Modelling domain-specific parts of the models” that was
concerned with the identification and formalization of quality defects specific to our particular
domain of business applications. The domain-specific variabilities of the domain in respect to
quality were analysed and results were used in an extension (i.e., variant) of the core defect
model for our specific domain – summarizing and characterizing quality defects of this do-
main.”

Modelling addresses arbitrary applications domains however it is often important to apply the
generic modelling concepts to specific application domains to make the models more concrete
and understandable to the domain users. The VIDE project therefore focuses on the ”particu-
lar domain of business applications” to produce programming semantics to enable (program-
ming) behaviour for business oriented personal as described in Deliverable 1 (Vide, 2007a).

This focus on the domain of business applications should also be reflected by Quality Assur-
ance aspects on model level and related methods for quality defect detection that should be
focused especially on those aspects important for business applications. Therefore this chapter
describes the business application domain and it is specific requirements towards quality as-
surance.

5.1 Business Application / Business Domain
Business applications in general are software applications to effectively plan, manage a busi-
ness and its process. Typical examples of business applications are

• Enterprise Resource Planning (ERP) is a unified, integrated business management system
to effectively plan and manage organization including data and processes.

• Product L ife cycle Management (PLM) that manages the entire life cycle of a product
from its concepts, design and manufacturing, to service and product disposal.

• Customer Relationship Management (CRM) offering structured interaction with custom-
ers and which will be used as example in section 5.1.2

A key ingredient of most enterprise systems that execute business applications is a unified
database to store data for the various system modules. Therefore most architectures support a
Three Tier Architecture that separates the User Interface, Application / Business Logic and
the persistence/data layer. Due to customer demands for more flexibility of business processes
and cross organizational cooperation SAP evolved this architecture into the E-SOA Architec-
ture.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

101

Figure 3. SAP E-SOA Architecture

The SAP E-SOA concept enhances of what is considered in the market as a service-oriented
architecture (SOA). E-SOA is built upon the technology platform SAP NetWeaver which is
evolving into a complete Business Process Platform (BPP) comprising fundamental end-to-
end business processes as well as a strong technical infrastructure.

The scope of E-SOA can roughly be characterized by the following six key elements

• People Productivity: Pattern-based user interface with role-oriented, consistent portal
navigation, cross-application work centers, team collaboration, self services, and inte-
grated office functionality to empower end users to do the best job possible.

• Analytics: Seamless integration of transactional and analytical content together with a
unified modelling environment for business experts and developers.

• Service Composition: Model-driven composition of new services as well as orchestration
of existing services to form new business processes and composite applications in order to
easily innovate systems as required by changing business processes.

• Service Enablement: One common, standard-based service infrastructure with one cen-
tral Enterprise Service Repository (ESR) to guarantee uniform service definition, imple-
mentation, and usage across all types of services (User Interface, cross-application com-
munication) and for all relevant interaction models (synchronous, asynchronous).

• Business Process Platform: One BPP shared across all applications provides re-usable
business functionality (provided by platform process components) as well as the complete
technical infrastructure necessary for e.g., service enabling, re-use, and business process
composition.

• Lifecycle Management: One common application life cycle management cross all SAP
solutions from installation and configuration to operation, change management, and sup-
port as a key prerequisite to lowering TCO.

Analytics

Lega-
cy/

3rd

Bus.

Part-
ner

 Technology Platform

Appl. Platform

Objects, Engines,
and Components

SAP

Bus. Process Platform

Enterprise
Services

Repository

Composites

SAP NetWeaver

BUSINESS PROCESS PLAT-

FORM

PEOPLE

PRODUCTIVITY

EMBEDDED

ANALYTICS

SERVICE

COMPOSITION

LIFE-CYCLE

MANAGEMENT

SERVICE

ENABLEMENT

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

102

With these key elements, E-SOA defines a complete infrastructure for building and operating
the next generation of service-oriented business applications.

The User interface layer (People Productivity & Analytics) and persistence layer (within Ap-
plication Plattform and build upon the NetWeaver stack) are not the main focus for the VIDE
project. This analysis therefore focuses on (business relevant) programming and query as-
pects of the middle / application layer (mainly Objects within the Application Platform and
the Service Composition layer) with special emphasis on data manipulation through queries
due to the often data intense nature in many business application. New architectures such as
Service Oriented Architectures (SOA) or SAP e-SOA (TopCased, 2007) have similar abstrac-
tion layers.

Data Intense Applications in the context of VIDE means that VIDE application are expected
to be data centric and build on top of a persistence layer, such as a for instance an OO data-
base. Data Intense Applications implement a certain characteristics that potentially influence
the specific defects of the domain. However some of the characteristics described are of ge-
neric nature and not specific to database applications.

5.1.1 Applications for SME
Enterprise/business applications for SME differs from the enterprise applications for larger
customers. While SME customers usually implement the same type of operations and proc-
esses as bigger customers; they are usually much more diverse in their business operations
and process. Therefore the standard business applications need to be much more adaptive to
the specific needs. Since SMEs are much more costs sensitive adaptations/customizations
need a very efficient implementation. For the same reasons the Total Cost of Ownership
(TCO) is very crucial for SMEs.

5.1.2 CRM example

5.1.2.1 CRM & CRM System
Customer Relationship Management is a management concept, which intends to systematize
and improve the relationships between corporations and their customers. It can be defined as a
customer-oriented corporate strategy that utilizes modern information and communication
technologies to establish long-term, profitable customer relationships through holistic and
individual marketing, sales and service instruments (Hippner & Wilde, 2002).

A driving force behind CRM is the awareness that retaining existing customers is signifi-
cantly cheaper and more profitable than acquiring new customers; whereby customer loyalty
is highly correlated with customers’ satisfaction with previously bought products and services
(Heskett et al., 1994; Hippner et al., 2006). A main objective of CRM is thus to establish deep
relationships with customers and to extend them systematically.

To support customer relationship management CRM systems provide comprehensive IT so-
lutions. It typically includes interfaces to other corporate information systems such as enter-
prise resource planning (ERP) or supply chain management (SCM) (Hippner et al., 2004).
The actual realisation of a CRM system is vendor specific and depends on the architecture of
the overall business software solution. CRM systems may be classified into two distinct func-
tional categories (Hippner et al., 2004).

• Operational CRM
Operational CRM supports marketing, sales and service processes by providing the appli-

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

103

cations and tools for supporting direct customer interactions. These operational systems
are responsible for controlling and coordinating activities across different customer inter-
action points (e.g. field service, branch office, campaign, website) and communication
channels (e.g. e-mail, phone, personal contact). The avoidance of simultaneous, uncoordi-
nated customer contacts over multiple channels is an exemplary responsibility in this task
area.

• Analytical CRM
Analytical CRM systems are concerned with the collection, storage, and analysis of cus-
tomer data by using business intelligence techniques. Analytical CRM systematically
stores all relevant data about customer contacts and reactions (e.g. purchase data, billing
and payment, campaign responses, survey responses, returns) in a data warehouse. This
data may be combined with demographics and other external data before it is analysed by
employing data mining methods or used for answering on-line analytical processing
(OLAP) queries.

5.1.2.2 SAP CRM
SAP offers several CRM products such as mySAP CRM, which was recently renamed to SAP
CRM (Buck-Emden & Zencke, 2004; SAP, 2007b). This application supports the entire oper-
ational CRM field and provides components and functionalities supporting the three funda-
mental CRM processes marketing, sales, and service. This application is implemented using
object-oriented programming and some important business objects of each process are
grouped together below (Stürmer, 2006):

• Marketing: Lead

• Sales: Opportunity, Customer Quote, Sales Contract, Service Contract, Sales Order, and
Service Order

• Service: Customer Return, Service Request, and Service Confirmation

5.1.3 Lead and Opportunity Management
Figure 4 shows a Sales Scenario example that focuses on sales processes of enterprises selling
one or more products. This involves different things, ranging from Opportunity Management
to quotations to customers, sales orders and invoice processing. This figure shows also the
different user roles that are involved in each step in the sales process.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

104

Legend
Begin

Identify
Opportunity

Create
Opportunity

Account
Mgmt.

0.

1.

Evaluate
Opportunity

2. No goGo

Field Service
Representative

Office
Sales Assistant

Sales Manager

Create
Quotation Quotation

Create
Quotation

3. Pricing

RejectAccept

Customer

Create
Sales Order

4. Sales
Processing

Check
Creditworth. Payment

Avail. to
Promise Stock

5.

6./7.

Process
Payment Payment8.

Complete
Order

9.

Return
Order

10.
Approve
Return Payment

Financial
Assistant

Warehouse
Assistant

Reject

Reject

Figure 4. Sales Scenario

In the following, we will focus on pre-sales processes such as lead management and opportu-
nity management. These processes support sales personnel in actively tracking potential sell-
ing possibilities.

Lead and Opportunity management provides a structured approach to turning an initial recog-
nition of a selling opportunity (i.e., a potential possibility for selling products to a customer)
into a sales contract. In that process, the SAP CRM software guides the sales representative
through a multilevel process and generates next steps and activity suggestions on the basis of
best-practice sales strategies.

The opportunity management process may start with an anonymous address and, by degrees,
track additional prospect attributes such as product interests, discretionary budget amounts,
likely competitors, and the success probability. Completeness and consistency checks ensure
the correctness of the collected data after each step. The accurately documented process im-
proves reporting capabilities: Sales managers can measure their salesperson productivity,
campaign effectiveness and can, for example, determine in which sales phases the most pros-
pects were lost (Amberg & Schumacher, 2002; Hippner et al., 2006).

Figure 4 shows also the different steps of the opportunity process. This process starts by the
identification and the creation of an opportunity, e.g., after a sales contact at a fair. Then, the
opportunity is evaluated and qualified, i.e., feasibility is clarified, information is gathered
about the customer, and a selling team is defined. If a go decision is made, a quotation is
made and sent to the customer, which either accepts the sales offer or rejects it. After that the
opportunity should be closed and the reasons for success or failure should be documented. In
the success case, the opportunity becomes a sales order.

In the following, we present in more details some business objects in opportunity manage-
ment. These objects are shown in Figure 5 and they are discussed briefly below:

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

105

• The Opportunity class uniquely identifies the opportunity and specifies the various in-
volved parties. It holds references to other classes with additional business information
and to the documents and activities created during opportunity processing. Some direct at-
tributes of the opportunity class are:

• priority: specifies the priority of the opportunity.

