FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007

BE V]I

Tnfomjgﬂgonﬁﬁodcty u E
SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

FP6-1ST-2004-033606
Visualize all moDel drivEn programming
VIDE
WP 4 Deliverable Number D.4.1

Quality Defects in
Model-driven Software Development

Project name:

Start date of the project:
Duration of the project:
Project coordinator:
Work package Leader:

Due date of deliverable:

Actual submission date
Status

Document type:

Document acronym:

Visualize all model driven programming

01 July 2006

30 months

Polish - Japanese Institute of Information Techgglo
Fraunhofer IESE

30. June 2007

09. August 2007

final

Report

D4.1

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Editor(s) Jorg Rech, Axel Spriestersbach

Reviewer(s) Jorg Rech, Axel Spriestersbach, Andreas JedlitscB&anhild
Namingha, Andreas Roth

Accepting Kazimierz Subieta

Location http://www.vide-ist.eu

Version 1.0

Dissemination level PU (Public)

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007

Abstract

To support the modeler of a PIM during his workpimation about possible threats to the
quality (in respect to 1ISO 9126) of the PIM shob&lidentified as early as possible. In this

work package quality defects such as architectanaglls, anti-patterns, or design flaws
investigated that might occur on the PIM level, aspecially in the behavior model via
VIDE action language. Furthermore, new quality d¢$eare explored that might emerge
the data-intense business domain or in the gensoatext of action languages. The kng
ledge explored in this work package will be useddeelop a module of VIDE that discov

re
e
in
W_
Pr's

quality defects in the internal PIM representatemd annotates its textual and visual repye-

sentation.

This deliverable is split into two parts. This repprovides an in-depth survey of the sts
of-the-art in quality defects that are a potentialeat to the quality of models in MDSD.

The second report will focus on quality defect ohsry techniques and include the techn
specification of techniques for discovering quatigfects as well as methods for hand
them.

te-

cal
ng

The VIDE consortium:

Polish-Japanese Institute of Information Technology ~ Coordinator Poland
(PIIIT)

Rodan Systems S.A. Partner Poland
Institute for Information Systems at the German daesh Partner Germany
Center for Artificial Intelligence
Fraunhofer-Gesellschaft e.V. Partner Germany
Bournemouth University Partner United

Kingdom
SOFTEAM Partner France
TNM Software GmbH Partner Germany
SAP AG Partner Germany
ALTEC Partner Greece

3

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Table of Contents

Y = ot OO PTR PR PRPP 3
TaADIE OF CONLENTS ...t ces ettt sttt e et e e n e e s r e e e nnneestn e e sre e e nereeaneeea 4
(IS o) o U= PR PT SRR 6
[T o) B =Y o] PP PT SRR 7
1 INtrodUCHION BNA OVEIVIEWcciiiiiiiiiiiiiis ettt ettt s e st e e ne e e nnn e e s e e sre e e nereennneas 9
1.1 The ObJECHVES OF WP ... ettt e e e e e e e e e e e e e bereeeaaae e s 10

22 = - o3 (o | (o 111 o PSS 13
b2 R a1 0T [0 T 0] o T (0 0 7 13
2.2 SOftWAIE QUAILY ...eeeiieieeiiei ettt e ettt e e e e e et e e e e e e e e e e annbb e e e e e e e e e aannnrseeaaaeaaan 14
2.2.1 Software Quality MOUEISuuiiiiiieiie e e e 15

2.2.2 Software development process and maturity models.............cccccooiiiiiiiiiiiiiiieee. 16

2.3 Quality Defects and Quality Defect DIagnOSIS.........oiiuuuiieiiiaeieiiiiie et ee e 17
2.3.1 Automated Quality defect diagnosis teChNIQUES...........cooviiiiiiiiiiiiiiiie e, 17

2.3.2 Quality defect handling MethOdsouiiiiieiiii e 18

2.4 Software Quality Improvement TEChNIQUES........ccieiiiiiiiieiie et e e e e e e e nnrrnee e e e 18
2.5 Beyond the State Of the Al e e e eeaa e as 18

3 Description of Research Approach and Methodologyo, 20
3.1 Background and General ObJECHIVES.......coi it e e ee e e e 20
3.2 REVIEW MELNOMttt e et e nnn e e e nnne e 20
3.3 REVIEW QUESTIONS ... e anan 21
3.4 Data Sources and SEArCh tEIMScciiiiiiiieii e nene e 21
3.5 Literature Selection and Literature Quality ASSESSMENTcooviiuiiiiiiieiiiiiieie e 24
T B = L = W 1 - T 1o [P U P PPRPP 24
3.7 Data SYNthESIS ACHIVILIES ..uuiiiieiii it s e e e s s e r e e e e e s e snnrrreeaaeee s 25

4 Quality Defects and Related CONCEPLScccuviiiir oot e e e 26
4.1 Overview & Visualization Of CONCEPLScoii it 26
4.1.1 Literature COrPOIra OVEIVIEWcoiiiuuuiiieiiae e e ettt e e e e e s e atibeeee e e e e e s nbn e eeeaaeeeaannnneeeeaaaeeas 27

4.1.2 Available Information Structures for Quality Defectscccccviiiiiiiiiiiiiiniieeeeeen, 28

4.1.3 Comments to the following COHECHIONccveviiiiiee e 31

A AV =1 o IR 2 0]) (o] 1 PSSO 33
G I N g o] 0= = PSPPSR 34
O AN g1 (o0 [T =1 1= SRS 36
I N g1 1 o T= L1 1= 0 1 PSR TRSRR 37
4.6 BUQ PAtteINS ... 42
4.7 CHILIC RUIBS. oottt ettt ettt e s e e re e e n e e e e s e e nr e e nnre e e nee s 45
R B (= Tox - 11 0= o TSP STTP RO 52
4.9 Defects, BUQS & EITOrS (DESIGN) ..oicuvirieeieeeiiiiiieieee e e e s seitetteee e e e s s ssnnteteeeeeeesssnnsnsnaeeeeeessannssneeees 54

A A0 EIOr PAtterNS ... 64
4.1 FAUIE PAIEINS ...eeiiiiiicieieiee ettt e e sme e ss e e st e e n e e e s en e nnre e e re e e nnre e e nee s 65
BLL2 FIAWS ...ttt R et R e et e e nee s 66
RO o [T U] (o2 TSP STTR RO 68

B LA INESSES ..ottt ettt ettt s ettt n e R e a Rt aR e Rt et n e e r e s 78

4

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
Y 1 (Tl N 1 (=TS T] (o RSP UR RO 79
O RN =T o F= LN =T o Vi =] 0 SRS 81
O R =11 7= 1| PP SPOUPRR PRI 82
4.18 Principles (DesSign PriNCIPIES) ..ccueai ettt e e et e e e e e e e eaneeeeeeas 84
AL PUZZIES [PUZZIEIS ...ttt ettt ettt e sttt e e e snbt e e e s st e e e e s anneeee s 86
4.20 RUIES (DESIGN RUIES) ...ttt e e e e et e e e e e e e e e bbb e e e e e e e e annneeeeeeas 87
o S | FS R (@0 o LIRSS 90
.22 SIMEIIS .ottt oo oottt e e e oo e b ettt e e e e e e e e anaabe e e e e e e e e e naeaaeeeaa e e e e nnrrneeeas 92
4.23 Styles, Conventions, and RUIESuiiiiii e a e e 97
5 Domain-specific QUality DEECESccciiiiiiiiiis e 100
5.1 Business Application / BUSINESS DOMAINuuviiiiiiiiiiiiiiiiiee e it e e e s e e e e e e e e sneeanees 100
5.1.1 Applications fOr SME.......coiiiiiiiiiiiiiie et s et e e e e e e e e s e ar e e e e e e e ennes 102
5.1.2 CRM EXAMPIE ettt ettt e e e e e st e e e e e e e e nnb b e eeeaaeeeaanne 102
5.1.3 Lead and Opportunity Managementccooiiriiiiiiieeea e e e ee e e e e 103
5.2 Consequences for Quality Assurance in MDSD for the Business Domaincccccccuvvueeen. 108
5.2.1 MaintaiNabilityoooiiieiiie e e e e e e 108
L 1 o3 =Y VoY PRSP 109
5.2.3 READIIILY ...ttt e e e e e e e e e e et e e e e e e anne 109
Lo S o 1 7= 1] SRR 109
Lo T U Tox 1T o= 1 Y2 PRSP 110
B5.2.6 USADIIITY . e e e e e e e e e e anne 110
5.3 Sources for Domain specific quality defeCtS..........oooiiiiiiii e 111
5.3.1 (Development) GUIAEINESuuiiiiiiiiiiiieie e e e e e e e e e aanes 111
5.3.2 Programming STYIEuuiiiieiiiiiiiiiiec e s e e e e e e e e e e aae e e e anne 112
5.3.3 Tool based defect deteCtioN............oooi i 114
6 Resulting defect model for the business domain.... ..o 118
A O o T [¥ o [T o T = =T 44 F= Ut SRRSO 120
4% = (e o L= oo F= o PRSP 120
2 © V11 (o o PSP RSP 120
ST 1 0TS TT= 1 Y SR 122
S (=] 1] 1ot PR PPRTT 125

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

List of Figures

Figure 1. Literature Type about Quality DefeCtS.....ccccoet i 27
Figure 2. Conferences with contributions about quality defect S ettt et e e et a e e e e e 28
Figure 3. SAP E-SOA ArChItECIUIE ...t et e e e 101
Figure 4. S Fo 1[I ST ot =] o - T [RSP SP 104
Figure 5. Main Classes in Opportunity Management coeeiiiiiiiiiiee e 106
Figure 6. Diagram of setProcessStatusValidSINCe() c.vvvvvvees evvveei i 107
Figure 7. Result screen ABAP Code INSPECION.......uuiiiiiies evireiee e e et e e e s seeee e e e e eenaneaees 115

6

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

List of Tables

Table 1. Quality Aspects used in the different Quality Model s (based on (Ortega et al.,
2003)) 16

Table 2. Information Content of QD templates used in larger collectionsccoveeeveeninnnnns 30
Table 3. Ageing symptoms by (Visaggio, 2001)cccccciies aoriieiiiitiiee e 33
Table 4. Anomalies by (KasyanoV, 2001)ccccuuiiiiiiies eiiiiieaa e ee e e e e e e e eeaa e 35
Table 5. Concurrent Anomalies by (Taylor & Osterweil, 1980) cccoiiivieeiiiieeee e 35
Table 6. Anti-Guidelines for Unmaintainable Code by (Green, 1996) ... 36
Table 7. Antipatterns by (Brown et al., 1998).......cccccce eriiiieee e 38
Table 8. Antipatterns by (Dudney et al., 2002).......cccccces rveiieee e 39
Table 9. Java Antipatterns by (Tate, 2002).......ccieeiiiies eereeeie e e s e s e e e e e s s s sanrraereaae e e s aanes 39
Table 10. EJB Antipatterns by (Tate et al., 2003)ccoct i 40
Table 11. Multithread Antipatterns by (Hallal et al., 2004). ..o 40
Table 12. Performance Antipatterns by (Parsons & Murphy, 2004 a, 2004b)........cccccceeviinnnnen. 41
Table 13. Performance Antipatterns by (Smith & Williams, 2001 |, 2002, 2003)ccccvveeeeennn. 41
Table 14. Bug Patterns by (Allen, 2002)cccuuiiiiiiiais e a e aa e 42
Table 15. Bug Patterns by (Farchi et al., 2003).......cccccs oot 43
Table 16. Bug Patterns by (D. Hovemeyer & Pugh, 2004) cooooiiiiiiieeeee e 44
Table 17. Design Critic Rules by (Robbins, 1998, 1999; Robbin s et al., 1997, 1998a, 1998b;
Robbins et al., 1998c; Robbins & Redmiles, 1998, 20 00)uuvvveeeiiiiiiiiiieee e ceiiieeer e e e e e s esienreeea e e 46
Table 18. Additional Critics in ArgoUML (ArgoOUML, 2007)..... cooccieieereeeieeiiieereee e e sesiireee e e e e 46
Table 19. Critic Rules by (Coelho & MUrphy, 2007)ccccccc ciiiiiie e e e 51
Table 20. Defect Patterns individuals by (Nakamura, 2007)oooiiiiiiieeee e 53
Table 21. Defect Bug classes by (Telles & Hsieh, 2001) oo 55
Table 22. Security Errors by (Livshits & Lam, 2005) i 56
Table 23. Design Defects by (Younessi, 2002), Chapter 6o 57
Table 24. Design Defects by (Younessi, 2002), AppendiX C.... oo 57

Table 25. Defects by (Christian F. J. Lange & Chaudron, 2006 ; Christian F. J. Lange et al.,
2006) 63

Table 26. Error Patterns by (Longshaw & Woods, 2004, 2005)ccccceereeeeniiiiiiieeeee e sineeeeees 64
Table 27. Fault Patterns (in Matlab) by (Nkwocha & Elbaum, 20 05)ccoovvvivieeeee e 65
Table 28. Fault Patterns by (Alexander et al., 2002) eeeereeeiiiiiier e 66
Table 29. Design Flaws by (Marinescu, 2002)cccccies evreeeeeeseisiieeeeeeeesssenteeeeeaesssnsrnnneereeeees 67
Table 30. Design Flaws by (Marinescu & Lanza, 2006) cccoovviciiiieeeeeiiriieee e e e e s snreneenee e e 67
Table 31. Heuristics DY (RiI€l, 1996D)uuiiiiiiiiiiiiies e 68
Table 32. Heuristics by (GIDDON, 1997) ... e 75
Table 33. Heuristics by (Grotehen, 2001)coiiiiiiiiis oo a e ee e e e 77
Table 34. llinesses by (HAaWKINS, 2003)ccoiiiiiiiiiiiiis ittt a e e aeeeaaeeeas 79
Table 35. Metric Thresholds by (Lorentz & Kidd, 1994) oo 80

7

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Table 36. Negative Patterns collected by (Veryard, 2001).... .oooooiiiiiiiieiee e 81
Table 37. Pitfalls by (WeDBSEr, 1995)iiiiiiiiiiiiiiiis ceee e e e e e e e e e s e eeaaee s 83
Table 38. Java Pitfalls by (Daconta et al., 2000) (Daconta et al., 2003)........cccuvvieeeeeiiiiiiiiieeenn. 84
Table 39. Principles collected by (Martin, 2000) and (Roock & Lippert, 2006)...........ccvveeeennn. 85
Table 40. Principles by (Coad & Nicola, 1993)......cciiiiiiis i eeeee e 86
Table 41. Puzzles by (Bloch & Gafter, 2005)......cciiiiiiiis it 87
Table 42. Design rules by (Johnson & FOote, 1988)cccc. coriiiiiiiie e 87
Table 43. Inconsistency Rules by (Liu et al., 2002)......cc. eeiiiiiiiiiiee e 89
Table 44. Inconsistency Rules by (Lit, 2002)ccccccies eviiiieee e et ee e e e e e s e e e e s s s reea e 89
Table 45. Security Sins by (Howard et al., 2005)ccccc. coviciieiie e 90
Table 46. Bad smells in code (FOWIEr, 1999)ccoiiiiiiis et e e r e e re e e e 93
Table 47. Code smells by (Wake, 2003)......cuiiiieeiiiiiiiis eeeeeiiiiiiirereeeessssrrareereeesssnsrrrreeeeeseessnsrsneees 94
Table 48. Code smells by (KerieVsky, 2005)cciiiiiiiiis ceveiiiiiieee e e e ssirire e e e e e s e e e e e s s s snnraeeees 94
Table 49. Code smells by (TOUrwé & Mens, 2003)ccveies ereveiiiieeeseiiee e sireeessrer e e snneeeeesnenaeeens 95
Table 50. Architecture smells (Roock & Lippert, 2006) cooeiiiiiiiiiiieee e 95
Table 51. OCL smells by (Correa & Werner, 2004).......ccccc. uiiiiiiiaee et 97
Table 52. Database smells by (Ambler & Sadalage, 2006)ooooiiiiiiiiiiee e 97
Table 53. Style conventions by (Ambler, 2006)ccccccce oot 98
Table 54. Selected Quality Defects targeted for VIDE WP 118
8

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

1 Introduction and Overview

Model-driven software development (MDSD) drastigadliters the software development
process, which is characterized by a high degraarmivation and productivity. MDSD fo-
cuses on the idea of constructing software systeohdy programming in a specific pro-
gramming language, but by designing models thatrarslated into executable software sys-
tems by generators. These characteristics enablgndes to deliver product releases within
much shorter periods of time and develop more diffeplatforms compared to the traditional
methods. In theory, this process makes it unnepgssavorry about an executable system’s
quality, as it is "optimized" by the generators.

However, proponents of MDA must provide convincarmgwers to questions such as "What
is the quality of the models and software produtédi# designed models are also a work
product that requires a minimal set of quality asp€e.g., the maintainability of models over
a longer life-time). Quality assurance techniquashsas testing, inspections, software analy-
sis, or software measurement are well researchrgagrdgramming languages, but their appli-
cation in the domain of software models and modeled software development is still in an

embryonic phase.