• processStatusValidSinceDate: the date when the opportunity entered the current life
cycle phase.

• The Party class represents individuals or organizations involved with the opportunity.
Specialized classes may represent customers, suppliers, or employees. Parties are used
within the opportunity to specify the prospect, potential competitors, the responsible sales
team, and other internal or external stakeholders. Some attributes of a party are:

• partyType: specifies whether a party is an organization, a business partner, or any spe-
cialization of these party types.

• partyRole/PartyRoleCategory: describe the role of a party in an opportunity.

• The SalesForecast class contains estimations for the anticipated sale that an opportunity
represents. it contains various fields such as

• expectedRevenueAmount: the expected amount of the opportunity

• probability: the success probability of the opportunity, expressed in percentage.

• The class Item represents a product or service which will possibly be sold to the prospect
of the opportunity. It contains product information, quantities, and values. An item may be
associated with master data product information.

• An opportunity passes through several phases during its lifetime. The class SalesCycle
specifies the sales cycle and the current phase of an opportunity. Other attributes of this
class are:

• salesCycleCode: the sales cycle in which the opportunity exists.

• phaseProcessingPeriod: the time period for which an opportunity exists in the current
phase.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

106

Figure 5. Main Classes in Opportunity Management

The Opportunity example described in this section is used as a domain model for the Oppor-
tunity Management scenario as described above. The example is a typical structure and be-
havioural model containing information and business logic that can be found in CRM imple-
mentations. The models shown are implemented as EMF models and will be used as basis for
defect detection. There faults may be manually introduced into the models to verify the cor-
rectness of the error detection.

Figure 6 shows the body of the method setProcessStatusValidSince, which is defined in the
class SalesForecast. as an example for a behavioral model for quality detection. The model
was created using the tool TopCased (TopCased, 2007). The implemented behavior is also
outlined in a Java notation on top of Figure 6.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

107

Figure 6. Diagram of setProcessStatusValidSince()

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

108

The implementation consists of simple decision action (if) with a Boolean expression and an
assignment.

5.2 Consequences for Quality Assurance in MDSD for the Business
Domain

Based on the previous description of the domain and the scenario we conclude that the follow-
ing characteristics are very important aspects of software systems in the business domain:

• Systems are very large, complex, and incorporate many different application domains
(e.g., CRM, Logistics, etc.)

• Development is conducted by large, probably (globally) distributed teams

• Internationalisation such as multiple language support and adoption to country specific
regulations, such as taxes

• Evolution is triggered by external factors (e.g., changes of laws or taxes)

• Application are targeted to support larger organizations
Due to the mission critical nature of business applications some quantity characteristics from
ISO 9126 (ISO/IEC, 2000a, 2000b) are more crucial and should, therefore, be emphasised
when evaluating the behavioural models. The characteristics considered more important are
emphasised bold in detailed quantity characteristics descriptions below. For those marked
important a short description is given why they are considered important.

5.2.1 Maintainability
The set of attributes that focus on the effort needed to make corrective, preventive, perfective,
or adaptive modifications to the software system.

• Changeability: Attributes of software that bear on the effort needed for modification,
fault removal or for environmental change. (ISO 9126: 1991, A.2.5.2). Business Applica-
tions mainly evolve based on changes in the organisations they are supporting as well as
requirements from outside of such organisation, such as law, tax and compliance rules. In
addition the applications need to be adapted for specific industries (e.g. SAP currently
supports 25 industry solutions), countries (e.g. SAP currently supports 120 countries) and
languages (e.g. SAP currently supports 31 languages) (SAP, 2007a). Therefore implemen-
tation should be easily changeable.

• Analyzability: Attributes of software that bear on the effort needed for diagnosis of func-
tional deficiencies or causes of failures, or for identification of parts to be modified. (ISO
9126: 1991, A.2.5.1).

• Testability: Attributes of software that bear on the effort needed for validating the modi-
fied software. (ISO 9126: 1991, A.2.5.4).

• Stability: Attributes of software that bear on the risk of unexpected effect of modifica-
tions. (ISO 9126: 1991, A.2.5.3). Business applications require a high level of stability
since many developers, consultants, etc. work on and change the system – a system a
company’s main business processes may depend on.

• Encapsulation/ Modularization: Business application are targeted to support larger or-
ganizations, are often very complex, and cannot be implemented by a small team. There-
fore, large development teams and consequently the distribution of work are necessary.
This requires binding design decisions (i.e., modularization) but also the need for consis-

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

109

tent software documents (e.g., code or models). Furthermore, it is very important to follow
coding guidelines, use consistent code styles, or adhere to interface specifications.

• Multi Languages support: Globalisation affects business and the application that are
operating the applications that need to support multiple languages.

• Understandability (Code), Readability: Attributes of software to be understood by the de-
veloper, tester, or maintainer. (Boehm). Similar to changeability and modularization the
code or model of a system needs to be easily understandable by the developers and archi-
tects – especially in large, distributed, and multilingual teams.

5.2.2 Efficiency
The set of attributes that focus on the relationship between the level of performance of the
software and the amount of resources used, under stated conditions.

• Time Behaviour: Attributes of software that bear on response and processing times
and on throughput rates in performing its function. (ISO 9126: 1991, A.2.4.1)
Business applications require a high level of time-efficiency since a company’s main
business processes may depend on the application. Slow applications that implement
critical processes, will slow down the hole organisation.

• Resource behaviour: Attributes of software that bear on the amount of resources used
and the duration of such use in performing its function. (ISO 9126: 1991, A.2.4.2). An
important requirement for business applications is scaling therefore the resource
consumption of the overall system as well as the business applications needs to be
considered. In order to provide SME applications it is essential that software grows
with the organisation.

5.2.3 Reliability
The set of attributes that bear on the capability of software to maintain its level of perform-
ance under stated conditions for a stated period of time.

• Fault Tolerance: Attributes of software that bear on its ability to maintain a specified
level of performance in cases of software faults or of infringement of its specified
interface. (ISO 9126: 1991, A.2.2.2). Business applications require a high level of
stability since companies depend on the application. While failures are always
possible, but a failure in one module should not stop the hole application.

• Maturity: Attributes of software that bear on the frequency of failure by faults in the
software. (ISO 9126: 1991, A.2.2.1). Business applications require a high level of
stability since companies depends on the application. Therefore the code should be
mature.

• Recoverability: Attributes of software that bear on the capability to re-establish its
level of performance and recover the data directly affected in case of a failure and on
the time and effort needed for it. (ISO 9126: 1991, A.2.2.3).

5.2.4 Portability
The set of attributes that bear on the ability of software to be transferred from one environ-
ment to another.

• Adaptability: Attributes of software that bear on the opportunity for its adaptation to
different specified environments without applying other actions or means than those
provided for this purpose for the software considered. (ISO 9126: 1991, A.2.6.1).

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

110

Adaptability is a very important characteristic for standard software providers that are
required to build in as much flexibility to adapt to specific customers and customer
problems as required. However archiving that goal is very difficult since the demand
for adoption by customers is difficult to foresee, especially in the more heterogeneous
SME market. The need for Adaptability required SAP to ship the platform (SAP
ERP…) including the source codes to allow customers to modify and adapt (more
related to QA - Changeability). However for SMEs those kinds of adaptation will be
too cost intensive. However VIDE models should allow leveraging
changes/modification to configurations for applications with a higher level of
adaptability.

• Installability: Attributes of software that bear on the effort needed to install the
software in a specified environment. (ISO 9126: 1991, A.2.6.2).

• Replaceability: Attributes of software that bear on the opportunity and effort of using
it in the place of specified other software in the environment of that software. (ISO
9126: 1991, A.2.6.4)

5.2.5 Functionality
The set of attributes that bear on the existence of a set of functions and their specified proper-
ties. The functions are those that satisfy stated or implied needs.

• Suitability: Attribute of software that bears on the presence and appropriateness of a
set of functions for specified tasks. (ISO 9126: 1991, A.2.1.1). As outlined in section
5.3.1.1 security is an important issues for business applications.

• Accuracy: Attributes of software that bear on the provision of right or agreed results
or effects. (ISO 9126: 1991, A.2.1.2). Accuracy of results is certainly one of the most
important quality characteristic of business software and directly effected by
behavioural models.

• Interoperability: Attributes of software that bear on its ability to interact with specified
systems. (ISO 9126: 1991, A.2.1.3). While interoperability is important especially for
collaborative business applications as provided by the SOA architecture. However
interoperability depends to a large extend on interoperability of static structures such
as data types. Interoperability is influenced less by the behavioural models therefore it
is not considered especially important for the scope of the project.

• Security: Attributes of software that bear on its ability to prevent unauthorized access,
whether accidental or deliberate, to programs and data. (ISO 9126: 1991, A.2.1.5). The
information that is stored in enterprise systems is often the major asset of an enterprise
that needs to be protected.

5.2.6 Usability
A set of attributes that bear on the effort needed for use, and on the individual assessment of
such use, by a stated or implied set of users. The effort needed for use, and on the individual
assessment of such use, by a stated or implied set of users

• Understandability (System): Attributes of software that bear on the users' effort for
recognizing the logical concept and its applicability. (ISO 9126: 1991, A.2.3.1).

• Learnability: Attributes of software that bear on the users' effort for learning its
application (for example, operation control, input, output). (ISO 9126: 1991, A.2.3.2).

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

111

• Operability: Attributes of software that bear on the users' effort for operation and
operation control. (ISO 9126: 1991, A.2.3.3).

The Quality Attribute Usability refers to the Usability of an application build using the VIDE
languages. Since the project is focussing on the backend implementation and cared less about
user interface issues. The Quality Attribute Usability can be neglected when evaluation the
quality of VIDE code. Certainly the tools for creating VIDE code are obliged to usability.

5.3 Sources for Domain specific quality defects
The following programming languages and techniques are important in the SAP development
environment: ABAP, ABAP-OO, Java, HTML, BSP, Microsoft Visual Basic and C/C++.
HTML and BSP are both language used for generating user interfaces, Microsoft Visual Ba-
sic is used to integrate with Microsoft products, such as Microsoft Office, and the major use
of C/C++ is for implementing basic elements, such as the APAP compiler. None of these lan-
guages are used for the implementation of business logic within SAP and therefore of less
interest.

Business logic is implemented using ether Java or ABAP. Since Java is a general purpose
language and APAB has been especially developed for implementing business application,
including building mechanism for database manipulation and queries that are both essential
part of the VIDE language, we’ll focus on ABAP for the extracting quality defects. ABAP
(Advanced Business Application Programming) is a high level 4GL programming language
invented and used by SAP to implement all kinds of business applications on top of databases.