The goals of quality assurance for model-drivertvemfe development are diverse and in-
clude the improvement of quality aspects such astaiaability, reusability, security, or per-
formance. Quality assurance for model-driven safw@development will play an important
role for the future wide-spread usage of modelalhiarchitectures in general, as well as in
specific application domains.

The main concern of software quality assurance (S5i@#he efficient and effective develop-
ment of large, reliable, and high-quality softwagstems. While verification and validation
efforts in industry typically focus on functionas@ects, using techniques such as testing or
inspection, other quality aspects are often negteddowever, the non-functional quality of a
software product is crucial for its evolution andintenance by the same or another software
organization. Other techniques such as softwardyatoanalysis and measurement are either
used to measure software systems and interpretdbality based on a previously defined
quality model or to predict project characteristi@sed on experiences from past measure-
ments. From the deficits found by interpreting thality characteristics (e.g., software me-
trics), further actions are derived on an absimctl to improve software quality.

Another approach in SQA is the diagnosis of exfhjiadefined defects such as anti-patterns,
design flaws, or code smells, which represent systelependent defects with a negative
effect on a quality aspect such as maintainabilitglividual refactorings are used to remove
these defects and improve the defective parts witblsanging its functionality.

Today, a vast number of these defects are knowndasdmented in various communities
under various names. Typically, they are colleeted described by practitioners and consul-
tants and represent condensed experiences froniplaysrojects they were involved in. In
this report, the ternguality defectis used as an umbrella term for the concepts atteim,
smell, flaw, pitfall, bug pattern, defect pattenegative pattern, (bad) heuristic, (bad) charac-
teristic, anti-idiom, (design) problem, (design)ed, refactoring candidate, puzzlers, traps,
anomalies, and many more (typically with an addaiofocus on a quality aspect, develop-
ment phase, or abstraction level — e.g., a perfoceantipattern, test smell, or architectural
anomaly) that have a negative effect on a qualipeat (e.g., maintainability or reusability).
Problems concerning the compilability of the mof@ed., missing attributes) or regarding the
conformance to a standard (e.g., capitalize clasgseh are not in the focus of quality defects.

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

In spite of the large number of quality defect eclions available today, not many tech-
niques, methods, or tools are available for thenuoal, semi-manual, and automatic diagno-
sis (i.e., their diagnosis or prognosis). On the band, this might be the result of them being
described in different formalization grades, thenfal and complete representations of the
defective objects (e.g., a software project plant) being adequate, and not all of them are
diagnosable at all. On the other hand, most practts and researchers are neither aware of
the various concepts quality defects are known unde are they informed about all defects
under one concept.

To support the modeler of a platform-independend@h@PIM) during his work, information
about possible threats to the quality (in respedB0 9126) of the PIM should be identified
as early as possible. In this work package, qudgtfigcts are investigated that might occur on
the PIM level, and especially in the behavior modalthe VIDE action language. Further-
more, new quality defects are explored that mighe¢rge in the data-intense business domain
or in the general context of action languages. Kimawvledge explored in this work package
will be used to develop a module of VIDE that dies quality defects from the internal
PIM representation and annotates its textual asukvirepresentation.

In contrast to the insular and inconsistent caolbet in other publications this report presents
the results of a systematic literature review wate a comprehensive and uniform collection
of these quality defects and start a quality deffecty of knowledge. We have selected over
560 black and grey publications published in sattpliterature. This review includes a
summary of quality defects and their definitionseTsister report D4.2 will include a sum-
mary of quality defect diagnosis techniques, thbaracteristics, benefits, and shortcomings.

1.1 The objectives of WP4

The results presented in this report are based amystematic literature review that was tar-
geted to be complete, concise, and consisterd.thd result of tasks 4.1, 4.2, and 4.3 as de-
fined in the project and listed in the following:

» Task 4.1 Researching and summarizing existing quayi defects(Task leader IESE): A
detailed analysis of the state-of-the-art in gyatiefect discovery (which is currently
largely done on source code) will be performeddweatop a strong foundation for the lat-
er work. Another goal is to elicit a summary ofsiig quality defects that might appear
in higher levels of the software development precesl especially on PIM and PSM.

* Task 4.2 Modeling the information- and defect modelor MDA (Task leader IESE): In
order to identify quality defects in a PIM, a forlmaodel to describe the morphology (i.e.,
the inner structure and characteristics) of qualéfects will be defined. Based upon this
formal defect model and the definition of the Vildaguage (i.e., the representation of a
PIM) the information model that describes the aldé information that a tool can use to
identify potential quality defects will be synthzss.

» Task 4.3 Modeling domain-specific parts of the mods (Task leader SAP): To identify
and formalize quality defects specific to a patacwomain of business applications, the
domain-specific variabilities of the domain withspect to quality will be analyzed and
compared against the defect model. This will resulan extension (i.e., variant) of the
core defect model for a specific domain summariang characterizing quality defects of
this domain.

 Task 4.4 Development of techniques for PIM-specifiquality defects (Task leader
IESE): Based upon the required information thatratterizes quality defects (i.e, the de-
fect model) and the available information from #BM (i.e., the information model),

10
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

techniques for automatically discovering symptoimt indicate specific quality defects
will be defined.

 Task 4.5 The quality defect discovery modul€Task leader IESE). Based upon the
techniques of quality defect discovery, the viseditor, and the general process, the tool
for quality defect discovery that will support theodeler of a PIM will be designed. The
design of the discovery techniques will be baséteeiupon the standard languages (e.g.,
OCL) used or on free parsing and reasoning teclgiedde.g., ANTLR).

In work package D.1 (“Standards, Technological &e$earch-Base for the VIDE Project,
Project Evaluation Criteria and User Requiremergéiriition”), the consortium has investi-
gated the typical user groups for the VIDE envirenin All these user groups have potential-
ly different requirements on the visualization loé tmodel (esp. the PIM) and, in our context,
the visualization of quality defects regarding stanal and behavioral aspects of the model.

The identified user roles “analysts/designers”, dlgsts/VIDE programmers”, and “archi-
tects” are all strongly integrated into the PIM rallg process. However, the two other roles
“domain users” and “business analysts” (resp. “megpient analysts”) are not necessarily
required to develop the software model on the RiMel. They are more involved in the de-
velopment of the CIM level and might support othershe development of the PIM (e.g., as
contacts for the information encoded in the CIM).

The core roles involved in the development of tHM Rre the analysts/designers, ana-
lysts/VIDE programmers, and architects. They, all agtheir variants (e.g., GUI designer,
DB tester, etc.), are responsible for the creatinadification, and quality assurance of the
PIM. Based on the description in D.1, they havefttewing foci that should be supported
by the visualization of quality defects:

* Analysts/designersare responsible for the conceptual platform-indeleat model that is
based on the computational-independent model pestlby the business analyst. This
role uses the VIDE language and tools to definefiteelevel of behavior, but leaves the
details to the VIDE developer. Therefore, it regaiinformation on the quality of the
model regarding the big picture (i.architecturg as well astructural aspectsAddition-
ally, as this role is also responsible for decidingredefined components may be reused
it has to have information regarding the comporienterfacesas well as regarding the
reusability, adaptability, or composability of tbemponents.

* Analysts/VIDE programmers are responsible to complete the models regarbett-
vioral aspectan such a way that will allow model simulatiore(i. for testing) and trans-
formation of the models into code. This role isyomlarginally concerned with structural
aspects developed by the analysts/designers.

» Architects are responsible for building the transformatiofghe PIM described using
VIDE into platform specific models and code. Adalitally, the architect is an expert in
the target platform (e.g., Java VM, Tomcat/JSPuytStretc.) but also has a good under-
standing of UML and VIDE in order to be able toidefthe transformation. This role is
required to work with the complete PIM and PSM.

In summary, this report provides an extensive aegnof existing quality defects affecting

quality aspects of software products, processegeqis, and organizations as well as tech-
niques for their diagnosis. Section 2 describesbtémekground of software quality assurance
and quality defects, while section 3 contains tesigh of the systematic literature survey. In
particular, section 4 contains the description udldyy defects and related concepts that were
described in the literature in order to describe dbjects of diagnosis. Section 5 presents in-
formation on the data-oriented business domainith&drgeted in the context of the VIDE

project. The selected quality defects that aregaiged in WP9 are described in section 6.

11
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Finally, the conclusion in section 7 summarizes ti@port and gives an outlook on current
research and trends.

12
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

2 Background

The software industry has a reputation for prodg@rpensive, low-quality software as soft-
ware systems have reached a level of complexityphis them beyond our ability to evolve
and maintain them easily. This increases the needdftware organizations to develop or
rework existing systems with high quality.

To improve the quality of their software produatsganizations often use quality assurance
activities such as refactoring of the source codatkle defects that reduce internal or exter-
nal quality aspects of the software. During the igsars many practitioners recorded their
experience with these kinds of defects in formattgrns and antipatterns (i.e., recurring solu-
tions or problems). However, only few of these ediiions are known to the research commu-
nity. Most of the developed approaches concernuah slefects do only take code smells,
design flaws, and antipatterns into consideratdrtomprehensive collection of the quality

defects will hopefully foster the research in thisa.

Today, several types gjuality defectgi.e., smells, anti-patterns, flaws, bug pattepitfalls,
etc.) can be diagnosed on the code level but adsb & threats to the quality of earlier ab-
stractions of the software system such as softwadels. While several approaches were
developed in the past to diagnose these qualigctiein the source code of software systems,
the diagnosis of quality defects in software mode$p. in model abstractions used in MDSD
such as PIMs) is underdeveloped. Especially, ttegss of information available in software
models other than class diagrams has still not beshe available for quality defect diagno-
sis. Furthermore, the dependency of the contexa qgtiality defect has not been analyzed
deeply. Several quality defects are location semsih such a way that they might emerge
during the application of an architectural styledasign pattern (e.g., a Large Class in a
facade pattern), a contextual convention (e.g.T§ypeEmbeddedinName smell in Java’'s “to-
String” methods), or other best practices.

2.1 Introduction to SQA

The technigues to diagnose quality defects aredbagen research from the fieldsftware
refactoring (Fowler, 1999; Mantyla, 2003; Mens & Tourwe, 20&mon et al., 2001; Tah-
vildari et al., 2003; van Emden & Moonen, 20@@)diagnose and remove quality defects,
software inspectionfAurum et al., 2002; Ciolkowski et al., 2002; Wioh¢t al., 2002) to ma-
nually detect and analyze ambiguities in analysisooling phasesource code analys{en-
ton & Neil, 1999; Fenton & Ohlsson, 2000) to quBntiode characteristics for quality mea-
surement and assurance, aoftware testingLiggesmeyer, 2003) to detect functional defects
after implementation.

While some techniques for the diagnosis of qualéfects in source code are already known,
the diagnosis of quality defects based on architatend design information used in model-
driven software development (MDSD) and especialgtfprm-independent models (PIMs)
from early software development phases are not welerstood and open to further investi-
gation. Furthermore, with the rise of MDSD the némdhigh-quality and maintainable soft-
ware models will increase.

In VIDE, quality assurance knowledge for platfomnadépendent models will be researched to
increase their quality and ease the developmentamdtenance of these models. This know-
ledge will be used to enrich the visualization fvé imodels in order to inform the designers
and maintainers about potential threats to modalityu

13
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

The remainder of this section describes the backgtef quality assurance for MDSD with a
focus on quality defect diagnosis that is needeth@VIDE research project (especially in
WP4). This overview was developed in Task 4.1 amdrearizes the core concepts of quality
defects and quality defect diagnosis.

2.2 Software Quality

Today, the quality of software systems is very int@at in the development of software sys-
tems. While quality factors can be identified foegy product, process, project, or person in a
software engineering organization the focus in wsk package of the VIDE project lies on
the software product quality.

The quality of software systems can be subdiviged several smaller aspects that focus on
specific characteristics such as maintainabiligrf@rmance, or usability. These quality as-
pects have two main addressees.

* The first addressee is the user of the softwareesysvho typically emphasizes quality
aspects such as usability or performance. Quadipeets mainly concerning the users are
also calledexternal quality aspect€External quality aspects are typically definedtby
customer or through a user survey and codifiecbmfunctional requirements.

* The second addressee is the developing softwariaagion that emphasizes quality
aspects such as maintainability or portability loé tsystem expressed as source code.
These quality aspects are calleternal quality aspect€On the model layer similar quali-
ty aspects exists that describe that emphasizediegahe architects and analysts.

Other addresses of quality aspects are, for examsp&em operators (e.g., administrators)
that need an easily installable system. But in g@revery person involved in development,
administration, or usage activities of the softwsystem has own specific quality aspects.

Today, many quality aspects of various granulaity defined and used differently in quality
models. Several of these quality aspects, thatedegant to this report, are described in the
following (excluding the “compliance” sub-charadséics) to give an impression of their fo-

cus:

* Maintainability : This quality aspect describes how easy or dilffitus to correct, adapt,
or perfect the software system. In (IEEE-610, 198@)ntainability is defined aglfe ease
with which a software system or component can bdiffed to correct faults, improve
performance, or other attributes, or adapt to aebad environmeritin (ISO/IEC-9126-

1, 2003) maintainability is defined a8 ‘et of attributes that bear on the effort neeted
make specified modificatiohand sub-divided into the sub-characteristics BtgpbAna-
lyzability, Changeability, and Testability. Othembscharacteristics that might be asso-
ciated with maintainability are comprehensibilityiospectability (resp. reviewability).

» Reusability: This quality aspect describes how easy it isetase the system in another
software system or a variant of the software systarfiEEE-610, 1990) reusability is de-
fined as the degree to which a software module or other wodduct can be used in
more than one computing program or software system(ISO/IEC-9126-1, 2003) reu-
sability is not defined as a quality characteristicub-characteristic.

» Performance This quality aspect describes how fast the softvegstem processes a task
and how fast it reacts on (user) input. In (IEEB,61990) it is defined as “the degree to
which a system or component accomplishes its datgnfunctions within given con-
straints”. In (ISO/IEC-9126-1, 2003) performanceaiipart of efficiency that is defined as
“a set of attributes that bear on the relationshipween the level of performance of the

14
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

software and the amount of resources used, undéedstonditionsand sub-divided into
the sub-characteristics Time Behavior and Resdutitigation.

» Portability : This quality aspect describes how easy it isdd, pnigrate, or recompile the
software system on a new platform. In (IEEE-6109Q)9portability is defined astlie
ease with which a system or component can be #aesffrom one hardware or software
environment to anothérIn (ISO/IEC-9126-1, 2003) portability is definexk “A set of
attributes that bear on the ability of softwarelte transferred from one environment to
anothef and sub-divided into the sub-characteristics dltability, Replaceability, Co-
Existence, and Adaptability.

Beside these quality aspects several other aspédsftware models are important during
their development that have not an effect on traityuof the software (or model):

» Conformance: This aspect describes if the model complies witlefined set of specifi-
cations such as the well-formedness rules in UMtherJava specifications.

» Compilability: This aspect describes if the model might be used bgnerator or trans-
formator to compiled it into a PSM or code modegj(eJava).

If one wants to improve any of these aspects Is¢ fias to measure it and then apply tech-
niques that improve the status. Methods like GQMs(B et al., 1994) give support in the
definition of metrics but one has to be careful ooty to improve the values of the measured
metrics (i.e., address the symptoms).

Dromey suggests that in order to identify what gualspect you want to improve one has to
find the corresponding “tangible properties” foe ttode (Dromey, 1996). A tangible property
is a property of the source code that one can measing knowledge about the program-
ming language, hardware, and software environment.

Definition 1 Dromey’s Construction Theorem

A violation of a tangible quality-carrying propgrivill cause a quality defect
in the product. Any quality defect can be tracedatwiolation of a tangible,
quality-carrying property.

2.2.1 Software Quality Models

Several models to describe and systematize softiaakty have been developed during the
last forty years to support the communication, piag, controlling, and assessment of soft-
ware systems. Typically, the quality aspects asrde=d in section 2.2 are used to create a set
of interrelated quality aspects that describe hotgamd” or “healthy” software system of a
specific type (e.g., embedded driving assistanoells look like.

In order to improve the quality of a software syssefirst it has to be defined what quality
means in the specific context. One quality asped.(performance) might be of utmost im-
portance to a software system in one context (Eercritical situations) but relatively irrele-
vant in another (e.g., compiler). Based upon a iggiggiality model a product-specific quality
model has to be instantiated.

Several of these general quality models were deeelaintil today as shown in Table 1. The

international standard ISO/IEC 9126 (ISO/IEC-912&304) represents a general approach
that defines a quality model for software produ@tile there exists some critique about if

ISO/IEC 9126 categorization is correct and relidhlevaluating user satisfaction (Ho et al.,

2004) it is constantly improved. Currently, the nStandard (ISO/IEC-25000, 2005) is being

developed in the SQuaRe project that is targetedpiace 1ISO-9126.