Since the VIDE language defines model level programming semantics, one can expect quality
defects to be similar – respective subclasses – of quality defects on the code level. Therefore
this section derives the domain specific model defects from existing tools and guidelines
(code guidelines, naming conventions, database access ...) for the ABAP language.
Testing distinguishes between static and dynamic tests (Perry, 2000). A dynamic test the exe-
cution of a program with some test data is tested, while a static test used the static definitions
of a program (usually the code, documentation…) for testing. Since the VIDE models itself –
that means without generated code or model simulation - are static definitions we’ll focus on
static testing in the next sections.

5.3.1 (Development) Guidelines
Guidelines are a very well known and common mechanism to ensure unification and compli-
ance for development artefacts such as code, security policies or documentation. Many of the
existing defects/fault models originate from such guidelines that have been modified and for-
malized in order to automate them for fault detection. An important source for business spe-
cific defect models are therefore guidelines for creating business applications that will be in-
vestigated in this chapter.

5.3.1.1 Security Guidelines
Security certainly is important for business applications. SAP provides comprehensive docu-
mentation about how to develop secure ABAP (SAP, 2005a) and Java applications (SAP,
2005b). The guidelines address topics such as cross-site scripting (XSS), SQL injection, input
validation, URL encoding, secure data storage, logging, virus scanning, and more. For each
topic the security vulnerability is described and if any standard solutions from the SAP Net-
Weaver platform exist this is presented, including functions and interfaces that need to be
used. If no solution is available from the SAP NetWeaver platform, recommendations are

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

112

given about appropriate security measures to take. This chapter will outline the security
guidelines considered important for VIDE from the ABAP Security Guidelines (SAP, 2005a).
A complete list of security guidelines can be found in (SAP, 2005a, 2005b).

Passwords are used for user authentication to protect applications. Dealing with passwords in
favour of other authentication mechanisms, such as smartcards, requires some considerations.
For instance passwords …

• should not be saved or transmitted in plaintext,

• should not be hard-coded in the source code,

• should not be recorded in log/protocol/trace files,

• …
Cross-site Scripting (XSS) and SQL injection are well known attack mechanisms often
seen for collaborative websites where is user is allowed to edit the content. The edits are then
processed by a program. If the processing is done without verification this mechanism may be
used to insert malicious code, such as JavaScript or SQL, into the code based. A golden rule
of thumb is therefore to “never trust any information coming from the outside, and never as-
sume anything about it” (SAP, 2005a). Whenever software processes input from various
sources, e.g.

• User input from a GUI ,

• Parameters from a configuration file,

• Data from a database,

• Data from remote function calls,
it should make sure that this input is in the expected form. This may be enforced by calling
appropriate check method. Their use may be checked using defect detection.

5.3.2 Programming style
Most Programming languages allow for different programming styles that do not influence
the semantics of the program. For instance usually indentation has no effect on the program-
ming semantics (except for Python programs) but helps a programmer to understand the code
better. Programming style-guides usually include instruction for the use of comments, naming
conventions and the use of indentations. Code conventions are often specific to different pro-
gramming languages. They usually cover naming conventions (filename, class name, variable
names…), indentation, commenting, declarations, statements, white space and good pro-
gramming practices. A list of naming conventions for specific languages may be found in
(Wikipedia, 2007).

For VIDE many of the programming style guides only effect the textual syntax (e.g. indenta-
tions) However some programming style guides also effect the visual syntax (e.g. naming
conventions) or even instances of the meta model (e.g. Naming conventions, proper comment-
ing) and may therefore be enforced by defect/fault detection.

Some examples of programming style guides for the ABAP language are taken from (Blu-
menthal & Keller, 2006a, 2006b, 2006c; Heuvelmans et al., 2003).

5.3.2.1 Naming conventions
Naming convention defined rules for character sequences to be used for identifiers in source
code and documentation. Naming convention increase aim to increase the consistency of
source code and documentation for easier reading, understanding and improved source code

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

113

appearance. An example for naming conventions for ABAP code are conventions for external
names. External name are repository objects with public visibility (Blumenthal & Keller,
2006c):

• CL_<name> for global classes

• IF_<name> for global interfaces

• CX_<name> for exception classes

• CL_OS_<name>, IF_ OS_<name> and CX_ OS_<name> should be used for Object
Services

• CL_BADI_<name>, IF_ BADI _<name> and CX_ BADI _<name> should be used for
Object Services

The naming conventions should be not be used for internal names to indicate what is visible
form other Objects. Other naming conventions are related to languages issues. Usually the
English language has to be used for code identifiers as well as for comments.

5.3.2.2 Source code sequence
Programming language guidelines often recommend a certain structure or sequence of pro-
gramming artefacts. For instance the structure of Java programs is usually

1. Package declaration

2. Import

3. Class declaration

4. Class attributes

5. Class methods

a. Constructor

b. Main method

Also within method implementation programmers should follow given structures and coding
sequences. Example for recommendation on those structures can be found for instance in
(Blumenthal & Keller, 2006a) which recommends sequences for the sequence of

• Declaration vs. Implementation – Declarations (like imports, interface definitions) and
implementation should be separated. Usually declarations are first and followed by the
implementations.

• Sequence of program parts – Declarations or top down approach recommended. Bottom
up means that within a program things are defined before they are used. Top down means
that the program is structured among the importance, e.g. main components (interfaces,
classes …) come first and are followed by helper classes. The selected approach should be
used consistently within any given program.

• Sequence of declarations – The sequence of component declarations should also be done
in a consistently. For example 1. Types 2. Constants 3. Static components 4. Instance
components and 5. Field symbols

• Sequence of statements in procedures (or methods) – Procedures (or methods) should
also be structured in a consistent manner. For ABAP programs (but also for other pro-
gramming languages such as Java) it is recommended start an implementation with local
declarations (types, local variables…) followed by functional statements.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

114

5.3.2.3 Avoid outdated programming constructs
As programming languages and libraries evolve some programming constructs or interfaces
are replaced with other (better) programming construct or interfaces. In order to stay compati-
ble with legacy code the old programming constructs or interfaces valid for a time. In Java for
instance library method are marked deprecated which mean that they may be re-
moved/replaced in further releases. Java complier options allow checks for deprecated meth-
ods which results in a warning. Other programming languages do not have such a build-in
support. Therefore ether guidelines on how to deal with legacy and new code are give or
methods for automatic defect detection are used. An example for the ABAP languages is the
use of binary operators (Blumenthal & Keller, 2006a). ABAP supports relational operators (=,

< >, <, >, <=, =>) as well as character operators (EQ, NE, LT, GT, GE) to express binary opera-
tors. Relational operators are more readable therefore their use is recommended.

5.3.2.4 Guidelines specific for ABAP-OO
The ABAP language evolved from a functional programming language in to an Object Ori-
ented programming language ABAP-OO. With the appearance of the OO concepts and some
language extensions a couple of recommendations are given in (Blumenthal & Keller, 2006b).
For instance Blumenthal and Keller recommend restrictive interface design that should be
easy only when needed. They recommend to

• Declare classes as final

• Restriction of the number of public components. Components that can be private should
be declared private

• Attributes that are declared public should be READ-ONLY

• Consider private instantiation of class (CREATE_PRIVATE and offer factory methods)

5.3.3 Tool based defect detection
The ABAP development environment contains a couple of analysis tools (Eilenberger &
Schmitt, 2003):

• The ABAP Debugger is a debugger for the ABAP language used for dynamic analysis
such as bug detection.

• The Runtime Analysis tool allows analysis of the duration and performance of ABAP
code, from individual statements up to complete transactions.

• The Coverage Analyzer is a monitor for tracking how often a processing block was exe-
cuted. The tools is for dynamic analysis of running systems and used to exhibit unreached
code blocks

• The Runtime Monitor is an instrument that supports the recording of information on user
triggered events that can be used to replay user session.

• The Memory Inspector is used to analyse memory snapshots, e.g. the result of a core
dump

• The ABAP Unit are unit tests (Perry, 2000) for the ABAP language. It is used to define
and verify test cases for unit test, but doesn’t contain any kind of generic defects of
smells, but specific test cases.

• The ABAP Code Inspector is used for static analysis of ABAP code.
Since defect analysis and fault detection focuses on the static analysis we’ll focus on tools for
static analysis of ABAP coding which is in this case the ABAP code inspector.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

115

5.3.3.1 ABAP Code Inspector
The ABAP Code Inspector is a tool for static code analysis of ABAP code intended to “help
you easily identifying some of these types (main focus on syntax, performance and security) of
shortfalls” (Eilenberger & Schmitt, 2003). Figure 7 below shows a screenshot of the tool
showing the results of an analysis.

Figure 7. Result screen ABAP Code Inspector

The tool allows checking all kinds of ABAP code, such as programs, function groups or
classes. The system can be extended to support additional check. However more interesting
are the standard checks that come with the system. The build-in checks fall into three catego-
ries

• Syntax checks

• Security checks and

• Performance checks
that are described in more detail below. The tools also allows to defines so called Search Op-
tions that allows the definition of search patterns to test compliance to for instance the naming
rules described above.

5.3.3.2 Syntax check
The first level of syntax checks are “normal” syntax checks for the ABAP languages that are
similar to syntax check other language parsers, such as the parser developed for the textual
VIDE syntax. Those checks are of little interests for defect/fault detection since they are al-
ready checks by the language parser.

• References to program external units: Verifies if external program units (e.g. subrou-
tine calls) exist and interfaces are used correctly.

• Multi-language enabling: Searches for constructs that hamper the use of a program in
different languages — for example, text literals without text IDs. Text literals appear in
the language in which they were typed, and are not processed by translation services.

• Package check: Detect the illegal use of objects from other packages. This check is often
performed by a compiler.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

116

• Character portability (EBCDIC/ASCII portability): Detects whether a program be-
haves differently in EBCDIC (Extended Binary Coded Decimal Interchange Code) and
ASCII (e.g., the comparison of character fields). This maybe extended to other character
encodings, e.g. Unicode.

• Generation limits: Determines if generation limits, such as the maximum number of ob-
jects, are close to being reached. This check depends on transformation rules and limit of
the targeted platform.

• Statements in wrong context: Scans for statements that are used in an inappropriate lan-
guage context. For example, the COMMIT WORK statement within a SELECT ... ENDSE-

LECT loop leads to the loss of the database cursor.

• Unnecessary items: Searches for form subroutines that are not used in a program, or
fields that do not have read access. This check is often performed by a compiler.

5.3.3.3 Security checks
Some ABAP statements can endanger the stability, data integrity and security of the overall
system. The Code Inspector therefore performs a couple of security checks to detect critical
coding. The checks performed are listed below.

• Internal statements: ABAP supports so called internal statements intended only for in-
ternal use by SAP. Their signature may change without notice and should therefore not be
used in programs.

• Authority checks: For better performance SAP systems enforce automatic authority
checks only for programs (SAP transactions) called directly by a user. Automatic author-
ity checks for function calls within programs need to be implemented by the programmer,
which is checked by this check. In VIDE those checks may also be enforced using AOP
(see (Vide, 2007b)).

• Database operation: Some ABAP statements potentially risk the portability of the code
to other database systems (native SQL statements via EXEC and database hints) or the data
integrity (ROLLBACK WORK). Therefore security checks through warnings for those
statements. Introducing native SQL into ABAP code is specific to ABAP. However the
opaque expression in Action Semantics similar introductions of native code that should be
checked to increase the portability of VIDE code.

• Repository objects: SAP systems store all development fragments (e.g. programs,
screens, global types…) as repository objects in the database. From which they may be re-
trieved (e.g. READ REPORT) afterwards. However this should only be done by internal de-
velopment tools. This behaviour is specific for SAP systems and therefore unimportant for
VIDE coding.

• Access to database tables: Database tables may contain confidential information, such as
personal data. Therefore their access should be restricted and performed only when the
access is authorized. The check allows the specification of critical database tables and
check if access to the data is only done after authorisation. In VIDE those checks may also
be enforced using AOP (see (Vide, 2007b)).

• Handling system return codes: Not handling return codes (e.g. if the method failed) may
be suspicious and is therefore checked.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

117

5.3.3.4 Performance checks
Performance checks are usually done using dynamic testing methods. However some static
programming constructs are know to be performance critical. The Code Inspector implements
a couple of those checks focussing on inefficient database queries (SQL) such as for example
WHERE clauses that do not use an existing database index. Those checks are specific to SQL
as query language. Therefore they can not be easily adapted for the OCL queries using in the
VIDE language. However badly designed OCL queries may also have a bad impact on the
system performance and should therefore be verified. For instance (OCL) select maybe used
similar to the (SQL) WHERE statements and may cause similar impacts on the system per-
formance.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

118

6 Resulting defect model for the business domain

After listing the main collections of quality defects and describing the domain specific re-
quirements this section is concerned with the selection of domain-specific quality defects tar-
geted in the VIDE project. As we have seen the most important characteristics of quality de-
fects is their focus on non-functional problems in software models, and that they are project-
independent, language-independent, symptom-based, and treatment-oriented.

The following list is compiled from the quality defects outlined in sections 4 combined with
the domain and the quality characteristics for the domain from section 5.2 and 5.3. The fol-
lowing Table 54 is a selection of the most important and frequent quality defects in the data-
oriented business domain. This selection was based on the following objective, and subjective
criteria:

• The sum of interestingness (�-Dots) should include at least 2 full dots in sum (objective)

• The propability of the quality defect in a PIM should be high (subjective)

• It should be possible to associate concrete treatments (e.g., refactorings) with the quality
defect.

• The quality defect should not focus on problems that would make the model not compila-
ble (e.g., duplicated attribute names in a class) and not conforming to a standard.

The selection serves as a basis and priority list for defect detection methods conceptualized
during WP4 and reported in deliverable D4.2. The implementation of these detection tech-
niques in the VIDE development environment will be conducted during WP9.

Table 54. Selected Quality Defects targeted for VIDE WP9

Name
Type of
Quality
Defect

Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Selection Rationale

Long method Structure A very large method. �  � � Relation to the VIDE behavior
model

Long parameter list Structure A method with too many para-
meters.

�  � � Intersection between the VIDE
behavior & structural models

Feature envy Structure A method is occupied more
with data and methods in other
classes than its own.

�  � �
Intersection between the VIDE
behavior & structural models

Duplicated Code Control Duplicated OCL expressions. �  � � Problems in OCL code

Message chains Structure One object asks another object
for data in a third object (and
so on).

�  � �
Intersection between the VIDE
behavior & structural models

Lazy class Structure A class that isn’t doing much. �  � � Relation either to the behavior
or structural model

The Blob (God Class) Structural Classes with too many functio-
nality and associations to other
classes.

�  � �
Intersection between the VIDE
behavior & structural models

Data class Structure Classes that do almost exclu-
sively store information for
other classes. Optionally,
these classes have getter and
setter methods for the
attributes.

� �  �

Data orientation & Problems in
structural models

Data clumps Structure Data items (i.e., attributes, � � �  Data orientation & Problems in

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

119

Name
Type of
Quality
Defect

Description

P
IM

 le
ve

l

D
om

ai
n

B
eh

av
io

r

Lo
ca

l

Selection Rationale

parameters, local variables,
etc.) that appear in groups all
over the system (e.g., id, sur-
name, forename, salary).

structural models

Type Embedded in
Name

Semantic Type information is redundant-
ly encoded in the name / iden-
tifier of an attribute, method,
etc.

� � � �

Problems in identifier

Uncommunicative
Name

Semantic The name does not communi-
cate the intent (e.g., short
names, abbreviations, …).

� � � �
Problems in identifier

Inconsistent Names Semantic Names are not consistent
throughout the system.

� � � 
Problems in identifier

Complicated Boolean
Expression

Control Complex condition involving
Boolean operators (“and”, “or”,
“not”).

� � � � Problem in Code & Relation to
the VIDE behavior model
(optionally, in OCL code)

Combinatorial Explo-
sion

Control Code duplication for many
slightly different features (e.g.,
queries)

� � �  Problem in Code & Relation to
the VIDE behavior model
(optionally, in OCL code)

Conditional Complexity Control Large and complex conditional
statements (i.e., if, switch etc.)

� � � � Problem in Code & Relation to
the VIDE behavior model
(optionally, in OCL code)

Magic Literal Control Numeric or string literal that
appears in the middle of an
OCL expression without expla-
nation.

� � � �
Problem in Code & Relation to
the VIDE behavior model
(optionally, in OCL code)

Redundant data Data Data is stored in different plac-
es (e.g., birthday).

� � � � Data orientation & Problems in
identifier

Tables with too many
columns

Data Items consist of too much data
and table probably lacks cohe-
sion.

� �  �
Problems in data bases (resp.
Persistence layer)

Coupling Structure,
Control

Parts are linked by an exten-
sive network of data or control
flows.

� � � �
Intersection between the VIDE
behavior & structural models

9. Minimize the number
of bubble types

Structure A diagram that holds more
than six elements (bubbles).

�   �
Problems in Diagrams

10. Include White
Space in a diagram

Layout Elements in a diagram that are
too close together

�   �
Problems in Diagrams

16. Reorganize large
Diagrams into several
smaller ones

Structure Diagram is too large �   �
Problems in Diagrams

26. Apply color or dif-
ferent fonts sparingly

Layout More than six colors in a single
diagram

�   �
Problems in Diagrams

27. Describe diagrams
with notes

Structure Missing comments / notes
about the diagram

�   �
Problems in Diagrams

158. Strive for left to
right ordering of mes-
sages

Layout Message flow that is unor-
dered and makes a zig-zag.

�   �
Problems in Diagrams

These 25 quality defects represent the currently most interesting ones that will be targeted in
the realization of the quality defect diagnosis during WP9. If all of the quality defects will be
used is still uncertain – for example, quality defects that affect multiple locations (e.g., Incon-
sistent Names) or unused elements (e.g., “Strive for left to right ordering of messages” when
no sequence diagrams are used) might be excluded.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

120

7 Concluding Remarks

In this report we presented an extensive overview of existing quality defects affecting quality
aspects of software products, processes, projects, and organizations as well as techniques for
their diagnosis (presented in D4.2) based on a systematic literature review. This review was
used to summarize the existing literature and construct an objective and comprehensive over-
view about quality defects, related concepts, and their diagnosis techniques. We selected more
than 560 black and grey publications published in scholarly literature, identified 43 concepts
with quality defects, and listed 800 quality defects in this report. We classified, evaluated, and
discussed the research on the quality defects based on the quality defect description, their
types and different criteria such as the type of software artifact concerned, the process they
are embedded into, and the quality aspect affected. The results of the work in WP 4 of the
VIDE project is as follows:

• In contrast to the insular and inconsistent collections in other publications this report
presents the results of a systematic literature review to create a comprehensive and uni-
form collection of these quality defects and to start a quality defect body of knowledge.

• The collection of definitions of existing quality defect related concepts and the synthetiza-
tion of a consistent and uniform definition of quality defects.

• The analysis of existing quality defects regarding their applicability in the context of
Model-driven Software development.

• The construction of an information model based on UML 2.0 that describes the informa-
tion that might be used to diagnose quality defect in MDSD models and especially PIMs.

• The selection of quality defects that should be diagnosed in the VIDE environment in or-
der to support the modelers during their design activities. This information will be used in
WP9 to design and realize the diagnosis techniques.

• Finally, the identification of gaps in the current research and body of knowledge in order
to support where future research is needed.

7.1 Recommendations
Furthermore, we identified important open research issues that remain to be solved. In sum-
mary, we identified the need for an comprehensive ontology to systematize the defect corpus,
a naming taxonomy to equalize and systematize the names, an formalization of the quality
defects based on different languages and environments (e.g., MDSD, OO, AOP, etc.), as well
as specific defect diagnosis techniques for their discovery. Additionally, more empirical evi-
dence s required about the precise effects of the quality defects on the quality aspects on the
models and the resulting software systems.

7.2 Outlook
Researches in software engineering are more and more equipped with techniques and method
for the systematic identification of symptoms, diagnosis and prognosis of quality defects, and
indication of treatments and preventive measures. Nevertheless, in order to handle the increas-
ing amount of knowledge about software systems more techniques of the diagnosis of quality
defects on all levels of software products, processes, projects, and organizations are required.
As the field of software engineering matures and the possibilities for more advanced diagnosis

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

121

and prognosis techniques increase, the field of software quality assurance based on quality
defects promises to be an exciting area for future research.