15
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Table 1. Quality Aspects used in the different Quality Models (based on (Ortega et al., 2003))

Boehm McCalls FURPS ISO 9126 Dromey
Testability X X X
Correctness X
Efficiency X X X X X
Understandability
Reliability X X X X X
Flexibility
Functionality X X X
Human Enginee ring X
Integrity/Secur ity
Interoperability
Process Maturity
Maintainability X X X X
Changeability
Portability X X X X
Reusability X X

While all these models try to capture the subjecttoncept “quality” for software source
code, new quality models that capture the qualityodels (i.e., CIMs, PIMs, or PSMs) from
the viewpoint of architects, analysts, or maintesrage still missing.

2.2.2 Software development process and maturity models

Beside the problem-oriented approach of diagnasadity defects many other approaches are
known to improve the software development procesisthe resulting software quality. How-
ever, these process-oriented quality assuranceitpas and quality defect diagnosis cannot
be seen in isolation. Quality defect diagnosis havbe integrated into a software develop-
ment process, such as for instance the Waterfalletnthe Spiral model or model-driven de-
velopment processes (described in (Vide, 2007a¥hén VIDE project. Quality assurance
plays an important role in most of these procesdaiso Independent from the software proc-
ess model used it is important to understand thenmaof the software development and the
guality standards archived.

A couple of frameworks have proposed to accesgitbeess maturity or an organisation or a
project. Examples for process maturity framewones@apability Maturity Model Integration
(CMMI) (SEI, 2006), Software Process Improvemerd &apability Determination (SPICE)
or ISO/IEC 9000-3 (ISO, 2005) the software spearaciant of ISO 9000. Common to most
process maturity frameworks is that the developnpentess is evaluated and classified into
maturity levels Quality assurance and automatic defect detectiomodel level as described
in this document supports organisation or projecéhtrease the maturity level.

We'll use the CMMI to illustrate the benefit of @éet detection for process maturity (for a
short overview seéttp://en.wikipedia.org/wiki/Capability Maturity Miel). CMMI utilizes

five maturity levels that build on top of one amathThese levels describe best practices that
should be used by an organization. They are:

1. Initial : Initial state with no specific requirements.

2. Managed Projects are managed and similar projects areesstully repeatable.

3. Defined: Projects are executed according to an (adaptétfyare development process
which is improved over time.

4. Quantitatively Managed: The software development effort effectively cofied using
statistical and other quantitative techniques, iarggliantitatively predictable.

16
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

5. Optimizing: Continuous improving process performance towgrdstitative objectives.
The objectives are continually revised to refldwmmging business objectives, and used as
criteria in managing process improvement.

Since software quality assurance by diagnosingityudgfects contributes to predictable im-

prove product quality using statistical and othearitative techniques the methods contrib-
utes partly to maturity level 2 (“Process and Paiduality Assurance”: diagnosing quality

defects), level 3 (“Decision Analysis and Resolatiohnanding and deciding about quality

defects), level 4 (“Quantitative Project Managerfiemieasurement & statistics about quality
defects), and level 5 (“Causal Analysis and Resmh(it root cause analysis of quality defects
and initiating preventive actions) (SEI, 2006).

2.3 Quality Defects and Quality Defect Diagnosis

The main concern of software quality assurance (S5i@#he efficient and effective develop-
ment of large, reliable, and high-quality softwagstems. While verification and validation
efforts in industry typically focus on functionas@ects, using techniques such as testing or
inspection, other quality aspects are often negteddowever, the non-functional quality of a
software product is crucial for its evolution andintenance by the same or another software
developer. Other techniques as software produdysisaand measurement are either used to
measure software systems and interpret their gquiaéised on a previously defined quality
model or to predict project characteristics basaderperiences from past measurements.
From the deficits found by interpreting the qualdiyaracteristics (e.g., software metrics),
further actions are derived on an abstract levehfmove the software quality.

Another approach in SQA is the diagnosis of exfhjiadefined defects such as anti-patterns,

design flaws, or code smells that represent systelependent defects with a negative effect

on a quality such as maintainability. Individuala®torings are used to remove these defects
and improve the defective parts without changiadunctionality.

The techniques to diagnose quality defects (iraglls, antipatterns, flaws, etc.) are mainly
based upon research from the field of softwarectefang that is very active and beginning to
address formalisms, processes, methods, and toatake refactoring more consistent, plan-
able, scaleable, and flexible (Mens & Tourwe, 20@¥y Bennett and Rajlich state in their
roadmap paper, the central research problem isnttality to change software easily and
quickly. Current research issues are being additdsggathering more empirical information
about the nature of software maintenance. The rahmfvunnecessary complexity is sought
through the preservation and management of knowléolgfuture software maintenance and
restructuring of code (Bennett & Rajlich, 2000).

2.3.1 Automated Quality defect diagnosis techniques

Currently, several tools were being developed gluddmatically support parts of the refactor-
ing process. Some of these tools automate thezadialn of refactorings (e.g., “Extract Me-
thod”) — but the detection of places where to appé/refactoring (i.e., quality defects) is still
a manual process. Several techniques were devefopexde clone detection (Bruntink et
al., 2004), obsolete parameters or inappropriaerfaces (Tourwe & Mens, 2003), and the
general processing of source code for of diagrarsisvisualization of code smells (van Em-
den & Moonen, 2002).

While some techniques for the diagnosis of qualéfects are already known (e.g., the “long
method” code smell or several “architectural snidlsthe sotograph tool) techniques for
several other quality defects are currently unknoWms is especially true for quality defects
that are only diagnosable by analyzing severali@essfrom a software repository.

17
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

2.3.2 Quality defect handling methods

In addition, thehandling of quality defects and removal activitieshe lifecycle of a software
product are not well treated in the literature. Egample, the ODC process consists of an
opening and closing process for the defect detedhiat uses information about the target for
further removal activities. Typically, removal agties are executed but changes, decisions,
and experiences are not documented at all — eXoemall informal comments when the
software system is checked into a software repgsito

Software annotation languagesed in source code such as JavaDoc or Doxygebeaip-
plied to document the functionality and structufettee software system at the code level.
They are tailored for the automated generation B Aocuments based on a machine-
readable syntax. The handling of potential qualgfects is not addressed such that accepted
quality defects are not presented over and ovenagal decisions are preserved. Language
extensions or mechanisms for machine-readablengtaf information about symptoms, de-
fects, or treatments (change history) have not lpedfished.

2.4 Software Quality Improvement Techniques

Software Inspectionand especially code inspections, are concernddtive process of ma-
nually inspecting software products in order tafpotential ambiguities, functional, and non-
functional problems (Brykczynski, 1999). While theecific evaluation of code fragments is
probably more precise than automated techniqueseffort for the inspection is higher, the
completeness of an inspection regarding the whates is smaller, and the number of quali-
ty defects looked after is smaller.

Software Testingand debugging is concerned with the diagnosisedéals regarding the
functionality and reliability as defined in a sgezation or unit test case in static and dynamic
environments.

Software product metricare used in software analysis to measure the @xitygl cohesion,
coupling, or other characteristics of the softmareduct that are further analyzed and inter-
preted to estimate the effort of development avaluate the quality of the software product.
Tools for software analysis in existence todayuws®d to monitor dynamic or static aspects of
software systems in order to manually identify ptisd problems in the architecture or
sources for negative effects on the quality (é¢lge, M-System, ZD-MIS, or the Sotograph).
The automated tool-based detection of specific alies) affecting the quality in software
products is relatively rare, to non-existent. Moktthese tools (like Checkstyle, FindBugs,
Hammurapi, or PMD) analyze the source code of sufveystems to find violations against
project-specific programming guidelines, missingogercomplicated expressions, as well as
potential language-specific functional defects og Ipatterns. Nowadays, the Sotograph can
identify architectural smells that are based onricgetegarding size or coupling (Roock &
Lippert, 2006).

2.5 Beyond the State of the Art

Important parts of the work of the VIDE project tdoute to the fields of refactoring, main-
tenance, and quality engineering for model-driveitvgare development. The primary contri-
butions to the practice and theory will be:

» A catalogue of existing and the definition of nesehniques for quality defect diagnosis
(i.e., deliverable D4.2). This includes technigt@sthe extraction, transformation, and in-
tegration of information from VIDE-based modelseiable model-based quality defect
diagnosis techniques.

18
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

A formal model of quality defects on the PIM levbht describes quality defects, their
structure, symptoms, affected qualities, and aasetirefactorings as well as their interre-
lations and dependencies (i.e., this deliverablel®4 The model will be usable to classi-
fy new quality defects, diagnose quality defectsdabon identified symptoms, and to con-
figure an optimal treatment (i.e., refactoring)rpla

Development and evolution of a domain-specific gqualefects model from the generic
model of quality defects for the domain of businasglication.

An extension of the VIDE platform (based on thepsd-IDE) for the analysis of software
models (to de developed in WP9). It will consistsaaglug-in based architecture that is
easily extended and adaptable to other modelinguiages (with respect to VIDE lan-
guage extensions), abstraction layers (e.g., atiwtels in MDSD as the CIM), or ver-
sioning systems.

19
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

3 Description of Research Approach and Methodology

This systematic literature review is based uponftimeworks as described for software en-
gineering by Kitchenham (Kitchenham, 2004), Biotshet al. (Biolchini et al., 2005) and
Mendes et al. (Mendes, 2005) as well as guidelfoesnedical research by White et al.
(White & Schmidt, 2005), Pai et al. (Pai et al.02]) and Khan et al. (Khan et al., 2001). A
systematic literature review is a means of idertgy evaluating, and interpreting all availa-
ble literature relevant to a particular resear@aailhe goal of this review is to systematically
elicit all available literature on quality defe@sd quality defect diagnosis techniques. It was
used to help to reduce the influence of the revisan@vn bias and supports this by deciding
in advance what evidence to use and how to us® ithese decisions are not influenced by
the evidence itself.

Systematic literature reviews play a central roléhie gathering and structuring of scientific
knowledge. As science is a collective and cumutagindeavour, any theory, methodology, or
technology is suspect of validity threats and nigssupported by evidence, as hard as possi-
ble. Moreover, all too often new knowledge, techess; and methods are proposed and intro-
duced, without building on the existing body of wtedge. These problems can be somewhat
alleviated by collecting and structuring the aval#abody of knowledge using the mechanism
of literature review. Systematic literature revieledp to make the implicit theories explicit
by identifying their commonalities and differencaad may even be an impulse for the unifi-
cation of existing theories to induce a new, maeggal theory.

This section describes the design of the systentitdrature review in order to state the un-
derlying goals and make it possible to easily czé or extend this literature review later on.

3.1 Background and General Objectives

This review is targeted to help to improve the aitan for quality defect diagnosis in soft-
ware engineering in several ways. Firstly, as anwda summarize existing literature and
construct an objective and comprehensive overvieautaquality defects, related concepts,
and their diagnosis techniques. Secondly, to dedefeitions of existing quality defect re-
lated concepts and synthesize a consistent andromidefinition of quality defects. Finally,
to identify gaps in the current research and bddgnowledge, this might be used to deter-
mine where future research is needed.

3.2 Review Method

In order to systematically conduct the review wedththe research method on the process as
defined by Barbara Kitchenham (Kitchenham, 2004jer&fore, the following phases were
conducted to realize this literature review:

» Background researchnitial scoping survey to identify the need foreview as well as
search terms for quality defects and their diagnhtesthniques

* Review planningSpecification of the research question(s), regluidata, search terms,
and identification of search engines (i.e., dat&re®s). This resulted into a review proto-
col that is part of this section.

» |dentification of literature Searching for literature in the search enginas @trieving
titles, abstracts, and reference material.

» Selection of literatureReading of literature abstracts, including (iselecting) and ex-
cluding literature, and obtaining full text verssoof the selected literature. Analyzing of

20
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

the references in the obtained literature to ideritirther literature (i.e., repeat this phase
with the new list of literature)

» Quality AssessmenReading the full papers, evaluating appropriadenand identifica-
tion of bias.

+ Data Extraction Extraction of relevant data from the literature.

» Data synthesisStructuring and systematization (descriptive h-goantitative) of the
quality defects and quality defect diagnosis teghes found.

The systematic literature review was conducted fduty 2006 to June 2007 using the tech-
niques described in the following subsections.

3.3 Review Questions

The review question or research aim of a systentisgi@ture review focus on gathering and
interpreting evidence, deciding on the cause afohlpm, predicting a possible outcome, de-
ciding on solutions to apply, or the determinatanpreventive measures. In software engi-
neering additional foci might be added that areceamed with the classification of literature
to a pre-defined model (e.g., as in (Laitenberg602)) or the construction of an ontology as
it is the goal of this review.

The research questions in this systematic litegataview are targeted to support the con-
struction of an ontology about quality defects #éaxchniques for their diagnosis. This review
is focussed to answer tpemary research question

Which quality defects exist and to which extentthey diagnosable via (semi-
) automated techniques in the context of VIDE, (especially behavioral and
data-intense QDs in PIMs based on UML with actiamguages)?

This question does not consists of the componemtslition/diseasédi.e., the type or set of
quality defects),population/systemgi.e., the investigated (type of) systems)terven-
tion/method(i.e., the techniques itself), andtcome/effecti.e., the effect of the intervention
on the condition) as described in (White & Schm&fiD5). The primary question is not very
focused on a specific type of quality defect orgdsis technique (e.g., as iWhat is the
most efficient diagnosis technique to diagnose‘tiomg Method’ code smell in 10k-100k
large object-oriented embedded software syst&nas?here is not enough literature available
(based upon our knowledge from an initial scopimgysy). In order to concretize the primary
guestion followingsecondary research questicaie given:

Which quality defects exists resp. are describethen literature and under
which names are they known? (i.e., identifyingtagsquality defects and re-
lated concepts)

How do the concepts for quality defects differ, indréifacts are affected, and
where are gaps (i.e., missing defect descriptiodiagnosis techniques)?

34 Data Sources and search terms

The search strategypplied included the followindata sourcedor identifying as much as
possible of the relevant literature. The followijogirnals, conferences, and workshops were
investigated from December 2006 back to Januar®:199

21
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

* The conferences and workshops used an informabarce were: International Confe-
rence on Software Engineering (ICSE), Working Coariee on Reverse Engineering
(WCRE), International Conference on Software Maiatece (ICSM), European Confe-
rence on Software Maintenance and Reengineerind®QS Technology of Object-
Oriented Languages and Systems (TOOLS), Europeariefamce on Object-Oriented
Programming (ECOOP), Object-Oriented Programmingtedns, Languages, and Appli-
cations (OOPSLA), eXtreme Programming and AgilecBsses in Software Engineering
(XP), European Software Engineering ConferenceFamahdations of Software Engineer-
ing (ESEC/FSE), Software Metrics Symposium (Me}ti&/mposium On Applied Com-
puting (SAC), Symposium on Software Reliability Emeering (ISSRE), Aspect-Oriented
Software Development (AOSD), Asia-Pacific Softwdagineering Conference (AP-
SEC), International Symposium on Empirical Softwargineering (ISESE), Internation-
al Symposium on Software Testing and Analysis (I8ST

* The journals used as an information source werandactions on Software Engineering
(TSE), IEEE Software (IS), Transactions on Softwkregineering and Methodologies
(TOSEM), Information and Software Technology (ISTQurnal of Systems and Software
(JSS), Software Practice and Experience (SPE)waddt Testing Verification & Relia-
bility (STVR), Software Quality Journal (SQJ), doal of Software Measurement (JSM),
Transactions on Architecture and Code OptimizafiohCO), Automated Software Engi-
neering (ASE), Empirical Software Engineering (ESB)ernational Journal of Software
Engineering and Knowledge Engineering (IJSEKE), @otimg Surveys (CS), ACM,
Software and Systems Modeling (SOSYM), Softwareig®ying Notes (SEN), and the
Journal of Software Maintenance and Evolution (J3ME

Furthermore, the followingearch enginesvere used to browse through several conference
proceedings and journals as well as to find putiioa from other sources. These search en-
gines and the query language mechanics used tohsmathe titles, abstracts, and keywords
are:

» |EEE Xplore The search engine for the literature by IEEE les full text access to the
technical literature in computer science includmgny conferences and journals. Al-
though this search engine is capable to searchitigei full text we only searched in gen-
eral in the appropriate metadata (i.e., documeiat, @bstract, and index terms). In the
case of searching specific journals and conferemeesicluded the full text search. The
query string, e.g., for the search term “code shiedd the form: “((smell<in>metadata)
AND (code<in>metadata))”.

* ACM Digital Library & The Guide This publication search engine by ACM enables the
access to the collection of citations and full te@m journals, conferences, and newsletter
articles published by ACM and other publishersodder to widen the results we searched
in the full text of the publications. The queryirsty, e.g., for the search term “code smell”
had the form "code smell". In special cases wheoenhany papers were found we con-
strained the search to the title and abstract ugiegquery “(title:code title:smell) (ab-
stract:.code abstract:smell)”.

* INSPEC(via “fiz technik”): The access to the INSPEC migraphic library for computer
science by the company fiz technik. As the quetgrpretation is very strict, plurals of
search terms had to be included, e.g., by usindcaitls such as “code smel*”, and the
search was constricted on the title and the sexti@omputers and control” and “Infor-
mation technology” of INSPEC.

* OCLC FirstSearch(incl. WorldCat, ECO, and ArticleFirst): The orgicomputer library
center includes many books, journals, and confe®nthe query string, e.g., for the

22
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

search term “code smell” had the form: “ti:’codeedimOR ti:’code smells™ in the key-
word section (that includes “words from titles, gdb headings, and notes”) .

» Springer Link The search engine for all publications by sprinigeluding conferences,
journals, and the LNCS as well as LNI series. ltheotto widen the results we searched in
the full text of the publications. The query strirggg., for the search term “code smell”
had the form “code smell” stated as a phrase w&ddlvanced search” form.

» DBLP: The digital bibliography & library project by thdniversity of Trier, Germany,
provides access to computer science bibliograpifiesnferences, journal, and individual
persons. The search in this database was condottt titles of the publications using,
e.g., the term “title = "code smell™ (via Advanc&earch) to search for “code smell”.

» Citeseer Another public bibliographic search engine angitdl library like DBLP that is
hosted by the Pennsylvania State University, USA&. Wed the standard search available
that searches in the full text of the indexed pmations. The query string, e.g., for the
search term “code smell” had the form "code sme{tode and smell)".

* Google ScholarThe internet-based search engine for online pattins by Google is
used to diagnose either grey literature or pubboatand tools not listed in the commer-
cial indexing services above. As this search emgsearches in the full text of publica-
tions, additional literature was found that did matiude the search terms in their title, ab-
stract or keyword list. The search term was used sgnple phrase, e.g., “code smell”,
constrained on the section “Engineering, Computggrge, and Mathematics”.

* Amazon.comThe online book store was used to search fovaalebooks using the title
and subject search in the “advanced search” feafuttee books section. A large amount
of irrelevant literature was reduced by focusing search on the category “computers &
internet” and then “programming” or “computer saeh The search term was used as a
simple phrase, e.g., “code smell”.

* A9.com Amazons full text book index was used to seaachrdlevant books and chapters
that included a search term. The search term wed as a simple phrase, e.g., “code
smell”.

* Google Book Searciihe book search engine provided by Google wad aseA9 to find
relevant books and chapters that included a sdaraih The search term was used as a
simple phrase, e.g., “code smell”.

* Google Internet searchlThe global internet search engine by Google wsed o find
technical reports, dissertations, etc. on the materWhile the index of the internet in the
search engine is not complete it is the best fisgarch on the internet. The advanced
search capabilities were used to find full docureentPDF format containing the search
terms by using the query “filetype:pdf +<type> +&swh term>" where “<type>" was re-
placed by the type (e.g., “dissertation”) and “sshaerm>" was replaced by the individ-
ual search term in phrase form (i.e., includingtgtions).

Finally, all relevant references cited in the seddgoublications (i.e., after the step described
in section 3.5) and the publication lists of theéhaus (using the DBLP author search) were
used to find additional literature.

In order to constrain the search only English ditere was included in the review — even
when it was known that, for example, German litgmton this topic was available. We ex-
cluded non-English literature as it is the mairestfic language (i.e., every SE scientist can
understand its content). Nevertheless, to retrievenuch as possible of relevant literature
from these search engines several synonyreeasch termsvere used:

23
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

 The search terms for the retrieval of quality defeslated literature included “code
smell”, “bad smell”, “design flaw”, “antipattern™anti-pattern”, “antipractice”, “anti-
practice”, “antiidiom”, “anti-idiom”, “design heustic”, “design characteristic”, “design
defect”, “pitfall”, “cliché”, “bug pattern”, “defet pattern”, “refactoring opportunity”,
“anomaly”, and “quality defect”. Furthermore, thery similar concepts “code style”,

“coding style”, "code convention”, “coding conveoni’, “code rule”, and “coding rule”
were used.

These terms are based on knowledge acquired dpréwjous unsystematic literature survey
and refined resp. extended during the initial scgurvey of the systematic literature re-
view.

3.5 Literature Selection and Literature Quality Assessnent

The results from the literature collection (i.eeferences to the papers) were then manually
read to identify andelectrelevant literature. Unfortunately, the literature quality defect
diagnosis techniques is not always based on had#mse and, therefore, no further quality
standard (e.g., requiring a controlled experimanndustry) were applied to filter the litera-
ture except that it had to include a quality defelefinition, taxonomy, or diagnosis tech-
nique.

However, much information is available on qualigsarance techniques it has not been easy
to reconcile and consolidate information on quatigfects due to the sheer volume of work
already available. In order to focus and sharperliterature survey wmcludedall literature
matching the abovementioned search terms for gudéfects butexcludedthe following
quality defect related concepts:

* Functional defects (i.e., errors detected by tgstim executable (part of) a system)

» Performance characteristics (i.e., failures to @sscin time or to process a heavy work-
load (e.g., many users) by testing an executalale (b)) a system)

» Specific or non-abstract defects (i.e. specifia pftware system)

» Pitfalls in form of case studies of projects, etc.

* Law, finance, procurement, and marketing relatéf@ls, etc.

» Books with less than 5 pages about a concept, scrided concept (instances)

» Literature solely about refactoring and “indirecgfactoring rationals (i.e., without expli-
cit descriptions of smells or other refactoring ogipnities).

Furthermore, we excluded articles based on theviatlg rules: (a) it takes a considerable
effort (money or time) to get the article and (ljpticate publications will be identified by
cross-checking authors and diagnosis techniquellf#ziras we do not synthesis a quantitative
statement from the literature we do not suspecligatibns to be invalid per se and, therefore,
did not reject grey (non-peer-reviewed) literatsmeh as PhD theses or technical reports.

3.6 Data Extraction

In order to answer the primary and secondary rebequestions, data has to be extracted
from the identified and selected literature. Basgon the recommendations in (White &
Schmidt, 2005) and the research questions we @&ttradollowing data for thquality defect
related literature:

» Reference informatiomhe author names and date of publication.

24
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

* Name for the quality defect concephe term or phrase used to name the quality tefec
(e.g., code smell, bug pattern, or aspect smell).

» Formality of the descriptianThe descriptions of the quality defects will lzagorized in
the three categories informal, semi-formal, ananfar Informal for unstructured plain-
text descriptions, semi-formal for structured batgmtially ambiguous text passages (e.qg.,
sections for name, symptoms, ...), and formal fornupiguous representations (e.g., in
first-order logic).

* Number of quality defects describéithe amount of distinct quality defects descriloed
this publication for a specific artifact type.

» Definition of the quality defect3he definition of the quality defect used in thisblica-
tion.

» List of the quality defect3he names of the quality defects.
» Description of the quality defect§he description of the quality defect.

» Design entity involvedThe design entities involved in the quality deféeg., classes or
inheritance relations).

» Quality affectedThe quality aspect of the artifact influencedtbg quality defects (e.g.,
maintainability of source code or the performanta process).

3.7 Data Synthesis Activities

The objectives of the descriptive or non-quantrasynthesis (Khan et al., 2001) is the col-
lection and unification of the terminology for gitaldefects and quality defect diagnosis
techniques. Key elements of the synthesis are al/piames for quality defects, commonali-
ties of techniques (e.g., used metrics), simiksibf the evaluation contexts, and the results of
the evaluations. The synthesis might indicate theeace of quality defects of a specific type
or diagnosis techniques for specific quality defe¢turthermore, it might demonstrate the
heterogeneity (i.e., variability) or homogeneitye(j similarity) of the diagnosis techniques in
terms of key characteristics, quality of the diagjapor effects.

The characterization of quality defectgas build upon the analysis of the quality defeles
scribed in the literature. First a list of the dint types of quality defects, their definition,
and their (structured) templates were collectedoBe the artifacts the quality defects appear
in, the (potential) quality aspects they affect] #me type of facet of the artifact they describe
(e.g., dynamic behavior) were identified.

The results of this literature survey are presemtale next section.

25
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

4 Quality Defects and Related Concepts

Successful MDA is expected to make the models than rdevelopment artifacts, replacing
today’'s programming languages analogous to the kigly level programming languages
have previously replaced assembly languages (Metlal., 2004). When moving to a com-
pletely model based development approach the guadlithe models from which the applica-
tions are generated becomes very important. Inrdodassist the modeler of a PIM during his
work information about possible threats to the fudin respect to ISO 9126) of the PIM
should be indicated as early as possible. Whilerésearch on intelligent assistance in soft-
ware engineering started in the 18#8e maturity and integration of these techniqselint
gering but demanded by software engineers (Reah, &007).

In this work package quality defects such as agchiral smells, anti-patterns, and design
flaws are investigated explore new quality defeébtg might occur on the model level were
investigated. Quality defects often stem from edgreres made by practitioners and consul-
tants in different software projects, domains, andironments. However, other techniques
for the extraction of these recurring problems tesigh as knowledge discovery in databases
(Rech, 2004) or semi-automated techniques basecmerience factories (Rech & Ras, 2007,
in work).

In VIDE, quality assurance knowledge for platfomnaeépendent models will be researched to
increase their quality and ease the developmentraidtenance of these models. The know-
ledge explored in this work package will be usedé¢welop a module of VIDE in WP 9 that
discovers quality defects from the PIM and anngtétetextual and visual representation Fur-
thermore, it will be used to enrich the visualinatiof the models in order to inform the de-
signers and maintainers about potential threatsadel quality.

While some techniques for the discovery of qualifects in source code are already known,
the discovery of quality defects based on archirattinformation in early development phas-
es, such as design, are not well understood arnl topkirther investigation. With the rise of
MDA the need for high-quality and maintainable s@fte models will increase.

The first section gives an overview of quality dggeand other information discovered by the
systematic literature review. The following sectigii go into more detail and list the quality
defects found grouped into the concepts they weserthed under.

4.1 Overview & Visualization of Concepts

Publications including comprehensive overviews almuality defects as well adassifica-
tions, taxonomies, ontologies, or templadésgjuality defects are very rare. Typically, cifiss
cations are used in books for collections of refangs (Fowler, 1999), code smells (Wake,
2003) (Mantyla et al., 2003), anti-patterns (Broetnal., 1998), design flaws (Riel, 1996a),
design characteristics (Whitmire, 1997), or buggras (Allen, 2002) as well as reengineer-
ing patterns (Demeyer et al., 2003). They all defanoprietary and different formats for the
description of quality defects that are not comgatamong each other and neglect informa-
tion about affected software qualities. There iscomprehensive taxonomy, ontology, or
model that helps to classify and distinguish qualgfects, their symptoms, and treatments in
a uniform way (i.e., similar to the taxonomies ieditine or biology).

Defect classification schemésreimut, 2001) used in software measurement esith such
as ODC are not designed to describe quality defiects formal, consistent, and complete

26
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

way. They are designed to support the defect dontatien and management and help in the
reporting about the software quality, the planrang tailoring of future quality improvement
activities (e.g., test planning), and the initiatiof preventive measures in early development
phases.

4.1.1 Literature corpora overview

During the literature review as described in secBove extracted publications including pre-
defined search-terms from the body of software magying literature. As depicted in Figure 1
we found 560 publications relevant to our topict timeluded either information on quality
defects or their diagnosis techniques. These fgalincluded 61 books, 35 theses, 131 jour-
nal paper, 308 workshop and conference articleselisas 25 reports, chapters, and webpag-
es.

Distribution of Publications
350

308

300

250

200

=
D
e

150

100

Number of Publications

50

Chapters Reports Theses Books Journal Conference
Paper Paper

Figure 1. Literature Type about Quality Defects

From this corpora of knowledge the main sourcegtality defects are books and (PhD) thes-
es. Typically, these publications list groups oélity defects relevant to one abstraction level
(e.g., design, test, or code) or quality aspect,(@erformance antipatterns). However, some
of them make an all around sweep and present guiects on multiple levels (e.g., man-

agement, coding, and reuse pitfalls).

Nevertheless, most quality defects are describfednral and therefore problems arise as it is
not clear how to (best) refactor or treat them. y&tamatic and empirical investigation of
these quality defects — and especially their impadhe software quality — is advised.

The largest groups of publications are, as expegtetkshop and conference papers. As pre-
sented in Figure 2 a more systematic analysis aeseptations of quality defects and their
diagnosis techniques can be found in conferenads &s1 ICSE (International Conference on
Software Engineering), CSMR (European Conferenc&aitware Maintenance and Reengi-
neering), and ESEC/FSE (European Software EngimgeCionference and the ACM SIG-
SOFT Symposium on the Foundations of Software Egging).

27
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
[\i>m>oo§
4 TooLS]
{k'(t’.asrow\ i .
- ";UOI’MSQ;
i/vPPPI 4 T :
i 4 S AOSD | - B N
[WESS 0 CAVIS e p s O FsE - .
1 g) O oesm e ncar Caamas
— " WEOOR L e
ISESE ¢ { Doow & { wopa | (e
;IW];PTP\\ oo ; 7 LT ; H.m,,, i P .
R { REFACE WCRE e) {_IPDPS
\ / a T [sz /‘lL;:CV("S“,
. 7 wese ’ P e
 WOOR A - o i REBSE v 8 A.DAS)"
- o Clems. ‘vwosp\::
T — P
- ¥ "I'C’SR N AnC [ICSE {\ TWoTA ' . METRICS |
y ii L {areco F o —— DASC {1Acas)
. CSMR ! i R e e
A AICA e {RAMSE ¢ peop
e ISSTA T S
e i o/ o ¢ wee {woso
[SIEp ’w SAC ", . — 4 -
- OOPSLA y — M;R A { VISSOFT JoAsar G
N . _d { IMCSE - B
1CPC o
["ES&OM) 3 lCS Y
e el { QAOSE
"’r‘nn;.;ls;»a-; - -
S " CONTI
| e mer e
\"}’ASTH."‘
A;E i 4 Acisc‘)
Figure 2. Conferences with contributions about quality defects

However, the co-publication analysis (i.e., repnése by the lines — the thicker the more au-
thors presented at both conferences) shows thay markshops and conferences are not at-
tended by the same communities. For example, @i and CSMR are both conferences
where many papers are published only few authors papers (related to quality defects or
their diagnosis) on both conferences. But manyastbublishing on the CSMR conference
do publish on CAVIS workshop.

Nevertheless, in all these communities and sub-cemitres many different names are used to
name these groups of quality defects. But are thesalty characteristics that can be used to
differentiate between them? And what types of qualefects are described in the literature?
Under which names are quality defects known andrevbe they differ? We observed that a
common terminology (Naming) could not be found -thau are typically using striking
names for the defects.

In summary, we discovered approx. 800 quality defec these larger collections alone.
While several other publications such as confergragers, reports, etc. additionally list sev-
eral other quality defects that are not describettheése collections this number can be seen as
a first rough estimation. Furthermore, some qualéfects described in one collection reoccur
in other collections under different names.

4.1.2 Available Information Structures for Quality Defects

Most larger collections of quality defects suchaasipatterns, pitfalls, code smells, etc. use a
semi-structured template to present the individuallity defects. The Information encoded in
these structures has to be used to decide upappilieability of these quality defects in our

28
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

given context (i.e., if they satisfy the given erit). The core criteria for the identified quality
defects wereystem-independencei.e., the described problem have to be indepdnidem
the specific software system and its requirements.

Table 2 lists and compares the existing templatedits used for different quality defects in
larger collections. As values for the criter®™ was used to denote that a special slot exists
in the template and the content satisfies the rements. The ©” symbol was used to de-
note that a slot does exists but the informationassufficient for the requirements an@™
means that a slot does not exist, the informasamot sufficient for the requirements, but the
information is available in more than half of thefetts. Finally, the symbol “-* denotes that
information is not or only sparely available (lesan half of the defects). In this comparison
the following attributes and criteria were used:

* Formality : Captures the degree of formality the templatecaeth to.Informal templates
refer to single free-text blocks were quality dédeare described solely in prose. If the
quality defect description is partitioned into selesection with a specific focus (e.g.,
causes, treatments, forces, etc.) they are cleg@saisemi-formal Formal representations
allow reasoning by machines and are fully unamhiguge.g., by using OWL or first-
order predicate logic).

* Name A clear and precise name that communicates thielggn and is based on a struc-
tured taxonomy (i.e., similar problem should be adnm a similar way).

» Description: A unambiguous description of the core problenvent¢ually split in several
more specific sections (e.g., “anecdotal evidence”)

» Interrelation : Captures if relations to other defects are dbsdri
» Causes Captures if the causes for the quality defeaseaplained or referenced.

* Treatment: Captures if direct treatments (e.g., refactonrg® described to remove or
attenuate the defect.

» Effects: Captures if effects of the defects on the qualdigects are covered.

» Symptoms Captures if identifiable characteristics (e.ggtnts) are stated that can be
used in the diagnosis.