The sister-report D4.2 will include a summary of quality defect diagnosis techniques, their
characteristics, benefits, and shortcomings. Beside the diagnosis techniques it will include
visualization concepts for quality defects in MDSD and the information model based on UML
2.0 and compares it with available information from other environments such as eclipse-
UML, or Java.

The work package WP9 will be used to realize the diagnosis and visualization techniques for
QDs in the VIDE environment.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

122

8 Glossary

Analyst / Designer: Analysts/Designers are responsible for the conceptual model of business
entities and the high level business logic. They use design artefacts and models pro-
duced by the business analyst and transforms them into a design. Analysts/Designers
work on PIM level in the VIDE tool stack.

Analyst/VIDE Programmer: The Analyst/VIDE Programmer is responsible for the comple-
tion of the behavioural model to allow model simulation (i.e. for testing) and the trans-
formation of the models into code. Analysts/VIDE Programmers work on PIM level in
the VIDE tool stack.

AOP: Aspect-Oriented Programming is a programming paradigm that attempts to aid pro-
grammers in the separation of concerns, specifically cross-cutting concerns, to ad-
vance the modularization of software. AOP uses crosscutting expressions that encap-
sulate the concern in one place.

Architect: The architect is responsible for building the transformations of the behavioural
models described using VIDE into platform specific coding. The architect is an expert
in the target platform (i.e. Struts, …) and the programming language (i.e. Java) but al-
so has a sufficient understanding of UML and VIDE to be able to define the transfor-
mation. Architects work on PIM&PSM level in the VIDE tool stack.

ATL : The ATLAS Transformation Language is a result of the MODELWARE project. This
transformation language is closely related to the QVT standard and provides a running
implementation.

BPMN: Business Process Modelling Notation. The OMG standard BPMN provides a notation
that is understandable by business users, including business analysts (creating the ini-
tial drafts of the processes), the technical developers (responsible for implementing the
technology that will perform those processes), and the business people (who will man-
age and monitor those processes).

Business Analyst: The Business Analysts advise enterprises on analysis, conception and im-
plementation of IT solutions. They constitute the connection between the customer
and the involved IT specialists and need technical as well as social competences.
Business Analysts work on CIM level in the VIDE tool stack.

CIM: A Computation Independent Model represents the user requirements in an abstract,
high level view on a software or business system. The transition of a CIM Model into
a Platform Independent Model (PIM) should be done automatically using a model
transformation.

Domain User (Customer): The Domain User is the end user of the constructed software so-
lution. He works for the customer and is an expert in his special domain typically
without knowledge technical issues. The Domain User works on CIM level in the
VIDE tool stack.

EMF: Eclipse Modeling Framework is a modelling framework for building tools and other
applications based on a structured data model. EMF provides tools and runtime sup-
port to produce a set of Java classes for the model, a set of adapter classes that enable
viewing and command-based editing of the model, and a basic editor. EMF provides
the foundation for interoperability with other EMF-based tools and applications.

GEF: Graphical Editing Framework allows developers to create a rich graphical editor from
an existing application model. Developer can take advantage of many common opera-

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

123

tions provided in GEF and/or extend them for the specific domain. GEF employs an
MVC (model-view-controller) architecture which enables simple changes to be ap-
plied to the model from the view.

GMF: The Graphical Modeling Framework provides a generative component and runtime
infrastructure for developing graphical editors based on the Eclipse Modeling Frame-
work (EMF) and Graphical Editing Framework (GEF).

IDE: Integrated Development Environment assists computer programmers in developing
software usually consisting of a source code editor, a compiler and/or interpreter,
build-automation tools, and a debugger. The VIDE project will extend an existing IDE
with tools for describing UML2 Action Semantics

M3/M2/M1 Layers: Metamodelling is defined into a four-layered architecture. The M3 layer
provides a meta-meta-model at the top layer. This M3-model is the language used by
MOF to build meta-models, called M2-models. These M2-models describe elements
of the M1-layer, and thus M1-models. The M0-layer is used to describe the real-world.

MDA: Model-Driven Architecture is a software design approach intended to support model-
driven engineering of software systems. MDA was initiated by the OMG.

MDST: Model Driven Software Testing derives test cases in whole or in part from a model
that describes some (usually functional) aspects of the test system. In VIDE testing
should be supported on model (e.g. model simulation) and code level verify the cor-
rectness of code transformations.

ModelBus: ModelBus are tools dedicated to model driven development developed by the
MODELWARE project. The key feature of ModelBus is possibility to exchange mod-
els in heterogeneous formats and a transparent integration of model based tool.

MOF: Meta-Object Facility is standard for Model Driven Engineering, proposed by the
OMG. MOF provides a meta-meta-model at the top layer and means to create and ma-
nipulate models and meta-models. There are two relevant versions of this standard,
MOF 1.4 (Object Management Group 2002) and MOF 2.0 (Object Management
Group 2004).

OCL: Object Constraint Language. OCL statements serve as the most precise means of mod-
el specification within the UML and MOF model and meta-model definitions. For that
purpose OCL was defined to be able to express constraints for any kind of UML ele-
ments. OCL moreover provides means to express any (first-order) query on some in-
stance of a UML class diagram.

OMG Object Management Group (OMG) is a consortium, originally aimed at setting stan-
dards for distributed object-oriented systems, and is now focused on modelling (pro-
grams, systems and business processes) and model-based standards in some 20 vertic-
al markets.

Petri Net: Petri Nets are a formal, graphical, executable technique for the specification and
analysis of concurrent, discrete-event dynamic systems; a technique undergoing stan-
dardization, initially developed by C. A. Petri for the specification of concurrent (pa-
rallel) systems.

PIM: A Platform Independent Model is a model of a software or business system that is in-
dependent of the specific technological platform used (PSM Level) to implement it.
The transition of a PIM Model into a Platform-specific (PSM) model should be done
automatically using a model transformation.

PSM: A Platform Specific Model is a model of a software or business system that is linked to
a specific technological platform (e.g. a specific programming language, operating

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

124

system or database). The PSM Model should allow for an automatic transformation in-
to code.

Query: A query is the extraction of data from a structured source of information. In the VIDE
context, queries are sub-expressions of the VIDE language which extract data from a
UML class diagram.

QVT: Query / Views / Transformations is an emerging OMG standard provides technology
neutral solutions for querying, transforming and specifying views of MOF-based
models.

SDL: The Specification and Description Language is a specification language for describing
system behaviour. Its major use case is in the telecommunication industry for descrip-
tions of process control and real-time applications.

SME: Small & Medium-sized Enterprises is an abbreviation to classify companies whose
headcount or turnover falls below certain limits.

Tefkat: Open source model transformation language developed at Queensland University.

User: A person who interacts with a system.

User Interface (UI): All aspects of a system with which a user can interact and perceive.

UML: Unified Modeling Language is a specification language for object modelling defined
at the OMG. UML2 Action Semantics is an essential part of UML 2.0 for the VIDE
project.

UML Action semantics: UML Action Semantics refers to the capabilities of UML to de-
scribe behaviour algorithmically. UML Action Semantics were in UML 1.4 separated
from the rest of UML; since UML 2, one should rather speak of the behavioural part
of UML (which is sub-divided in UML actions, activities, and behaviour). Contrary to
its name, UML Action Semantics, does primarily define an abstract syntax rather than
semantics.

Visual Design: The portion of a user interface that is concerned with the aesthetic quality of
an application. Composed of variables that address a specific purpose or function,
such as font, color, and images, which impact the appearance, organization and layout
of the graphical elements in a user interface.

XMI: XML Metadata Interchange is a MOF-based specification providing the rules of XML
serialization of models, allowing their transfer between standard-compliant tools.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

125

9 References

Abreu, F. B. E. (1997). Pedagogical patterns: picking up the design patterns approach. Object Expert,
UK * vol 2 (March April 1997), no 3, p 37, 41, 3 refs.

Alexander, R. T., Offutt, J., & Bieman, J. M. (2002). Syntactic fault patterns in OO programs. Paper
presented at the Eighth IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS), pages 193-202.

Allen, E. (2002). Bug patterns in Java. Berkeley: Apress, USA, New York, NY.

Amberg, M., & Schumacher, J. (2002). CRM-Systeme und Basistechnologien. In M. Meyer (Ed.),
CRM-Systeme mit EAI - Konzeption, Implementierung und Evaluation (pp. 21--59). Wiesba-
den: Vieweg.

Ambler, S. W. (2006). The Elements of UML 2.0 Style (1st Edition): Cambridge University Press.

Ambler, S. W., & Sadalage, P. J. (2006). Refactoring Databases: Evolutionary Database Design (1st
Edition (March 3, 2006)): Addison-Wesley Professional.

Andrea, J., Meszaros, G., & Smith, S. (2002). Catalog of XP Project 'Smells'. Paper presented at the
3rd International Conference on XP and Agile Processes in Software Engineering (XP 2002),
Alghero, Sardinia, Italy, pages 130-133.

ArgoUML. (2007). ArgoUML User Manual - chapter 15. Retrieved 15. June, 2007, from
http://argouml-stats.tigris.org/documentation/manual-0.24/ch15.html

Aurum, A., Petersson, H., & Wohlin, C. (2002). State-of-the-art: software inspections after 25 years.
Software Testing, Verification and Reliability, 12(3), 133-154.

Baldwin, K., Gray, A., & Misfeldt, T. (2006). The Elements of C# Style (1st Edition): Cambridge Uni-
versity Press.

Basili, V. R., Caldiera, G., & Rombach, D. (1994). The Goal Question Metric Approach. In J. J. Mar-
ciniak (Ed.), Encyclopedia of Software Engineering (1st Edition ed., pp. 528-532). New York:
John Wiley & Son.

Baumeister, J., Puppe, F., & Seipel, D. (2004). Refactoring Methods for Knowledge Bases. Paper pre-
sented at the 14th International Conference on Engineering Knowledge in the Age of the Se-
mantic Web (EKAW), pages 157–171.

Becker, P. (2000a). Common design mistakes, part 1. The C/C++ Users Journal, 18(1), 73-78.

Becker, P. (2000b). Common design mistakes, part 2. The C/C++ Users Journal, 18(2), 77-84.

Bennett, K. H., & Rajlich, V. T. (2000). Software Maintenance and Evolution: A Roadmap. Paper
presented at the Future of Software Engineering Track of 22nd ICSE, Limerick, Ireland, pages
73-87.