» Diagnosis Captures if techniques, thresholds or other me#was support the automated
diagnosis, are given.

» Indication: Captures if techniques or guidelines are giveddade on the treatment in a
given context.

* RCA: Captures if techniques are stated to identifmalyze the root causes of this de-
fect.

» Contra-diagnosis Captures if information is given to decide or e if the diagnosis is
applicable in a specific situation.

* Preventions Captures if techniques or guidelines are giverptevent this defect to
emerge.

* Principle: Captures if the underlying principle (or antispriple) is stated that caused the
defect.

29
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1

Date: 09 August 2007

Table 2.

Information Content of QD templates used in larger collections

Fowler, Kerievsky lirermed ol e _ _ o _ . _ e) _ . -

é Wake Semiformal ([0 | ® | - (@ (@ (0|0 |O| - |- |0 -

@ Rook & Lippert lirermed ol e _ _ _ _ ol o . _ - -

2 Brown Semiformal |0 |® | - |®@|0 |0 |0 |O| - | - |0 -

*;i Dudney Semiformal [0 |®@ | - |@e|®@|o0|o|O| - |- |0 -

;é Ll Semiformal | © | @ | - |0 |0 |0 |0 | - | - | - | - -
Riel Informal o| e | - - o[- -1 O - - - = =

8 Sl Informal o/e|le| - |O0|-|-(-]0|-|-|-1]0

{2}

E Grotehen Semiformal | © | ® | ® ole ° oo -
Al Informal @l =1=1=01=0l=1<1=1=1=1=1-=1-:=

@ RIS Semi-formal | O | @ | - -|lo|lOo0|0O0| O] - - - O -

o)

'E Daconta Informal o | @ - - @) - - - - - - = =
Marinescu (Flaws) cemiteinal Bol Re _ _ _ Ol @ | @ _ _ - -
'(\’F"'l";wg)scu Lanza \semiformal |0 | @ | O | - |0 |Oo|O| @ | - | - | - -
Q:ﬁg)(Bug Pat Semi-formal | O | @ - o | O - o - - - - o -
Bloch (Puzzles) lireried ol e _ _ e _ 0] _ _ _ _ - _
Johnson & Foote liraried ol e | - .ol - lolo]| - - . - .
(Rules)

g Robbins (Critics) |samiformal | © | @ | - | - ool o | e | - | - | - | - | -
-(FBESS:/ 'é?i%?s) Semi-formal | O | ® | - | - | - O O | - | - | - | - | - | -
;2?;3:? (Design Informal o o - - - = = = = - - - -
\S/i;‘;’]‘g?;?nggeing Informal o e - - - = = = = - - - -
Hawkins (llinesses) Semiformal | 0 | ® | © _ o _ o _ _ _ _ (o) _
I(_'I?t:?:szh%Iszi(;d Semiformal| - | - O -9 (% ° ¢

As we can see most quality defects are describesemi-formal templates with varying
grades of information content. True formal temadee currently not developed.

The classifications described in this section canubed on all discovered quality defects.
However, a comprehensive classification that gatiséll previously stated criteria is still
missing.

30
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

4.1.3 Comments to the following collection

The literature survey was used to extract dataeasribed in section 3.6 that can be used to
identify Quality Defects. In order to reduce theiéable information the following require-
ments were applied to filter the information stafledthe quality defects. These requirements,
stated in decreasing priority, are:

6. The quality defects should be applicable on the Nl in MDSD.

7. The quality defects should have a relation to datinse software systems.
8. The quality defects should focus on behavioral eispef the system.
9.

The quality defects should be visualizable in aglgin(local) diagram (i.e., no multi-
diagram or distributed defects such as the codd $8tetgun Surgery”)

In the following lists of quality defects we wiledote the individual defect with @ if it is
fully applicable, with a ©” if it is partial applicable, with ©” if it is irrelevant or counter-
productive (e.g., multi-location defects).

The final selection of quality defects that areyéed with diagnosis techniques (in D4.2) and
that build the basis for the diagnosis tools (in9)Bre described in section 6. Furthermore
the following information is included within thebias:

* Name The original name of the quality defect as déwsatiin the source or a new name
based on the description.

* Type of Quality Defect A rough classification of the quality defectsarstructural (Sys-
tem composition), semantical (Name/ldentifier basééhavioral (Control flow / state-
ment based), historic (System evolution based, @sgng CVS, SVN, ...), communicative
(Message based), or layout (diagram based) qudditgcts. The type describes the main
source of information that can be used to diagtiesgroblem (rule-based, not necessari-
ly statistical).

» Design Entities involved Larger entities involved in the quality defecadditionally the
required information from the main source of infation such as classes, methods, para-
meters (method), attributes (class), notes, stater(enethod body), versions, calls (me-
thod body or associations), etc.. The design estitio also indicate the information re-
quired to diagnose the quality defects.

» Quality Aspects affected Only top level aspects from ISO 9126 are usednetionality,
reliability, usability, efficiency, maintainabilityand portability. Additionally, the aspects
compilability and conformance are used. As no eitglidata is available to support the
effects a concretization to sub-characteristickS@ 9126 (or another quality framework)
was not pursued.

» Description: Short explanation of the problem.

Most of the 43 concepts are used by more than ot®iaand comprises of several individual
problems. This report summarizes information on2Beconcepts that are used in more than
one publication or that comprises of more thanneividual quality defects.

However, there are 21 more concepts that are aithedl only by very few authors or com-
prises of very few problems and several terms ssctdesign problem”, “design error”, “de-
sign fault”, “design failure”, “design malfunction"design degradation”, or “design deficien-
cy” were to general and did not result in any infation on quality defect collections. The
following list of concepts include term that aréenof used but are a) rarely used (i.e., only by
one author), b) do not have many quality defeatg) @re on another level than software de-

sign or architecture (e.g., requirements analysis):

31
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

» Refactoring candidates(Kataoka et al., 2001) drefactoring Opportunities (Melton &
Tempero, 2006(Tourwé & Mens, 2003are synonyms to smells and are associated with
one or more specific refactorings.

» Design Disharmoniesis a concept used as an umbrella term similaresigth flaws
(Marinescu & Lanza, 2006)

» Design Pattern Defectsare used to describe recurring errors in the desica software
that come from the absence or the bad use of desiterns. (Moha et al., 2005)

» Design mistakess used rarely for development level problems k&ec2000a, 2000b)

» Dysfunctional patterns or bad patterns are a kind of anti-patterns, however, they repre-
sent “good” software patterns that are applied iwrang context (Buschmann et al.,
2007)

» Errors and other quality defects with a focus oougéy are also described &&ilner-
abilities (e.g., used in (Livshits & Lam, 2005))

» Puzzlers are also describedTaaps, Pitfalls, andCorner-Cases(Bloch & Gafter, 2005)

* The concepftallacies is used to describe worst-practices (i.e., artiepas) in the soft-
ware engineering discipline but not on the levetaiirce code or models (Glass, 2003)

» The medicine-based tersoftware cancerwas used to describe problems on the man-
agement level (Boundy, 1993)

» Clichés (e.g., standard algorithmic fragments or code @t — such as searching algo-
rithms, sorting algorithms, various data structdoesepresenting sets, etc.) were used in
knowledge-based software development environmenatdrs, 1994). In general, they
can be seen as a kind of precursors to softwaterpat

* Pratfalls is a term sometimes used in conjunction with pefgWooldridge & Jennings,
1999)

* The concept DesigRroblem is used by (Munro, 2005) for problems similar neeis and
flaws.

» Bad design decisionss used in conjunction with smells — especiallthiése decisions do
occur in multiple systems.

* The termAnti-idioms is used for problems such as “NotWithin” (Schmidene2004) or
“DoubleCheckedLockinglsBroken” (c2.com).

* Anti-practices are basically process-oriented antipatterns (Kukie& Hiranabe, 2004)
* Inconsistenciess also a term used in conjunction with Rulesi et al., 2002)

e OOD Criteria (Coad & Edward, 1993) and OO Goodness Criteriau(don, 1993) are
used for general guidelines such as minimize cagplinaximize cohesion, etc.

» Before design patterns became a hype and kindaatiatdized Tom Love used the con-
cept OOD patterns” (Love, 1991) (Yourdon, 1993) (page 310) such @bjécts should
not access data defined in their superclasses”

Furthermore, several quality defects we found dé&qym-specific problems that appear on
the first impression as irrelevant to the platfandependent level. However, as models on
the PIM level are going to be transformed to thMR&vel these problems should be taken
into consideration either while modeling the PIMimthe development of PIM to PSM trans-
formers. Being system-independent the consideraifotihese problems in general-purpose
transformers or quality-checking transformers (o@. the PSM level) seems better in order to
not overload the PIM level (that should not consaléplatform-specific quality defects, e.qg.,

32
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

for Ada or Cobol). Therefore, we integrated platiespecific quality defect concepts in this
report but did not describe every single defect.

Additionally, every missing design or architectupaktern (or style) might be described as an
“Absence of <Pattern>" quality defect (e.g., “Abserof Strategy” or “Absence of MVC”).
While some of these problems are describe underconeept or another a comprehensive
collection of all of the two thousand (Booch, 20@rghitecture and design patterns is still
missing (and would require techniques for the idieation of design pattern candidates in a
given context).

4.2 Ageing Symptoms

The concept “ageing symptoms” was used by Guiseysagio (Visaggio, 2001) to
represent problems of a software system duringutdution (i.e., aging). In general, ageing
symptoms are problems that are associated witroongore metric (i.e., concrete symptom)
in order to identify points during the monitoringhere the system starts to degrade. In the
literature they are defined as follows:

* “Each [aging symtom] is specified by metrics ané tiesults of the measurements made
suggest what operations should be undertaken tewehe software’(Visaggio, 2001)

In the following sections we will list most of theesgeing symptoms that were found in the
literature survey. The first large collection ofeaitgy symptoms were collected by Guiseppe

Vissagio (Visaggio, 2001).

Table 3.

Ageing symptoms by (Visaggio, 2001)

© Copyright by VIDE Consortium

Pollution Dynamic, |Calls Maintainability |Parts of the software system do not |©O o
Structural serve to realize functionality exploited
by the users.
Duplicate programs [Semantic [Methods, Maintainability,|ldentical source code ([] (@)
Statements |Reliability
Obsolete programs. |Structure [Build Info, Maintainability |Programs that have source code but | O []
Calls no corresponding executable.
Sourceless pro- Structure |Build Info, Maintainability |[Executable programs that have no (@) (@)
grams. Calls source code associated.
Useless compo- Data Data Access |Maintainability |Component produces or modifies ([] ([]
nents. useless reports (i.e., data, files, ...)
Dead data. Data Data Access, [Maintainability |Variables created but not used by ([] ([]
Attributes any component.
Dead code. Control |Statements, |Maintainability |Statements that cannot be reached |® [
Calls by the control flow.
Embedded know- [Semantic [Methods, Maintainability [Knowledge about the system and ([] (@)
ledge Statements, domain is spread over the whole
Names system
Incomprehensible [Semantic |Docu, Maintainability |Variables or modules whose meaning| @ (@)
data and modules. Names cannot be understood from the do-
cumentation.
Missing capacities. |Structure |Functionality, [Maintainability [Functionality that cannot be precisely | ® (@)
Methods localized in the software components
Poor lexicon Semantic [Names Maintainability |The name has only little lexical [] []
meaning or does not communicate
33

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

the real meaning/intent.
Inconsistent data Semantic [Names Maintainability [Data or modules whose name does ([]
and module names. not express their meaning.
Coupling Structure, |Calls, Inhe- |Maintainability |Parts are linked by an extensive []
Control |ritance network of data or control flows.
Pathological files. [Structure |Data Access |Maintainability |Files created or modifies by different o
programs
Control data. Structure |Statements, |Maintainability |Data that create communication (o]
Data Access among components
Module complexity. [Structure |Statements |Maintainability |Complexity by too many (algorithmic ([]
or procedural) if-statements
Layered architec- |Structure |Architecture, [Maintainability |Architecture consists of different o
tures Calls solutions that can no longer be sepa-
rated
Useless Files. Data Statements, |Maintainability A file not used or used by an useless o
Data Access program
Obsolete files. Data Statements, |Maintainability [The software uses a file but does not o
Data Access create new records.
Temporary files. Data Statements, |Maintainability [A temporary file is created, read but o
Data Access not updated and deleted by the sys-
tem.
Permanent files. Data Statements, |Maintainability (A file that is created, used, modified o
Data Access but not cancelled (i.e., deleted)
Anomalous files. Data Statements, |Maintainability [The records of the file are not created o
Data Access but read, modified, and cancelled.
Semantic redundant |Semantic [Names Maintainability |Variables or data with synonymous (@)
data. meaning or a “parent-child” inclusion
Computational re- |Data Data Access |Maintainability [Datum A can be calculated using O
dundant data. other, available data (e.g. A = f(B,C))
Structure data. Data Data Maintainability |Data has no connection to the do- (@)
main but supports the DB structure
(e.g., checksums)
Superimposed data |Data Statements, |Maintainability [Data structures that share the same (@)
structure. Data Access address space
4.3 Anomalies

A concept that origin from a general term is thediamaly” concept. The term was used in a
IEEE standard (IEEE-1044, 1995) to describe anaaffatts in a software system. Further-
more, the term is often used to describe unspesiifi@tions in a software analysis (e.g., out-
lier). However, the term was additionally used iany other publications to describe concrete
system-independent problems. These anomalies egpirpsoblematic parts of the software

system that seem wrong, complicated, or cumberdoraa experienced developer. In gener-
al, anomalies are problems that are associated am¢ghor more specific refactorings (i.e.,

concrete treatments) that might be applied to rertbe anomalies. In the literature they are
defined as follows:

* “An anomaly is any condition that departs from theected.” (IEEE-1044, 1995)
» “[anomalies are] properties inherent in implausibeograms”(Kasyanov, 2001)

34
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
e “... anomalies which are symptomatic of programmingrs”’ (Taylor & Osterwell,
1980)

Beside the anomalies on the code or design levats/mather problems were described using
the anomaly metaphor. Today, we have anomaliesiftereht abstraction layers, for devel-
opment phases, or technologies such as concuotwniase (Taylor & Osterweil, 1980), dis-
tributed systems (Cheung & Kramer, 1993), or krenlgk bases (Baumeister et al., 2004).

In the following sections we will list most of theeanomalies that were found in the literature

survey. The first large collection of anomalies &veollected by Kasyanov:

Table 4.

Anomalies by (Kasyanov, 2001)

Non-initialized va- [Control |Statements |Maintainability,|An "information incomplete" execu-

riables. Reliability tion, having the property that the
value of a variable is referred to be-
fore any assignment to that variable.

Infinite execution. [Control [Statements |Maintainability,|A program is unable to pass through

Reliability some of its points in its finite execu-
tions.

Useless objects. Control [Statements |Maintainability |A variable (or procedure, mode and
so on) has an explicit declaration but
no uses, or a statement belongs to
none of the program executions.

Redundant actions [Control [Statements |Maintainability,|A given program contains a state-

Reliability ment that does not affect the results
of all program executions.

Nonnatural con- Control |Statements |Maintainability |Some language construction used in

structions a given program is more universal
and/or complicated than the program
actions represented by this construc-
tion.

Conflicting execu- |Control |[Statements |Maintainability,| Results of some collaterally eva-

tions Reliability luated fragments can depend on the
way in which their evaluations are
merged.

Semantically inad- |Control [Statements [Maintainability,|An execution in which an index does

missible or unde- Reliability not lie within the bounds of an array,

fined constructions illegal recursion, illegal side-effects,
etc.

Absolute implausi- [Control |Statements |Maintainability,|A program is called an absolutely

bility Reliability, implausible one if it has only mea-

Functionality |ningless executions (i.e. it has no
executions without anomalies).

Table 5.

Referencing an
uninitialized varia-
ble.

Control

Attributes,

Statements

Maintainability,
Reliability

Concurrent Anomalies by (Taylor & Osterweil, 1980)

An execution during which an event
sequence of the form “purp” (arbitrary
Program, Undefine, Reference, arbi-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1

Date: 09 August 2007

trary Program) for some program
variable.

A dead definition of |Control |Attributes, Maintainability,|An execution during which an event

a variable. Statements (Efficiency sequence the form “pddp” (arbitrary
Program, Define, Define, arbitrary
Program) for some variable.

Waiting for an un- (Control |Attributes, Maintainability,| This anomaly is represented by the

scheduled process. Statements |Efficiency, event expression “puwp” (arbitrary

Reliability Program, Undefine, Wait, arbitrary

Program)

Scheduling a Control |Attributes, Maintainability,| This anomaly is represented by the

process in parallel Statements |Efficiency, event expression "pssp” (arbitrary

with itself. Reliability Program, Schedule event, Schedule
event, arbitrary Program)

Waiting for a Control |Attributes, Maintainability,| The expression “pwwp” (arbitrary

process guaranteed Statements |Efficiency Program, Wait, Wait, arbitrary Pro-

to have previously gram) is symptomatic of this condi-

terminated. tion.

Referencing a vari- |Control |Attributes, Maintainability,|For some variable both the event

able which is being Statements |Reliability sequence “psordp” (P, S, Reference,

defined by a parallel Define, P) and the event sequence

process. “psodrp” (P, S, Define, Reference, P)
are possible.

Referencing a vari- (Control |Attributes, Maintainability,| There exists a wait wp and two sepa-

able whose value is Statements (Reliability rate definition points for a given vari-

indeterminate. able, d; and dy, such that both the
event expressions “pdidawor” and
"pd2diwor" are possible.

4.4

Anti-guidelines

Corrupt guidelines were used by Roedy Green irebgay “How To Write Unmaintainable

Code" to describe how (not) to write good code @arel996). We call the guidelines for un-
maintainable code simply “anti-guidelines”. Thesé-guidelines represent problematic nam-
ing, comments, etc. in the software system thataséeading, wrong, complicated, or cum-
bersome to a developer or maintainer. In the liteeathey are defined as follows:

» “[anti-guidelines are] tips ... on how to write codbat is so difficult to maintain ...
(Green, 1996)

As many of these anti-guidelines are similar (baming problems) or platform-specific only
an excerpt of the 193 documented anti-guidelinegdSireen, 1996) is given in the following
table:

Table 6.

Anti-Guidelines for Unmaintainable Code by (Green, 1996)

A.C.R.O.N.Y.M.S. [Semantic [Names Maintainability (Use acronyms to keep the code
terse. Real men never define acro-

nyms; they understand them geneti-

36
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

cally.
Reuse Names Semantic [Names Maintainability |Wherever the rules of the language |®|O|O | ®
permit, give classes, constructors,
methods, member variables, parame-
ters and local variables the same
names.
Recycle Your Va- |Semantic [Names Maintainability Wherever scope rules permit, reuse |® O (O |®
riables existing unrelated variable names.
Code That Masque- [Semantic |Names Maintainability |Include sections of code that is com- |® O |O | @®
rades As Comments mented out but at first glance does
and Vice Versa not appear to be.
Code Names Must |Semantic [Names Maintainability |Choose your variable names to have |® O |O | ®
Not Match Screen absolutely no relation to the labels
Names used when such variables are dis-
played on the screen.
Document How Not |Semantic [Names Maintainability |[Document only the details of whata |®|O|O | @
Why program does, not what it is attempt-
ing to accomplish.

4.5 Anti-patterns

In the nineties of the last century a new conceg Wwansferred from architecture to computer
science that helped to represent typical and redogupatterns of good and bad software
architectures. These design patterns (Gamma €it9%l4) were the start of the description of
many patterns in diverse software phases and ptadloday, we have thousands of patterns
(Rising, 2000) for additional topics such as sofsvaeuse (Long, 2001), agile software
projects (Andrea et al., 2002) or pedagogiesp(//www.pedagogicalpatterns.oydg/Abreu,
1997; Fincher & Utting, 2002). Many other patteans stored in pattern repositories such as
the Portland pattern repository (PPR, 2005) oiilieide pattern library (HPL, 2005) and are
continuously expanded over conferences such as RB@tkern Languages of Programming;
seehttp://hillside.net/conferencgs/

The concept of patterns is used to describe thereqre and knowledge that was acquired
during projects and have been proven beneficial.

Contrary to (design) patterns, anti-patterns (Brawml., 1998) are descriptions of problems
that commonly occur in software products, processes projects. Similar to patterns these
anti-patterns are described semi-formal based ereint templates (Brown et al., 1998) that
consist of informal textual or graphical descripgo However, while patterns typically state
and emphasize a single solution to multiple prolsleamti-patterns typically state and em-
phasize a single problem that has potentially ipl@tsolutions. In the literature they are de-
fined as follows:

* “An Antipattern is a literary form that describes @mmonly occurring solution to a
problem that generates decidedly negative consegsgiiBrown et al., 1998)

* “Antipatterns identify common mistakeahd“An Antipattern is defined as a ‘commonly
occuring solution to a problem that generates dedigl negative consequencegBrown
et al., 1999)

* "An 'antipattern’ is similar to a pattern excepatht is an obvious but wrong solution to a
problem."(Long, 2001)

37
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

e “... antipatterns describe solutions that have moegative consequences than positive
benefits.” (Laplante & Neill, 2006)

* "An antipattern is a repeated application of codedesign that leads to a bad outcome™
(Dudney et al., 2002)

* "Anti-patterns, also called pitfalls, are classescommonly-reinvented bad solutions to
problems. They are studied as a category so theybeaavoided in the future, and so in-
stances of them may be recognized when investigatin-working systems(Wikipedia,
http://en.wikipedia.org/wiki/Antipattein

* "An AntiPattern is a pattern that tells how to gorh a problem to a bad solution(Wi-
kiWikiWeb, http://c2.com/cqgi/wiki? AntiPatte)n

In summary antipatterns are "bad", "negative",worst practices" that describe one problem
with potentially many solutions and patterns areddj, "positive”, or "best practices" that
describe one solution with potentially many proldem

In the following sections we will list most of treeanti-patterns that were found in the litera-
ture survey. The first large collection of antifeans were collected by William J. Brown,
Raphael C. Malveau, Hays W. “Skip McCormick lll,damhomas J. Mowbray (Brown et al.,
1998).

Table 7.

Antipatterns by (Brown et al., 1998)

position

Associations

Portability

The Blob (God Structural |Classes, Maintainability,|Classes with too many functionality |®|O|O|@®
Class) Associations |Portability and associations to other classes.
Lava Flow Structural,|Classes, Maintainability,|Old or dead code of deprecated or
Control |Statements, |Portability speculative features.
Associations
Functional Decom- |Structural |Classes, Maintainability,|[Non-OO design is coded in OO lan-

guage — e.g., by using only one me-
thod in a class.

Poltergeists Control, |Classes, Maintainability,|Classes have very limited roles and
Dynamic |Statements, |Portability life cycles — often starting processes
Associations for other objects.
Spaghetti code Structural,|Classes, Maintainability,|Classes call many other classes and
Control |Methods, Reliability the coupling between classes is high.
Calls The control flow is jumping through
too many classes without clear
boundaries.
Cut & Paste Pro- Semantic, |Methods, Maintainability,| Code reuse by copying source
gramming Control |Statements |Reliability statements.
Stovepipe system [Structural,|Packages, |Maintainability |Many different solutions and absence
Control |Classes, of abstractions (e.g., large packages,
Statements no layers, etc.)

Furthermore, many anti-patterns were described2&E, EJB, or Java. As these anti-patterns
are platform-specific only an excerpt of the 52 woented J2EE anti-patterns in (Dudney et
al., 2002), the XX EJB anti-patterns in (Tate et aD03), or the XX Java and J2EE anti-

patterns in (Tate, 2002) are given in the followiables:

38
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Table 8.

Antipatterns by (Dudney et al., 2002)

Localizing Data Structure |Classes, Portability Data is stored and handled in only o
Statements one location by one element.
Multiservice Structure |Classes, Maintainability |A service (e.g., class or component) ([]
Methods, with a large number of public inter-
Interfaces faces (resp. responsibilities)
Tiny Service Structure |Classes, Maintainability,|A service that only implements a []
Methods, Efficiency subset of the necessary functionality
Interfaces — resulting in the need to use multiple
services for one task.
Too much Code Control |Classes, Maintainability, Too much code ended up in the JSP o
Methods Portability (or GUI representation).
Sessions A-Plenty |Control [Classes, Maintainability,|Using sessions for problems that []
Methods Portability don’t need them
Bloated Session Structure |Classes, Maintainability |A large Session Bean that imple- []
Methods, ments too many different abstrac-
Interfaces tions.
Large Transaction |Structure |Methods Maintainability,|A transactional session method that L
Efficiency implements a long, complicated
process and involves a lot of re-
sources.
Transparent Fagade |Structure, |Classes, Maintainability |A facade that directly matches the ([]
Semantic |Methods, underlying component — not a coars-
Interfaces er-grained interaction.

Table 9.

Java Antipatterns by (Tate, 2002)

© Copyright by VIDE Consortium

Too many web page |Structure, |JSP, HTML |Efficiency Loading too many large items such o
items Control [page as graphics.
Excessive Layering [Structure |Classes, Maintainability |Far too many layers of abstraction — o
Inheritance, e.g., of services or inheritance.
Layers
Magic Servlet Structure |Classes, Maintainability |A servlet that does all or most of the L]
Methods, work itself.
Interfaces
Monolithic JSP Structure |Classes, Maintainability |A JSP that shows the absence of o
Calls, State- model-view-controller separation.
ments
The Cachless Cow |Control, |Statements |Efficiency Content is very often reloaded with- (o]
Dynamic out using a cache
Lapsed Listeners Control |Statements |Efficiency, An event listener is registered without ([]
Leak Reliability being removed.
The Leak Collection |Control |Statements |Efficiency A collection keeps references to []
objects that will not be used any-
more, until the collection is destroyed
late in the lifecycle.
Connection Thrash- |Control |Statements |Efficiency Connections to databases are conti- o
ing nuously created and destroyed.
39

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Table 10.

EJB Antipatterns by (Tate et al., 2003)

Local & Remote Structure |Classes, Maintainability |A class that supports both localand |® O (O |®
Interfaces Methods, remote interfaces.
Interfaces
Swallowing Excep- |[Structure, |Classes, Maintainability,| Exceptions are not handled butonly |® O |O|@®
tions Semantic |Methods, Reliability logged
Exceptions

Narrow Servlet Structure |Servlets, Maintainability | Too many Bridges for the servlets 0|0 O|@®
Bridges Bridges
Fat Message Structure, |Classes, Efficiency The same message type is used for |®|O O | @®

Control |Statements all situations.
Skinny Message Structure, |Classes, Efficiency Messages that don’t contain enough |® (O |O | @

Control |Statements information and require the reload of

additional information.

Monolithic Consum- |Structure, |Classes, Maintainability |Inlining business logic in classes that |0 |O (O | @
er Control |Statements consumes a message.
Hot Potato Control, |Classes, Efficiency A message is tossed back and forth —| ® | O |O | @

Dynamic |Statements sometimes because it was not ac-

knowledged.
Face Off Structure |[Beans, Calls |Maintainability,|A client is directly accessing entity (- REORN BN J
Reliability beans.

Hallal et al. have catalogued 38 anti-patterns thkdte to multithreading, concurrency, and
synchronization in Java. As they have not providadextensive description of these anti-

patterns we list only a subset described in thanep:

Table 11.

Multithread Antipatterns by (Hallal et al., 2004)

© Copyright by VIDE Consortium

Synchronized me- |Control Classes, Efficiency, Synchronized methods call each @ |O|® | O
thod call in cycle of Methods, Reliability other (in a loop).
lock graph. Statements
Unsynchronized Control Classes, Efficiency, An unsynchronized loop, whose (@ (O |@® @
spin-wait. Methods, Reliability exit condition is controlled by
Statements another thread - resulting in the
exhaustive use of resources
(CPU) and thread stalls.
Non synchronized |Control Classes, Reliability Different threads are started for |® O |@®|O
run() method. Methods, an unsynchronized object that
Statements implements the Runnable inter-
face.
Internal call of a Control Classes, Efficiency, One thread gets the monitor e O@® 0
method. Methods, Reliability (lock) several times in a nested
Statements way.
wait() is not in loop. |Control Statements |Reliability wait() is used without a loop — but| ® |O (@ | @
the condition might already have
changed.
Double call of the |Control Classes, Efficiency, The start() method call is used [JNOAN AN J
start() method of a Methods, Reliability more than once for the same
thread. Statements thread.
40

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Table 12. Performance Antipatterns by (Parsons & Murphy, 2004a, 2004b)

Too Many Remote |Structure, |EJB Beans |Efficiency Loading too many large items such |0 (O |O | O
Calls Control as graphics or data from remote

places (e.g., using getter methods).
Aggressive Loading |Structure, |EJB Beans |Efficiency The loading of an instance ofasin- |0 (O[O |®
of Entities Control gle entity bean may result in the

loading of numerous entity beans

from the database, producing a large

entity bean graph.

Smith and Williams (Smith & Williams, 2001, 2002)@38) describe and list several perform-
ance antipatterns. However, as some of them ateaaband not applicable on the architec-
ture and design level only an excerpt is listedable 13.

Table 13. Performance Antipatterns by (Smith & Williams, 2001, 2002, 2003)

Empty Semi Trucks |Structure, |Classes, Efficiency, Occurs when an excessive number of| O | O | O | @
Control [Statements |Reliability requests is required to perform a
task.
Roundtripping Structure, |Classes, Efficiency, Many fields in a user interface must |0 |O O | @
Control [Statements |Reliability be retrieved from a remote system.
Sisyphus Database |Structure, |Classes, Efficiency, Special case of The Ramp. Occurs (0|0 |O|®
Retrieval Control |[Statements |Reliability when performing repeated queries
that need only a subset of the results.
More is Less Control, |[Classes, Efficiency, Too many processes relative to clo|o|@
Dynamic |Statements |Reliability available resources.
“god” Class Structural |Classes, Efficiency Occurs when a single class either 1) |® (O |O | ®
Attributes, performs all of the work of an applica-
Associations tion or 2) holds all of the application’s

data. Either manifestation results in
excessive message traffic that can
degrade performance.

Excessive Dynamic |Control, [Classes, Efficiency Occurs when an application unnec- |00 |O | @®
Allocation Dynamic |Statements essarily creates and destroys large
numbers of objects during its execu-
tion. The overhead required to create
and destroy these objects has a
negative impact on performance.

Circuitous Treasure |Control, |Classes, Efficiency Occurs when an object must lookin |0 (O |O|®
Hunt Dynamic |Statements several places to find the information
that it needs. If a large amount of
processing is required for each “look,”
performance will suffer.

Finally, larger collections such as Reuse Antipatdy (Long, 2001) or Managerial Antipat-
terns by (Laplante & Neill, 2006) are too geneoahpply to the architecture or design level.

41
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

4.6 Bug Patterns

The concept “bug pattern” was coined by Eric Alierthe Book “Bug Patterns in Java” (Al-
len, 2002). These patterns represent problematits pd the software system that seem
wrong, complicated, or cumbersome to an experiedegéloper. In general, bug patterns are
problems that are associated with one or more fpeefactorings (i.e., concrete treatments)
that might be applied to remove the patterns. dénliterature they are defined as follows:

» “[bug patterns are] recurring relationships betwesignaled errors and underlying bugs
in a program” (Allen, 2002)

* “A bug pattern is an abstraction of a recurring bug other words, a bug pattern is a
literary form that describes a commonly occurringoe in the implementation of the
software design.” (Farchi et al., 2003)

* “Bug patterns are code idioms that are often est6(D. H. Hovemeyer, 2005)

The concept of bug patterns is used to describexperience and knowledge that was ac-
quired by experts and have been proven beneficial.

Beside the bug patterns on the code or designdewmahy other problems were described us-
ing this metaphor. Today, we have bug patternsifferent abstraction layers, for develop-
ment phases, or technologies such as concurrenpatigrns (Farchi et al., 2003), multi-
threaded systems (Copty & Shmuel, 2005), performdng patterns (Galvans, 2006), or bug
patterns in general java systems (D. H. Hoveme@)5).

In the following sections we will list most of theebug patterns that were found in the litera-
ture survey. The first large collection of bug pats were collected by Eric Allen (Allen,
2002).

Table 14. Bug Patterns by (Allen, 2002)

The Rogue Tile Semantic |Methods, Maintainability,|Bug seems to be fixed, but copy and |® | O | @ | O
Statements (Reliability paste spread it all over the sources --
Use type system inheritance, not the
copy and paste derivate.

The Dangling Com- |Control |Statements |Reliability Code that uses a recursively defined (O[O | @® | ®
posite data type is signaling a NullPointe-

rException.
The Null Flag Control |Statements |Reliability A code block that uses null pointers 0O | @ | @

as flags for exceptional conditions
signals a NullPointerException.

The Double Descent|Control [Statements [Reliability A ClassCastException is thrown ® O|l® e
during recursion -- make only one
recurrent step at a time, check your
invariants.

The Liar View Control |Statements |Reliability A GUI program passes a suite of 0|0|0|0
tests, but then exhibits behaviour that
should’ve been ruled out by those
tests.

Saboteur Data Control [Statements |Reliability Input data in an invalid format crash- |0 |O | O | @®
es your application - Always parse
input data, e.g. with regular expres-
sions or with a full featured parser
generator, never ever specify the
user behavior.