Biolchini, J., Mian, P. G., Natali, A. C. C., & Travassos, G. H. (2005). Systematic Review in Software
Engineering (No. RT-ES 679/05). Rio de Janeiro: Systems Engineering and Computer
Science Department, COPPE/UFRJ.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

126

Bloch, J., & Gafter, N. (2005). Java Puzzlers: Traps, Pitfalls, and Corner Cases (1st Edition): Addi-
son-Wesley Professional.

Blumenthal, A., & Keller, H. (2006a). An insiders guide to writing robust, understandable, maintaina-
ble, state-of-the-art ABAP programs - Part 1. SAP Professional Journal, Wellesley Informa-
tion Services, Jan./Feb, 3--26.

Blumenthal, A., & Keller, H. (2006b). An insiders guide to writing robust, understandable, maintaina-
ble, state-of-the-art ABAP programs - Part 2. SAP Professional Journal, Wellesley Informa-
tion Services, March/April, 3--26.

Blumenthal, A., & Keller, H. (2006c). An insiders guide to writing robust, understandable, maintaina-
ble, state-of-the-art ABAP programs - Part 3. SAP Professional Journal, Wellesley Informa-
tion Services, May/June, 3--28.

Booch, G. (2007). Website of the Handbook of Software Architecture - Pattern Section. Retrieved
11. July, 2007, from http://www.booch.com/architecture/patterns.jsp

Boundy, D. (1993). Software cancer: the seven early warning signs. Software Engineering Notes
(SEN), 18(2), 19.

Brown, W. J., Malveau, R. C., McCormick, H. W., & Mowbray, T. J. (1998). AntiPatterns: refactor-
ing software, architectures, and projects in crisis. New York: John Wiley & Sons, Inc.

Brown, W. J., McCormick, H. W., & Thomas, S. H. (1999). AntiPatterns and Patterns in Software
Configuration Management (1st Edition): John Wiley & Sons, Inc.

Bruntink, M., van, D. A., Tourwe, T., & van, E. R. (2004). An evaluation of clone detection tech-
niques for crosscutting concerns. Proceedings. 20th IEEE International Conference on Soft-
ware Maintenance, Chicago, IL, USA, 11 14 Sept. 2004 * Los Alamitos, CA, USA: IEEE
Comput. Soc, 2004, p 200 9.

Brykczynski, B. (1999). A survey of software inspection checklists. Software Engineering Notes,
24(1), 82-89.

Buck-Emden, R., & Zencke, P. (2004). mySAP CRM: The Offcial Guidebook to SAP CRM Release
4.0: SAP Press.

Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Pattern-oriented Software Architecture: On
Patterns and Pattern Languages (Vol. 5). New York: John Wiley & Sons, Inc.

Cheung, S.-C., & Kramer, J. (1993). Tractable Flow Analysis for Anomaly Detection in Distributed
Programs. Paper presented at the 4th European Software Engineering Conference on Software
Engineering (ESEC/FSE), Garmisch-Partenkirchen, Germany, September 13 - 17, 1993, pages
283-300.

Choi, S.-E., & Lewis, E. C. (2000). A study of common pitfalls in simple multi-threaded programs.
Paper presented at the Thirty-first SIGCSE technical symposium on Computer science educa-
tion (SIGCSE), Austin, Texas, United States, pages 325-329.

Ciolkowski, M., Laitenberger, O., Rombach, D., Shull, F., & Perry, D. (2002). Software inspections,
reviews and walkthroughs. Paper presented at the 24th International Conference on Software
Engineering (ICSE 2002), New York, NY, USA, Soc., pages 641-642.

Coad, P., & Edward, Y. (1993). Object-oriented Design (1st Edition): Prentice Hall.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

127

Coad, P., & Nicola, J. (1993). Object-oriented Programming (1st Edition): Prentice Hall.

Cockton, G., & Gram, C. (1996). Design Principles for Interactive Software (1st edition (June 30,
1996)): Springer.

Coelho, W., & Murphy, G. (2007). ClassCompass: A software design mentoring system. 7(1), 2.

Cohn, M. (2004). User Stories Applied: For Agile Software Development (1st Edition (March 1,
2004)): Addison-Wesley Professional.

Copty, S., & Shmuel, U. (2005). Multi-threaded testing with AOP is easy, and it finds bugs! Paper
presented at the 11th European Conference on Parallel Processing (EUROPAR), Lisbon Por-
tugal, 30 Aug.-2 Sept. 2005, pages 740-749.

Correa, A. L., & Werner, C. (2004). Applying Refactoring Techniques to UML/OCL Models. Paper
presented at the 7th International Conference on the Unified Modeling Language: Modeling
Languages and Applications (UML), Lisbon, Portugal, October 11-15, 2004, pages 173-187.

Daconta, M. C., Monk, E., Keller, J. P., & Bohnenberger, K. (2000). Java Pitfalls: Time-Saving Solu-
tions and Workarounds to Improve Programs (1st Edition): John Wiley & Sons.

Daconta, M. C., Smith, K. T., Avondolio, D., & Richardson, W. C. (2003). More Java Pitfalls: 50
New Time-Saving Solutions and Workarounds (1st Edition). Indianapolis Indiana: Wiley Pub-
lishing Inc.

Demeyer, S., Ducasse, S., & Nierstrasz, O. M. (2003). Object-oriented reengineering patterns. San
Francisco: Morgan Kaufman Publishers.

Deursen, A. v., Moonen, L., Bergh, A. v. d., & Kok, G. (2001). Refactoring Test Code. Paper pre-
sented at the Second International Conference on Extreme Programming and Flexible
Processes (XP), pages 92-95.

Dromey, R. G. (1996). Cornering the Chimera. IEEE Software, 13(1), 33-43.

Dudney, B., Krozak, J., Wittkopf, K., Asbury, S., & Osborne, D. (2002). J2EE Antipatterns (1st Edi-
tion): John Wiley & Sons, Inc.

Dudney, B., & Lehr, J. (2003). Jakarta Pitfalls: Time-Saving Solutions for Struts, Ant, JUnit, and Cac-
tus (1st Edition (July 25, 2003)): John Wiley & Sons.

Eilenberger, R., & Schmitt, A. S. (2003). Evaluating the Quality of Your ABAP Programs and Other
Repository Objects with the Code Inspector. SAP Professional Journal, Wellesley Information
Services, May/June, 3--30.

Elssamadisy, A., & Schalliol, G. (2002). Recognizing and responding to "bad smells" in extreme pro-
gramming. Paper presented at the 24th International Conference on Software Engineering
(ICSE), Orlando FL USA, 19-25 May 2002, pages 617-622.

Farchi, E., Nir, Y., & Ur, S. (2003). Concurrent bug patterns and how to test them. Paper presented at
the International Parallel and Distributed Processing Symposium (IPDPS), Nice France, 22-26
April 2003, pages 7 pp.

Fenton, N. E., & Neil, M. (1999). Software metrics: successes, failures and new directions. Journal of
Systems and Software, 47(2-3), 149-157.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

128

Fenton, N. E., & Ohlsson, N. (2000). Quantitative analysis of faults and failures in a complex software
system. IEEE Transactions on Software Engineering, 26(8), 797-814.

Fincher, S., & Utting, I. (2002). Pedagogical patterns: their place in the genre. SIGCSE Bulletin, USA
* vol 34 (Sept. 2002), no 3, p 199 202, 18 refs.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code (1st Edition): Addison-
Wesley.

Freimut, B. (2001). Developing and Using Defect Classification Schemes (Technical Report No.
IESE-Report No. 072.01/E). Kaiserslautern: Fraunhofer IESE.

Galvans, A. (2006, 15 March 2006). Performance bug patterns and bug-hunting. Retrieved 1. June,
2007, from http://www.testingreflections.com/node/view/3398

Gamma, E., Richard, H., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable
Object-Oriented Software (3rd printing Vol. 5): Addison-Wesley.

Gibbon, C. A. (1997). Heuristics for object-oriented design. PhD Thesis, University of Nottingham,
from http://www.cs.nott.ac.uk/~cah/pdf/cag-phd.pdf.

Glass, R. L. (2003). Facts and Fallacies of Software Engineering. Boston: Addison-Wesley Profes-
sional.

Green, R. (1996). How to Write Unmaintainable Code. Retrieved 21.11.2005, 2005, from
http://mindprod.com/jgloss/unmain.html

Grotehen, T. (2001). Objectbase Design: A Heuristic Approach. PhD Thesis, University of Zurich,
Zurich, from
http://www.ifi.unizh.ch/ifiadmin/staff/rofrei/Dissertationen/Jahr_2001/thesis_grotehen.pdf.

Hallal, H. H., Alikacem, E., Tunney, W. P., Boroday, S., & Petrenko, A. (2004). Antipattern-based
detection of deficiencies in Java multithreaded software. Paper presented at the Fourth Inter-
national Conference on Quality Software (QSIC), Braunschweig Germany, 8-9 Sept. 2004,
pages 258-267.

Hawkins, B. (2003). Preventative Programming Techniques: Avoid and Correct Common Mistakes
(1st Edition): Charles River Media.

Heskett, J., Jones, T., Loveman, G., Sasser (Jr.), W., & Schlesinger, L. (1994). Putting the service-
profit chain to work. In Harvard Business Review (pp. 164--174): Harvard Business Review.

Heuvelmans, W., A, K., B.Meijs, & Sommen, R. (2003). Enhancing the Quality of ABAP Develop-
ment: SAP PRESS.

Hippner, H., Hoffmann, O., Rimmelspacher, U., & Wilde, K. D. (2006). IT Unterstützung durch
CRM-Systeme am Beispiel von mySAP CRM. In H. Hippner & K. D. Wilde (Eds.), Grundla-
gen des CRM, Second Editon (pp. 15--44). Wiesbaden: Gabler.

Hippner, H., Rentzmann, R., & Wilde, K. D. (2004). Aufbau und Funktionalitaten von CRM-
Systemen. In H. Hippner & K. D. Wilde (Eds.), IT-Systeme im CRM: Aufbau und Potenziale
(pp. 13--42). Wiesbaden: Gabler.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

129

Hippner, H., & Wilde, K. D. (2002). CRM - Ein Überblick. In S. Helmke, M. Uebel & W. Dangel-
maier (Eds.), Effektives Customer Relationship Management: Instrumente, Einführungskon-
zepte, Organisation (pp. 3--37). Wiesbaden: Gabler.