42
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

The Broken Dis- Control |Methods, Maintainability,| Overloading a method breaks some []
patch Statements |Reliability test cases because the wrong im-
plementation will be called.
The Impostor Type |Control |[Classes, Maintainability,|Using special fields inside classes to L
Attributes, Reliability distinguish conceptually distinct sub-
Statements types.
The Split Cleaner |Control |Classes, Maintainability, [Not all resources are cleaned (espe- ([]
Statements (Reliability cially when an exception is thrown) --
use try ... finally ...
The Fictitious Im- |Control [Classes, Maintainability,|A certain implementation of an inter- o
plementation Methods, Reliability face breaks some invariants.
Statements
The Orphaned Control |Classes, Maintainability,|A multithreaded program locks up o
Thread Attributes, Reliability with or without printing a stack trace
Statements to standard error.
The Run-On Initiali- |Control |Classes, Maintainability,|Not all fields of a class are initialized ([]
zation Attributes, Reliability properly -- initialize all fields in the
Methods constructor.
Table 15. Bug Patterns by (Farchi et al., 2003)

Nonatomic Opera-
tions Assumed to
Be Atomic

Control

Statements

Reliability

An operation that "looks" like one
operation in one programmer model
(e.g., the source code level) but ac-
tually consists of several unprotected
operations at the lower abstraction
levels (e.g., bytecode).

Two-Stage Access

Control

Statements

Reliability

A sequence of operations needs to
be protected but the programmer
wrongly assumes that separately
protecting each operation is enough.

Wrong Lock or No
Lock

Control

Statements

Reliability

A code segment is protected by a
lock but other threads do not obtain
the same lock instance when execut-

ing.

Double-checked
Locking

Control

Methods,
Statements

Reliability

When an object is initialized, the
thread local copy of the object’s field
is initialized but not all object fields
are necessarily written to the

heap. This might cause the object to
be partially initialized while its refer-
ence is not null.

The sleep()

Control

Statements

Reliability

It is assumed that a child thread
should be faster than the parent
thread and an "appropriate" sleep() is
added to the parent thread. However,
the parent thread may still be quicker
in some environment.

© Copyright by VIDE Consortium

43

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Losing a Notify

Control

Statements

Reliability

A notify() is executed before its cor-
responding wait(), the notify() has no
effect and is lost.

A "Blocking" Critical
Section

Control

Statements

Reliability

A thread is assumed to eventually
return control but it never does. This
situation may occur in a critical sec-
tion protocol.

The Orphaned
Thread

Control

Statements

Reliability

A single, master thread drives the
actions of the other threads via mes-
sages, often by placing them on a
queue, that are then processed by
the other threads. If the master
thread terminates abnormally, the
remaining threads may continue to
wait on more input to the queue and
causing the system to hang.

Table 16.

Bug Patterns by (D. Hovemeyer & Pugh, 2004)

© Copyright by VIDE Consortium

Cloneable Not Im- [Control |Statements |Reliability A class implements the Cloneable []
plemented Correctly interface and does not call su-
per.clone()
Double Checked Control |Statements |Reliability, Usage of the double checked locking ([]
Locking Maintainability |pattern that doesn’t work
Dropped Exception |Control |Statements [Reliability A try-catch block where the catch []
block is empty and the exception is
slightly discarded.
Suspicious Equals |Control, [Statements, [Reliability, Two objects of types known to be ([]
Comparison Structure |Inheritance, |Maintainability |incomparable are compared using
Methods the equals() method.
Bad Covariant Defi- [Structure |Statements, |Reliability, A covariant version of equals() does ([]
nition of Equals Inheritance, [Maintainability |not override the version in the Object
Methods class, which may lead to unexpected
behavior at runtime
Equal Objects Must [Structure |Statements, |Reliability, A class overrides equals() but not ([]
Have Equal Hash- Inheritance, [Maintainability |hashCode().
codes Methods
Inconsistent Syn- [Control |Statements, [Reliability Access is allowed to mutable fields o
chronization Attributes without synchronization - fields which
are sometimes accessed with the
lock held and sometimes without are
candidate instances of this bug pat-
tern.
Static Field Modifia- |Control |Statements, |Reliability Untrusted code is allowed to modify ([]
ble By Untrusted Attributes static fields, thereby modifying the
Code behavior of the library for all users.
Null Pointer Derefe- [Control |Statements |Reliability A null value might be dereferenced ([]
rence
Redundant Compar-|Control |Statements |Reliability Comparisons in which the outcome is L
ison to Null fixed because either both compared
44

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

values are null, or one value is null
and the other non-null.

Non-Short-Circuit |Control |Statements |Reliability, Use of a non-short-circuit boolean o0l @@
Boolean Operator Maintainability (operator where they intended to use
a short-circuiting boolean operator.

Open Stream Control |Statements |Reliability A program opens an input or output |® O |®|O

stream, without closing it.
Read Return Should|Control |Statements |Reliability It is incorrectly assume that read() o0l @@
Be Checked methods always return the requested

number of bytes.
Return Value Control |Statements |Reliability The return value of a method callon |®|O @ | @
Should Be Checked an immutable object is ignored.
Non-serializable Structure, |Classes, Reliability Classes that implement the Serializ- [®|O|O | ®
Serializable Class |Control |Inheritance, able interface but which cannot be

Attributes serialized — e.g., due to the fact that

the superclass of the class is not

serializable
Uninitialized Read |Control |Statements |[Reliability An unitialized field is read before itis |® |O | ® | ®
In Constructor written (in a constructor).
Unconditional Wait |Control |Statements |Reliability Code where a monitor wait is per- (JNORK AN

formed unconditionally upon entry to
a synchronized block - i.e., a notifica-
tion performed by another thread
could be missed.

Wait Not In Loop ~ |Control |Statements |Reliability A lock is not rechecked - thereisa |® (O |@®|®
window between the time that the
waiting thread is woken and when it
reacquires the lock, during which
another thread could cause the con-
dition to become false again.

4.7 Critic Rules

The concept “critic rules” was one of the first cepts used in the diagnosis of problems in
software design. It was coined by Jason E. Robhihss Ph.D. research (Robbins, 1999) and
was implemented in the ArgoUML software design emwinent. These critic rules represent

problematic parts of the software system that detde break of C2 style guidelines. The

design environment does not critique the desigmgoh as the objects in the design represen-
tation critique themselves. In general, critic subre potential problems the designer should
reflect about with subjectively defined prioritieend that are associated with one or more
specific treatments (i.e., “add subclass”). Inlttexature they are defined as follows:

» “Critics are active agents that continually chedietdesign for errors or areas needing
improvement” (Robbins, 1999)

» “[Critic rules] comment on high-level design issuegher than diagram completeness”
(Coelho & Murphy, 2007)

* “The output of a critic is aritigue—a statement about some aspect of the model teat do
not appear to follow good design practice.” (ArgoUM2007)

45
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

The following table list several of the critic raldescribed by Robbins et al. — however, some
rules were excluded as they commune comments gagoles such as “Portability Question-
able” or check against stated goals such as “Noagim Reusable Components”.

Table 17.

Design Critic Rules by (Robbins, 1998, 1999; Robbins et al., 1997, 1998a, 1998b; Rob-

bins et al., 1998c; Robbins & Redmiles, 1998, 2000)

Interface Mismatch (Structure |Classes, Maintainability,|Component needs certain messages ([]
Calls Compilability |be sent or received.
Direct Connection (Structure |Classes, Maintainability, |Violation of C2 style guideline — no []
Calls Compilability |message bus is used to add compo-
nents after deployment.
Missing Memory Control |Requirement, |Efficiency, The memory required to run this L
Requirements Statements |Reliability component has not been specified.
Component Choice |Structure |Classes Maintainability (Other components could fit in place []
of the existing component.
Too Much Memory |Control |Requirement,|Efficiency, Calculated memory requirements ([]
Statements |Reliability exceed stated goals.
Too Many Compo- |Structure |[Classes, Maintainability |There are too many components at L
nents Calls the same level of decomposition.
Generator Limitation|? Classes, Compilability |The code generator cannot make full
Calls use of this component.
Invalid Connection (Structure |Classes, Maintainability,|[Mandatory message signatures not ([]
Calls Compilability |satisfied by adjacent components in
the conceptual architecture
After the dissertation of Jason E. Robbins thaqurés in ArgoUML were advanced and the

collection of critics was extended.

Table 18.

Additional Critics in ArgoUML (ArgoUML, 2007)

© Copyright by VIDE Consortium

15.3.1. Wrap Data- |Structure |Classes Maintainability |Wrong usage of DataTypes within ([]

Type UML 1.4.

15.3.2. Reduce Structure |Classes, Maintainability [Too many classes on a diagram. ([]

Classes in diagram Diagrams

15.3.3. Clean Up Structure |Model ele- [Maintainability [Model elements are overlapping. []

Diagram ments, Dia-

grams

15.4.1. Resolve Structure |Associations |Compilability |[Two associations in the same na- (@)

Association Name mespace have the same name

Conflict

15.4.2. Revise Structure |Attributes Compilability |Two attributes of a class have the o

Attribute Names to same name

Avoid Conflict

15.4.3. Change Structure |Attributes Compilability |Two methods have the same signa- o

Names or Signatures ture

in a model element

15.4.4. Duplicate Structure |Associations |Compilability [The specified association has two ([]
46

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

End (Role) Names
for an Association

(or more) ends (roles) with the same
name. One of the well-formedness
rules in UML 1.4 for associations, is
that all end (role) names must be
unique.

© Copyright by VIDE Consortium

15.4.5. Role name |Structure |Associations |Compilability, |A suggestions that good design ® ®
conflicts with mem- Maintainability (avoids role names for associations
ber that clash with attributes or methods

of the source class. Roles may be

realized in the code as attributes or

operations, causing code generation

problems.
15.4.6. Choose a Structure |Classes, Compilability, |The class or interface concerned [] []
Name (Classes and Names Maintainability |has been given no name (it will
Interfaces) appear in the model as Unnamed)
15.4.7. Choose a Semantic |Associations, |Compilability, [Suggestion that the class or inter- | @ o
Unique Name for a Names Maintainability (face specified has the same name
model element as another (in the namespace),
(Classes and Inter- which is bad design and will prevent
faces) valid code generation.
15.4.8. Choose a Structure |Attributes, Compilability, |The attribute concerned has been [] ([]
Name (Attributes) Names Maintainability |given no name (it will appear in the

model as (Unnamed Attribute)).
15.4.9. Choose a Structure |Methods, Compilability, |The operation concerned has been |® ([]
Name (Operations) Names Maintainability [given no name (it will appear in the

model as (Unnamed Operation)).
15.4.10. Choose a |Structure |States, Compilability, |The state concerned has been given | ® ([]
Name (States) Names Maintainability {no name (it will appear in the model

as (Unnamed State)).
15.4.11. Choose a |Semantic |States, Compilability, |The state specified has the same ([] o
Unique Name for a Names Maintainability [name as another (in the current
(State related) model statechart diagram), which will pre-
element vent valid code generation.
15.4.12. Revise Semantic |Names Maintainability [Two names in the same namespace | ® ([]
Name to Avoid Con- have very similar names (differing
fusion only by one character).
15.4.13. Choose a [Semantic [Names Compilability, |All model element names in Ar- L []
Legal Name Conformance, |goUML must use only letters, digits

Maintainability |and underscore characters.

15.4.14. Change a |Semantic [Names Compilability, |Suggestion that this model element's| ® ([]
model element to a Conformance, |name is the same as a reserved
Non-Reserved Word Maintainability |word in UML (or within one character

of one), which is not permitted.
15.4.15. Choose a |Semantic |Methods, Conformance, |An operation has not followed the ([] ([]
Better Operation Names Maintainability [naming convention that operation
Name names begin with lower case letters.
15.4.16. Choose a |Semantic |Attribute, Conformance, |An attribute has not followed the ([[
Better Attribute Names Maintainability [naming convention that attribute
Name names begin with lower case letters.
15.4.17. Capitalize |Semantic |Classes, Conformance, |A class has not followed the naming | ® ([]
Class Name Names Maintainability [convention that classes begin with

upper case letters.
15.4.18. Revise Semantic |Package, Conformance, |A package has not followed the ([] ([]
Package Name Names Maintainability |[naming convention of using lower

case letters with periods used to

indicated sub-packages.

47

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

15.5.2. Add Instance |Structure |Classes, Conformance, |No instance variables have been ®
Variables to a Class Attributes Maintainability |specified for the given (non-
<<utility>>) class.
15.5.3. Add a Con- |Structure |Classes, Reliability, Not all of the classes attributes have ([]
structor to a Class Methods Maintainability |initial values and the class has no
constructor. Constructors initialize
new instances such that their
attributes have valid values.
15.5.4. Reduce Structure |Classes, Maintainability [The class has too many attributes ([]
Attributes on a Class Attributes for a good design, and is at risk of
becoming a design bottleneck.
15.6.1. Operations in |Structure |Classes, Compilability, |Non-public operations in Interfaces ([]
Interfaces must be Methods Maintainability
public
15.6.2. Interfaces Structure |Classes, Conformance |An interfaces has attributes defined. []
may only have oper- Attributes The UML standard defines interfac-
ations es to only have operations.
15.6.3. Remove Structure |Classes, Conformance |A class should not reference its [
Reference to Specif- Attributes subclasses directly through
ic Subclass attributes, operations or associa-
tions.
15.7.1. Reduce Structure |States Maintenance |[State is involved in so many transi- L J
Transitions on tions it may be a maintenance bot-
<state> tleneck.
15.7.2. Reduce Structure |States Maintenance |[State machine has so many states ([]
States in machine as to be confusing and should be
<machine> simplified
15.7.3. Add Transi- |Structure |States Compilability |State requires both incoming and L
tions to <state> outgoing transitions
15.7.4. Add Incoming|Structure |States Compilability |State requires incoming transitions ([]
Transitions to <mod-
el element>
15.7.5. Add Outgoing|Structure |States Compilability |State requires outgoing transitions ®
Transitions from
<model element>
15.7.6. Remove Structure |States Compilability, |There is more than one initial state ([]
Extra Initial States Conformance |in the state machine or composite
state, which is not permitted in UML
15.7.7. Place an Structure |States Compilability, |There is no initial state in the state ([]
Initial State Conformance |machine or composite state.
15.7.8. Add Trigger |Structure |States, Tran- |Compilability, |A transition is missing either a trig- ([]
or Guard to Transi- sitions Conformance |ger or guard, one at least of which is
tion required for it to be taken.
15.7.9. Change Join |Structure |States, Tran- |Compilability, |[The join pseudostate has an invalid ([]
Transitions sitions Conformance, [number of transitions. Normally
Maintainability {there should be one outgoing and
two or more incoming.
15.7.10. Change Structure |States, Tran- |Compilability, [the fork pseudostate has an invalid ([]
Fork Transitions sitions Conformance, |number of transitions. Normally
Maintainability |there should be one incoming and
two or more outgoing.
15.7.11. Add Structure |States, Tran- (Compilability, |The branch (choice or junction) L
Choice/Junction sitions Conformance, |pseudostate has an invalid number
Transitions Maintainability |of transitions. Normally there should
be at least one incoming transition
48

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming

Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
Type of [Design Enti- | Quality As- E £18|=
. ’) el v|®|S| ®©
Name Quality ties in- pects af- Description ~|E|&| 8
Defect volved fected Z|8|a |-
o m
and at least one outgoing transition.
15.7.12. Add Guard |Structure |States, Tran- |[Compilability, |Transition requires a guard e O|0|@®
to Transition sitions Conformance,
Maintainability
15.7.14. Make Edge |[Structure |States, Tran- [Maintainability |An edge model elementsuchasan (®|O|O|®
More Visible sitions association or abstraction is so short
it may be missed.
15.7.15. Composite |Structure |Classes, Compilability |An instance may not belong by ®O|O|0
Association End with Attributes composition to more than one com-
Multiplicity > 1 posite instance.
15.8.1. Consider Structure |Classes, Maintainability | The class has no non-static ®O|0|@®
using Singleton Attributes attributes nor any associations that
Pattern for <class> are navigable away from instances
of this class.
15.8.2. Singleton Structure |Classes, Conformance, |This class is marked with the «sin- |®|O|O|®
Stereotype Violated Stereotypes |Functionality, [gleton» stereotype, but it does not
in <class> Reliability, satisfy the constraints imposed on
Maintainability [singletons.
15.8.3. Nodes nor- [Structure |Deployment |Conformance, [Nodes should not be drawn inside (@ (O[O |@®
mally have no en- Maintainability |other model elements on the dep-
closers loyment diagram
15.8.4. Nodelns- Structure |Deployment |Conformance, |node instances should not be drawn |® | O |O | @
tances normally have Maintainability |inside other model elements on the
no enclosers deployment diagram
15.8.5. Components [Structure |Deployment (Conformance, |Components represent the logical (@O |O|®
normally are inside Maintainability |entities within physical nodes, and
nodes so should be drawn within a node.
15.8.6. Componen- |[Structure |Deployment (Conformance, |Components instances represent the| ® |O | O | @
tinstances normally Maintainability (logical entities within physical nodes,
are inside nodes and so should be drawn within a
node
15.8.7. Classes Structure |Deployment |Conformance, |Classes, as model elements making |® |O (O | @
normally are inside Maintainability lup components, should be drawn
components within components on the deploy-
ment diagram
15.8.8. Interfaces Structure |Deployment |[Conformance, |Interfaces, as model elements mak- (@ (O[O | @
normally are inside Maintainability (ing up components, should be drawn
components within components on the deploy-
ment diagram
15.8.9. Objects nor- |[Structure |Deployment |Conformance, |Objects, as instances of model ele- @ (O[O | @
mally are inside Maintainability |[ments making up components,
components should be drawn within components
or component instances on the dep-
loyment diagram.
15.8.10. LinkEnds [Structure |Deployment (Conformance, |A link (e.g. association) connecting |®|O|O | ®
have not the same Maintainability (objects on a deployment diagram
locations has one end in a component and the
other in a component instance (since
objects can be in either).
15.8.11. Set classifi- [Structure |Deployment |Conformance, [An instance (object) withoutanas- (@ (O[O | @
er (Deployment Maintainability |sociated classifier (class, datatype)
Diagram) on a deployment diagram.
15.8.12. Missing Control |Sequence |Compilability, |A sequence diagram hasasendor (@ (O @ |@®
return-actions Conformance |call action without a corresponding
return action.
49

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

15.8.13. Missing Control |Sequence |Compilability [A sequence diagram has a return [
call(send)-action action, but no preceding call or send

action.
15.8.14. No Stimuli |Control |Sequence |Compilability, |A sequence diagram has a link con- L
on these links Maintainability (necting objects without an asso-

ciated stimulus (without which the

link is meaningless).
15.8.15. Set Classifi- |Control |Sequence |Compilability, |An object without an associated []
er (Sequence Dia- Maintainability |classifier (class, datatype) on a
gram) sequence diagram.
15.8.16. Wrong Control |Sequence |Compilability, |The initiation of send/call-return ([]
position of these Maintainability |message exchanges in a sequence
stimuli diagram does not properly initiate

from left to right.
15.9.1. Circular As- |Structure |Association |Compilability [An association class has a role that ([]
sociation refers back directly to itself, which is

not permitted.
15.9.2. Make <asso- |Structure |Association |Compilability |The association referred to is not L
ciation> Navigable navigable in either direction.
15.9.3. Remove Structure |Association |Compilability [Associations involving an interface ([]
Navigation from can be not be navigable in the direc-
Interface via <asso- tion from the interface.
ciation>
15.9.4. Add Associa- |Structure |Association |Compilability, |The specified model element (actor, L
tions to <model ele- Maintainability (use case or class) has no associa-
ment> tions connecting it to other model

elements.
15.9.6. Reduce As- |Structure |Association |Compilability, [The given model element (actor, use ([]
sociations on <model Maintainability [case, class or interface) has so
element> many associations it may be a main-

tenance bottleneck.
15.11.1. Classifier |Semantic |Association |Compilability, |All the classifiers attached to the []
not in Namespace of Conformance |ends of the association should be-
its Association long to the same namespace as the

association.
15.11.2. Add Ele- Structure |Package Maintainability [The specified package has no con- ([]
ments to Package tent.
<package>
15.13.2. Class Must |[Structure |Classes, Compilability |A class that inherits or defines ab- []
be Abstract Methods stract operations must be marked

abstract.
15.13.3. Add Opera- |Structure |Classes, Maintainability [The specified class has no opera- ([]
tions to <class> Methods tions defined.
15.13.4. Reduce Structure |Classes, Maintainability |The model element (class or inter- L]
Operations on Methods face) has too many operations
<model element>
15.14.1. Change Structure |Classes, Maintainability [A class has multiple generalizations, ([]
Multiple Inheritance Inheritance which is permitted by UML, but can-
to interfaces not be generated into Java code,

because Java does not support

multiple inheritance.
15.16.2. Remove Structure |Classes, Compilability |A class inherits from itself, through a ([]
<class>'s Circular Inheritance chain of generalizations, which is not
Inheritance permitted.

50

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

15.16.4. Remove Structure |Classes, Compilability |A class that is final has specializa- | ® ([]
final keyword or Inheritance tions, which is not permitted in UML.
remove subclasses
15.16.5. lllegal Ge- [Structure |Classes, Compilability |A generalization between model L L
neralization Inheritance elements of different UML metac-

lasses, which is not permitted.
15.16.6. Remove Structure |Classes, Maintainability |A realization relationship both direct- | @ []
Unneeded Realizes Inheritance ly and indirectly to the same inter-
from <class> face (by realization from two inter-

faces, one of which is a generaliza-

tion of the other for example).
15.16.7. Define Con- |Structure |Classes, Maintainability |A class is abstract with no concrete |® [
crete (Sub)Class Inheritance subclasses, and so can never be

realized.
15.16.8. Define Structure |Classes, Maintainability [The interface referred to has no ([] ([]
Class to Implement Inheritance influence on the running system,
<interface> since it is never implemented by a

class.
15.17.1. Remove Structure |Classes, Compilability |A series of composition relationships | ® ([]
Circular Composition Association that form a cycle, which is not per-

mitted.
15.17.2. Duplicate [Structure |Methods, Compilability |A parameter list to an operation or | ® L
Parameter Name Parameters event has two or more parameters

with the same name, which is not

permitted.
15.17.3. Two Aggre- [Structure |Methods, Compilability [Only one end (role) of a binary as- | ® ([]
gate Ends (Roles) in Parameters sociation can be aggregate or com-
Binary Association posite.
15.17.4. Aggregate |Structure |Associations |[Compilability |Three-way (or more) associations | @ ([]
End (Role) in 3-way can not have aggregate ends (roles).
(or More) Associa-
tion

A recent development of critiques by Coelho and phyrincludes additional critiques that
motivate to reflect about the software design. Hmveseveral critiques seem very context-
specific (e.g., the “Plural Contained Class” ruleuld fire at every use of a container such as

Persons).

Table 19.

Critic Rules by (Coelho & Murphy, 2007)

© Copyright by VIDE Consortium

Class References |Structure |Classes, Maintainability,|A class references a subclass of itself| ® [
Subclass Attributes, Portability

Calls
Superclass Refer- |Structure |Classes, Maintainability,|A class references its superclass, but | ® ([]
ence Calls Portability not through an aggregation.
Circular Contain- Structure |Classes, Maintainability,| There is a cycle in aggregation or ([] (@)
ment Attributes Portability composition relationships
Association Cycle [Structure |Classes, Maintainability,| There is a cycle in association Rela- | ® (@)

Calls Portability tionships

51

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1

Date: 09 August 2007

Multiple Paths Structure |Classes, Maintainability,| There are two navigable paths from
Attributes, Portability one class to another
Calls
Duplicated Super- [Structure |Classes, Maintainability |A class has an association that is
class Reference Calls already defined by its superclass
Generalizable Ag- |Structure |Classes, Maintainability |A class aggregates two classes that
gregation Attributes, share a superclass
Inheritance
Subclass and Su- [Structure |Classes, Maintainability |A class aggregates a class and a
perclass Aggrega- Attributes, subclass or superclass of that class
tion Inheritance
Unnecessary Reali- [Structure |Classes, Maintainability |A class realizes two interfaces that
zation Attributes, extend each other
Inheritance
Plural Contained Semantic |Class, Maintainability [The target of an aggregation or com-
Class Names position has a plural name (which
wrongly suggests that it is the con-
tainer)
Method in Attribute |Semantic |Classes, Functionality |There are parentheses in the name
Compartment Attributes, of an attribute, which may occur if the
Names user creates a method in the wrong
compartment
Get or Set Attribute |Semantic |Classes, Functionality, |An attribute name begins with get or
Prefix Attributes, Maintainability [set, which suggests the user may
Names have put a method name in the
attribute compartment
Duplicate Class Semantic |Classes, Functionality, |Two classes or interfaces in the de-
Name Names Maintainability [sign have the same name
Highly Coupled Structure |Classes, Maintainability | The number of associations, compo-
Design Attributes, sitions, and aggregations has ex-
Calls ceeded some constant multiple of the
number of classes
Class Has Too Structure |Classes, Maintainability,|A class has more than some constant
Many Associations Calls Portability number of associations to other
classes
Duplicated Mem- Structure |Classes, Maintainability [Two non-related classes have at
bers Attributes, least three members in common
Methods
Missing Attribute Structure |Classes, Functionality |A getter and setter are defined, but
Attributes, no matching attribute exists
Methods
Unnecessary Ac- Structure |Classes, Functionality, |A class has more than some constant
cessors Attributes, Maintainability [number of pairs of getter and setters,
Methods which may be an unnecessary
source of clutter
Redeclared Super- |[Structure |Classes, Functionality, |A subclass redeclares an attribute
class Attribute Attributes Maintainability,|defined by its superclass.
Reliability

4.8

Defect Patterns

The concept “Defect Pattern” was used by Taiga Naka in his “HPC Bug Base" portal to
describe classes of recurring problems (as welhdisidual defects) in HPC. These defect
patterns represent problematic parts of distribsiftivare systems (especially for high per-

52
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

formance computing) that seem wrong, complicateg¢umbersome to an experienced devel-
oper. In the literature they are defined as follows

» ‘“[defect patterns are] functional bugs, performanbottlenecks, portability problems,
bad practices, etc. in HPC “(Nakamura, 2007)

The concept of defect patterns is used to destnbexperience and knowledge that was ac-
quired by experts or in empirical evaluations arwill list most of these defect patterns that
were found in the literature survey.

Table 20. Defect Patterns individuals by (Nakamura, 2007)

Missing Wait Control |Statements |Efficiency Send and receive without a wait ® Ol® o
between.

Bottleneck in Mes- |Control |Statements |Efficiency In the programming with explicit ® O|® 0

sage Scheduling message passing, inappropriate

message scheduling can cause per-
formance bottleneck.

Bottleneck with File |Control |Statements |Efficiency When multiple processes accessthe (O |O | @®| O
110 file or filesystem at the same time,

they can cause a performance prob-

lem.
Calling omp get Control |Statements |Efficiency, omp_get_num_threads() returns the |0 |O (@®|O
num threads in a Reliability number of threads currently execut-
Serial Section ing the parallel section where it is

called. If it is called in a serial section,
the return value is always 1.

Calling upc free Control |Statements |Efficiency, Only one thread may call upc_free for|© |O | @ | O
from Multiple Reliability each allocation. This is confusing
Threads especially if the object was allocated

with upc_global_alloc, which is a
collective operation.

Corrupted File Out- [Control |Statements |Efficiency HPC applications often need to write |O O |®|O
put to a file to store intermediate and/or
final results. If the data is written to
the same file by multiple
processes/threads at once, the file
content can get corrupted.

Dependency on the |Control |Statements |Portability An implementation that only works |®|O |@® | @
Number of with specific number of processes is

Processes not portable.

Excessive Use of |Control |Statements |Efficiency, Collective communication is com- o0(@O
Collective Commu- Portability monly used in parallel programming,

nication but there is a concern that it does not

scale up well when the number of
processes (or threads) increases.

Hidden Serialization |Control |Statements |Efficiency Library function implementation o Ol® o
in Library Functions sometimes contains internal serializa-
tion. In a parallel context, it can
cause a performance bottleneck.

Inadequate Com- |Control |Statements |Efficiency An inadequate communication pat- (0[O |@®|O
munication Pattern tern (e.g., star pattern) can lead to a
performance overhead.

53
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Memory Allocation |Control |Statements |Efficiency Full memory access is sometime only| O[O |O | @
Failure Due to Inap- available if you compile with the
propriate Compiler "right" flags. There are also no warn-
Flags ing signs that you are running out of

memory until it happens.
Message Type Control |Statements |Reliability If the data type and the number of ® Oloo
Mismatch elements do not match between

sender and receiver, it can cause a
failure at runtime.

Missing MPI Final- |Control |Statements |Conformance |The MPI specification says that all oClee
ize processes must call MPI_Finalize

before exiting.
Missing upc barrier |Control |Statements |Reliability In a UPC program, upc_barrier ooclee
before exit should be called before exit to pre-

vent an issue with some threads
exiting before others finish using the

data.
Overlapped Memory|Control [Statements |Efficiency, Some MPI functions take a send o ole e
Areas Reliability buffer and a recv buffer. The memory

area for these buffers may not over-

lap.
Fragmented Mes- |Control |Statements |Efficiency Messages between processes should| ® (O |® | @
sages be aggregated into the chunks of

sufficient size to avoid the overhead
of connection handshaking and mes-
sage headers.

Passing NULLto |Control |Statements |Reliability In the C version MPI_Init takestwo |O|O | @®|@®
MPI Init parameters - in MPI 1.1, calling
MPI_Init with NULL parameters in
come implementation can fail.

Potential Deadlock |Control |Statements |Efficiency, MPI_Send() and MPI_Recv() are the |O|O |0 | O

Reliability source of potential deadlocks.
Upc memget and |Control |Statements |Reliability Trying to copy data from/to multiple |0 |O (@ | @®
upc memput from/to different threads results in an error.
Multiple Threads
Using the Same Control [Statements |Reliability, Some pseudo-random number libra- (@O | ® | ®
Randomization Functionality |ries require an explicit initilization with
Seed in All a 'seed’ which determines the actual
Processes sequence to be generated.

4.9 Defects, Bugs & Errors (Design)

The concepts (design-oriented) “defects”, “bugs™anrors” are typically used as a demotic
term. However, several authors use the term toridbescecurring and named problems. In the
literature they are defined as follows:

* “[A Design defect] is an imperfection in the soft@aengineering work product that re-
quires rectification” (Younessi, 2002)

» “Software defects are requirement, design, and @m@ntation errors in a software sys-
tem” (Telles & Hsieh, 2001)

* “Bugs are behaviour of the system that the softwdeeelopment team (developers, tes-
ters, and project managers) and customers haveeaaee undesirable” (Telles & Hsieh,
2001)

54
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

* “A consistency defect is a mismatch between ovpigpdiagrams.” (Christian F. J.
Lange, 2006)

Beside the defects on the code levels many othahlgms were described using the defect
metaphor. For example, (Moha & Guéhéneuc, 2005y dlse term Software architectural
defects are a concept used as an umbrella terrastmidesign flaws.

The concept of “bugs” was used by Telles and Haietihe Book “The Science of Debug-
ging” (Telles & Hsieh, 2001) to describe concreteations where debugging should take
place. They constructed a classification of bugd #tarts with abstract classes such as re-
quirement, design, implementation, process, bukphloyment, documentation, and future
planning bugs. Thereafter, they describe severaé mpecific bug classes that describe recur-
ring problems and mostly are on the level of otherlity defects. These bugs mostly
represent functional problems of the software systieat are associated with one or more
specific approach of debugging.

Table 21.

Defect Bug classes by (Telles & Hsieh, 2001)

© Copyright by VIDE Consortium

Memory or resource (Control |Classes, Efficiency Memory is allocated and used but ([]
leaks Data never freed
Logic Errors Semantic |Methods, Functionality, |Code is syntactically correct but does ([]
Statements (Reliability not do what is expected.
Coding Errors Semantic |Methods, Maintainability,|A simple problem in writing the code. o
Attributes, Reliability
Parameters
Memory Overruns |Control |Classes, Efficiency Using memory that does not belong o
Data to the system.
Loop Errors Control |Methods, Functionality, [Problems with loops such as infinite, ([]
Statements |Reliability nonprocessed, off-by-one, and im-
properly loops.
Conditional errors |Control |Methods, Functionality, |Poorly written conditional logic due to ([]
Statements (Reliability misunderstanding or mis-placement
of nested conditionals.
Pointer Errors Control |Methods, Functionality, |Pointers get messed up and do not ([]
Statements (Reliability point to where they should.
Allocation / Deallo- |Control |Methods, Functionality, |The order of allocation and de- ([]
cation Errors Statements (Reliability allocation is incorrect.
Multithreaded Errors |Control |Methods, Functionality, |Two threads try to access or modify O
Statements (Reliability the same memory address.
Timing Errors Control |Timing, Se- |Functionality, |Events were designed to occur at a O
quence, Reliability certain time but doesn't.
Statements
Distributed Applica- [Control |Deployment, |Functionality, |An error in the interface between any (@)
tion Errors Interaction, |Reliability two applications in a distributed sys-
Statements tem.
Storage Errors Data Data, State- |Functionality, |A persistent storage device encoun- o
ments Reliability ters an error and is unable to pro-
ceed.
Integration Errors [Control |Calls Functionality, |The integration of two subsystems (@)
Reliability causes an error.
Conversion Errors |Control |Calls Functionality, |Data formats are used in a wrong ([]
Reliability, way (esp. between components)
Maintainability
55

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Hard-coded Control |Statements |Maintainability,| Constants that appear multiple times | ® | @® | ® | O
Lengths/Sizes Reliability in the system
Versioning Bugs Historic Versions Functionality, |Change of functionality or data for- [©O|O|@®|O
Reliability, mats between versions
Maintainability
Inappropriate Reuse |Control, |Statements, |Functionality, |Inappropriate reuse of code orcom- O |O|® | O
Bugs Data