Ho, W. J., Seung, G. K., & Chang, S. C. (2004). Measuring software product quality: a survey of
ISO/IEC 9126. IEEE Software, USA * vol 21 (Sept. Oct. 2004), no 5, p 88 92, 11 refs.

Hovemeyer, D., & Pugh, W. (2004). Finding bugs is easy. Paper presented at the 19th annual confe-
rence on Object-oriented programming systems, languages, and applications (OOPSLA),
Vancouver, BC, CANADA, pages 132-136.

Hovemeyer, D. H. (2005). Simple and effective static analysis to find bugs. PhD Thesis, University of
Maryland at College Park, from https://drum.umd.edu/dspace/bitstream/1903/2901/1/umi-
umd-2689.pdf.

Howard, M., LeBlanc, D., & Viega, J. (2005). 19 Deadly Sins of Software Security (1st edition (July
26, 2005)): McGraw-Hill Osborne Media.

HPL. (2005). Hillside Pattern Library. Retrieved 10. Oct., 2005, from http://hillside.net/patterns/

IEEE-610. (1990). IEEE Std 610.12-1990. IEEE standard glossary of software engineering terminolo-
gy: Institute of Electrical and Electronics Engineers.

IEEE-1044. (1995). IEEE guide to classification for software anomalies (No. IEEE Std 1044.1). New
York, NY, USA: IEEE.

ISO. (2005). ISO 9000: Quality management systems -- Fundamentals and vocabulary (No. %().
#pub-ISO:adr#: ISO.

ISO/IEC-9126-1. (2003). Software engineering: product quality. Part 1, Quality model (Ed. 1.). Preto-
ria: International Organization for Standardization / International Electrotechnical Commis-
sion.

ISO/IEC-9126-3. (2004). Software engineering: product quality. Part 3, Internal metrics (Ed. 1.).
Pretoria: International Organization for Standardization/International Electrotechnical Com-
mission.

ISO/IEC-25000. (2005). Software Engineering -- Software product Quality Requirements and Evalua-
tion (SQuaRE) -- Guide to SQuaRE (Standard).

ISO/IEC. (2000a). TR 9126-2: Software engineering - Product quality - Part 2: External metrics:
ISO/IEC.

ISO/IEC. (2000b). TR 9126: Software engineering - Product quality: ISO/IEC.

Johnson, R. E., & Foote, B. (1988). Designing Reusable Classes. Journal of OO Programming, 1(2),
22-35.

Kasyanov, V. N. (2001). A support tool for annotated program manipulation. Paper presented at the
Fifth European Conference on Software Maintenance and Reengineering (CSMR), pages 85-
94.

Kataoka, Y., Ernst, M. D., Griswold, W. G., & Notkin, D. (2001). Automated support for program
refactoring using invariants. Paper presented at the International Conference on Software
Maintenance (ICSM), pages 736-743.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

130

Kerievsky, J. (2005). Refactoring to patterns (1st Edition). Boston: Addison-Wesley.

Khan, K. S., Riet, G. t., Glanville, J., Sowden, A. J., & Kleijnen, J. (2001). Undertaking Systematic
Reviews of Research on Effectiveness: CRD's Guidance for those Carrying Out or Commis-
sioning Reviews (No. CRD Report 4, ISBN 1900640201): NHS Centre for Reviews and Dis-
semination, University of York.

Kitchenham, B. (2004). Procedures for undertaking systematic reviews (Technical Report No. TR/SE-
0401). Keele: Department of Computer Science, Keele University and National ICT, Australia
Ltd.

Koenig, A. (1989). C Traps and Pitfalls (1st Edition): Addison-Wesley Professional.

Kuranuki, Y., & Hiranabe, K. (2004). AntiPractices: AntiPatterns for XP practices. Paper presented at
the Agile Development Conference (ADC), Salt Lake City UT USA, 22-26 June 2004, pages
83-86.

Laffra, C. (1996). Advanced Java: Idioms, Pitfalls, Styles and Programming Tips (1st Edition): Pren-
tice Hall.

Laitenberger, O. (2002). A Survey of Software Inspection Technologies. In Handbook on Software
Engineering and Knowledge Engineering (Vol. II, pp. 517-555): World Scientific Publishing.

Lange, C. F. J. (2006). Improving the quality of UML models in practice. Paper presented at the 28th
international conference on Software engineering (ICSE), Shanghai, China, pages 993-996.

Lange, C. F. J., & Chaudron, M. R. V. (2006). Effects of defects in UML models: an experimental
investigation. Paper presented at the Proceeding of the 28th international conference on Soft-
ware engineering, Shanghai, China, May 20-28, 2006, pages 401-411.

Lange, C. F. J., Chaudron, M. R. V., & Muskens, J. (2006). In practice: UML software architecture
and design description. Software, IEEE, 23(2), 40-46.

Laplante, P. A., & Neill, C. J. (2006). Antipatterns: Identification, Refactoring, and Management (1st
Edition). Roca Baton: Auerbach (Taylor & Francis Group).

Liggesmeyer, P. (2003). Testing safety-critical software in theory and practice: a summary. IT Infor-
mation Technology, 45(1), 39-45.

Liu, W. (2002). Rule-Based Detection Of Inconsistency In Software Design. Master Thesis, University
of Toronto, Toronto, Canada, from http://www.cs.toronto.edu/fm/pubs/pdf/liu02b.pdf.

Liu, W., Easterbrook, S., & Mylopoulos, J. (2002). Rule-Based Detection Of Inconsistency In Uml
Models. Paper presented at the Workshop on Consistency Problems in UML-Based Software
Development (WCPUSD) at the Fifth International Conference on the Unified Modeling Lan-
guage (UML), Dresden, Germany, October 20, 2003, pages 106-123.

Livshits, B. V., & Lam, M. S. (2005). Finding security vulnerabilities in java applications with static
analysis. Paper presented at the Proceedings of the 14th conference on USENIX Security
Symposium - Volume 14, Baltimore, MD, pages 271-286.

Long, J. (2001). Software reuse antipatterns. Software Engineering Notes (SEN), 26(4).

Longshaw, A., & Woods, E. (2004). Patterns for Generation, Handling and Management of Errors.
Paper presented at the OT, pages 26.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

131

Longshaw, A., & Woods, E. (2005). More Patterns for the Generation, Handling and Management of
Errors. Paper presented at the EuroPLOP, pages 14.

Lorentz, M., & Kidd, J. (1994). Object-Oriented Software Metrics: a Practical Guide: Prentice Hall.

Love, T. (1991). Timeless Design of Information Systems. Object Magazine, November-December
1991, 46.

Mäntylä, M. (2003). Bad Smells in Software - a Taxonomy and an Empirical Study. Master Thesis,
University of Technology, Helsinki, from
http://www.soberit.hut.fi/sems/shared/deliverables_public/mmantyla_thesis_final.pdf.

Mäntylä, M., Vanhanen, J., & Lassenius, C. (2003). A taxonomy and an initial empirical study of bad
smells in code. Paper presented at the International Conference on Software Maintenance
(ICSM), Amsterdam Netherlands, 22-26 Sept. 2003, pages 381-384.

Marinescu, R. (2002). Measurement and Quality in Object-Oriented Design. PhD Thesis, Politehnica
University of Timisoara, Timisoara.

Marinescu, R., & Lanza, M. (2006). Object-Oriented Metrics in Practice: Using Software Metrics to
Characterize, Evaluate, and Improve the Design of Object-Oriented Systems (1st Edition):
Springer.

Martin, R. C. (2000). Design Principles and Design Patterns: ObjectMentor.

Mellor, S. J., Kendall, S., Uhl, A., & Weise, D. (2004). MDA Distilled: Addison Wesley Longman
Publishing Co., Inc.

Melton, H., & Tempero, E. (2006). Identifying Refactoring Opportunities by Identifying Dependency
Cycles. Paper presented at the Twenty-Ninth Australasian Computer Science Conference
(ACSC), Hobart, TAS, Australia, January 16 - 19, 2006, pages 35 - 41

Mendes, E. (2005). A systematic review of Web Engineering Research. Paper presented at the Interna-
tional Symposium on Empirical Software Engineering, pages 498-507.

Mens, T., & Tourwe, T. (2004). A survey of software refactoring. IEEE Transactions on Software
Engineering, 30(2), 126-139.

Moha, N., & Guéhéneuc, Y.-G. (2005). On the Automatic Detection and Correction of Software Arc-
hitectural Defects in Object-Oriented Designs. Paper presented at the 6th International Work-
shop on Object-Oriented Reengineering (WOOR) in conjunction with the 19th European Con-
ference on Object-Oriented Programming (ECOOP), July 2005, pages

Moha, N., Huynh, D.-L., & Gueheneuc, Y. G. (2005). A Taxonomy and a First Study of Design Pat-
tern Defects. Paper presented at the International Workshop on Design Pattern Theory and
Practice (IWDPTP), Budapest, Hungary, September 25-30, pages

Monteiro, M. P., & Fernandes, J. M. (2006). Towards a Catalogue of Refactorings and Code Smells
for AspectJ. Transactions on Aspect-Oriented Software Development (TAOSD), 214-258.

Munro, M. J. (2005). A Measurement-Based Approach for Detecting Design Problems in Object-
Oriented Systems (No. EFoCS-57-2005).

Nakamura, T. (2007). HPC Bug Base. Retrieved 16. June, 2007, from http://www.hpcbugbase.org

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

132

Nkwocha, F., & Elbaum, S. (2005). Fault patterns in Matlab. Paper presented at the First workshop on
End-user software engineering (WEUSE) in conjunction with the 27th International Confe-
rence on Software Engineering (ICSE), St. Louis, Missouri, pages 1-4.

Ortega, M., Perez, M., & Rojas, T. (2003). Construction of a Systemic Quality Model for Evaluating a
Software Product. Software Quality Journal, 11(3), 219-242.

Pai, M., McCulloch, M., Gorman, J. D., Pai, N., Enanoria, W., Kennedy, G., et al. (2004). Systematic
Literature and Meta-Analyses: An illustrated, step-by-step guide. National Medical Journal of
India, 17(2), 86-95.

Parsons, T., & Murphy, J. (2004a). Data Mining for Performance Antipatterns in Component Based
Systems Using Run-Time and Static Analysis. Paper presented at the 6th International Confe-
rence on Technical Informatics (CONTI), Timisoara, Romania, May 2004, pages 113-118.

Parsons, T., & Murphy, J. (2004b). A Framework for Automatically Detecting and Assessing Perfor-
mance Antipatterns in Component Based Systems using Run-Time Analysis. Paper presented at
the 9th International Workshop on Component Oriented Programming (WCOP), in conjunc-
tion with 18th European Conference on Object-Oriented Programming (ECOOP), June 2004,
pages 8.

Perry, W. E. (2000). Effective Methods of Software Testing, Second Edition: John Wiley & Sons Inc.

Petroni, N. L., Jr., & Arbaugh, W. A. (2003). The dangers of mitigating security design flaws: a wire-
less case study. IEEE Security & Privacy Magazine (ISPM), 1(1), 28-36.

PPR. (2005). Portland Pattern Repository. Retrieved 10. Oct., 2005, from http://c2.com/ppr/,
http://en.wikipedia.org/wiki/Portland_Pattern_Repository

Rech, J. (2004). Towards Knowledge Discovery in Software Repositories to Support Refactoring. Pa-
per presented at the Workshop on Knowledge Oriented Maintenance (KOM) at SEKE 2004,
Banff, Canada, pages 462-465.

Rech, J., & Ras, E. (2007, in work). Aggregation von Erfahrungen in Erfahrungsdatenbanken. Künstli-
che Intelligenz, 6.

Rech, J., Ras, E., & Decker, B. (2007). Intelligent Assistance in German Software Development: A
Survey. IEEE Software, 24(4), 72-79.

Riel, A. J. (1996a). Object-oriented Design Heuristics. Reading, Mass.: Addison-Wesley Pub. Co.

Riel, A. J. (1996b). Object-Oriented Design Heuristics (1st Edition): Addison-Wesley Professional.

Rising, L. (2000). The pattern almanac 2000. Boston: Addison-Wesley.

Robbins, J. E. (1998). Design Critiquing Systems (No. Tech Report UCI-98-41).

Robbins, J. E. (1999). Cognitive Support Features for Software Development Tools. Ph.D. Thesis,
University of California, Irvine.

Robbins, J. E., Hilbert, D. M., & Redmiles, D. F. (1997). Argo: a design environment for evolving
software architectures. Proceedings of International Conference on Software Engineering.
ICSE 97, Boston, MA, USA, 17 23 May 1997 * New York, NY, USA: ACM, 1997, p 600 1.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

133

Robbins, J. E., Hilbert, D. M., & Redmiles, D. F. (1998a). Extending design environments to software
architecture design. 11th Knowledge Based Software Engineering Conference, Syracuse, NY,
USA, 25 28 Sept. 1996 * Automated Software Engineering, Netherlands * vol 5 (July 1998),
no 3, p 261 90, 58 refs.

Robbins, J. E., Hilbert, D. M., & Redmiles, D. F. (1998b). Software architecture critics in Argo. Pro-
ceedings of 1998 International Conference on Intelligent User Interfaces, San Francisco, CA,
USA, 6 9 Jan. 1998 * New York, NY, USA: ACM, 1998, p 141 4.

Robbins, J. E., Medvidovic, N., Redmiles, D. F., & Rosenblum, D. S. (1998c). Integrating architecture
description languages with a standard design method. Proceedings of the 20th International
Conference on Software Engineering, Kyoto, Japan, 19 25 April 1998 * Los Alamitos, CA,
USA: IEEE Comput. Soc, 1998, p 209 18.

Robbins, J. E., & Redmiles, D. F. (1998). Software architecture critics in the Argo design environ-
ment. Knowledge Based Systems, 11(1), 47-60.

Robbins, J. E., & Redmiles, D. F. (2000). Cognitive support, UML adherence, and XMI interchange in
Argo/UML. Information and Software Technology, Netherlands * vol 42 (25 Jan. 2000), no 2,
p 79 89, 25 refs.

Roock, S., & Lippert, M. (2006). Refactoring in Large Software Projects (Paperback): John Wiley &
Sons.

SAP. (2005a). Secure Programming - ABAP. from https://www.sdn.sap.com/irj/sdn/devguide2004s

SAP. (2005b). Secure Programming - Java. from https://www.sdn.sap.com/irj/sdn/devguide2004s

SAP. (2007a). Enterprise Service-Oriented Architecture (Enterprise SOA). from
http://www.sap.com/platform/esoa/index.epx

SAP. (2007b). SAP CRM. from http://www.sap.com/solutions/business-suite/crm/index.epx

Schmidmeier, A. (2004). Patterns and an Antiidiom for Aspect Oriented Programming. Paper pre-
sented at the EuroPLoP, pages 21.

SEI. (2006). CMMI for Development, Version 1.2 (No. CMU/SEI-2006-TR-008).

Shadrin, G. (2005). Three Sources of a Solid Object-Oriented Design - Design heuristics, scientifically
proven OO design guidelines, and the world beyond the beginning. JAVA developer's journal
(JDJ), 10(5).

Simon, F., Olaf Seng, O., & Mohaupt, T. (2006). Code Quality Management (1st Edition): Dpunkt
Verlag.

Simon, F., Steinbruckner, F., & Lewerentz, C. (2001). Metrics based refactoring. Paper presented at
the 5th European Conference on Software Maintenance and Reengineering (CSMR), Lisbon
Portugal, 14-16 March 2001, pages 30-38.

Smith, C. U., & Williams, L. G. (2001). Software Performance AntiPatterns - Common Performance
Problems and their Solutions. Paper presented at the 27th International Computer Measure-
ment Group Conference (ICMG), pages 797-806.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

134

Smith, C. U., & Williams, L. G. (2002). New Software Performance AntiPatterns: More Ways to
Shoot Yourself in the Foot. Paper presented at the 28th International Computer Measurement
Group Conference (ICMG), Reno, Nevada, USA, December 8-13, 2002, pages 667-674.

Smith, C. U., & Williams, L. G. (2003). More New Software Antipatterns: Even More Ways to Shoot
Yourself in the Foot. Paper presented at the 29th International Computer Measurement Group
Conference (ICMG), pages 717-725.

Stewart, D. B. (1999). 30 pitfalls for real-time software developers. Embedded Systems Programming
(ESP), 12(11).

Stürmer, F. (2006). A Rule-based Approach for Business Logic Modelling in CRM Business Objects.
Diploma Thesis, University of Mannheim & SAP-AG.

Sutter, H., & Alexandrescu, A. (2004). C++ Coding Standards: 101 Rules, Guidelines, and Best Prac-
tices (1st Edition (October 25, 2004)): Addison-Wesley Professional.

Tahvildari, L., Kontogiannis, K., & Mylopoulos, J. (2003). Quality-driven software re-engineering.
Journal of Systems and Software, 66(3), 225-239.

Tate, B. (2002). Bitter Java (1st Edition (April 2002)): Manning Publications Co.

Tate, B., Clark, M., Lee, B., & Linskey, P. (2003). Bitter EJB (1st Edition): Manning Publications Co.

Taylor, R. N., & Osterweil, L. J. (1980). Anomaly detection in concurrent software by static data flow
analysis. IEEE Transactions on Software Engineering (TSE), 6(3), 265-278.

Telles, M. A., & Hsieh, Y. (2001). The Science of Debugging (1st Edition): Coriolis Group Books.

TopCased. (2007). TopCased. from http://www.topcased.org/

Tourwe, T., & Mens, T. (2003). Identifying refactoring opportunities using logic meta programming.
IEEE Computer, Reengneering Forum; Univ. Sannio. - In Proceedings Seventh European
Conference on Software Maintenance and Reengineering. - Los Alamitos, CA, USA, USA
IEEE Comput. Soc, 2003, xi+2420 2091-2100, 2031 Refs.

Tourwé, T., & Mens, T. (2003). Identifying refactoring opportunities using logic meta programming.
Paper presented at the Seventh European Conference on Software Maintenance and Reengi-
neering (CSMR), Benevento Italy, 26-28 March 2003, pages 91-100.

van Emden, E., & Moonen, L. (2002). Java quality assurance by detecting code smells. Reengineering
Forum; Virginia Commonwealth Univ.; IEEE Comput, Burd, E.. - Los Alamitos, CA, USA,
USA IEEE Comput. Soc, 2002, x+2349 2097-2106, 2025 Refs.

Vermeulen, A., Ambler, S. W., Bumgardner, G., Metz, E., Misfeldt, T., Shur, J., et al. (2000). The
Elements of Java Style (1st Edition): Cambridge University Press.

Veryard, R. (2001). Design pitfalls as negative patterns. Retrieved 1. June, 2007, from
http://www.users.globalnet.co.uk/~rxv/sqm/pitfalls.htm

Vide, P. (2007a). Project Deliverable D1.1: VIDE Project.

Vide, P. (2007b). Project Deliverable D3.1: VIDE Project.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 4 – Deliverable D4.1
Version 1.0 Date: 09 August 2007

© Copyright by VIDE Consortium

135

Visaggio, G. (2001). Ageing of a data-intensive legacy system: symptoms and remedies. Journal of
Software Maintenance and Evolution, 13(5), 281-308.

Wake, W. C. (2003). Refactoring Workbook (1st Edition): Pearson Education Inc.

Waters, R. C. (1994). Cliché-based program editors. ACM Trans. Program. Lang. Syst., 16(1), 102-
150.

Webster, B. F. (1995). Pitfalls of object-oriented development (1st Edition): M & T Books.

White, A., & Schmidt, K. (2005). Systematic literature reviews. Complementary Therapies in Medi-
cine, 13(1), 54-60.

Whitmire, S. A. (1997). Object-oriented Design Measurement. New York, NY, USA: John Wiley &
Sons.

Wikipedia. (2007). Coding conventions for languages. from
http://en.wikipedia.org/wiki/Programming_style#Coding_conventions_for_languages

Wohlin, C., Aurum, A., Petersson, H., Shull, F., & Ciolkowski, M. (2002). Software inspection ben-
chmarking-a qualitative and quantitative comparative opportunity. Proceedings Eighth IEEE
Symposium on Software Metrics, Ottawa, Ont., Canada, 4 7 June 2002 * Los Alamitos, CA,
USA: IEEE Comput. Soc, 2002, p 118 27.

Wooldridge, M. J., & Jennings, N. R. (1999). Software engineering with agents: pitfalls and pratfalls.
IEEE Internet Computing (IIC), 3(3), 20-27.

Younessi, H. (2002). Object-Oriented Defect Management of Software (1st Edition): Prentice Hall
PTR.

Yourdon, E. (1993). Object-Oriented Systems Design: An Integrated Approach (1st Edition): Prentice
Hall.

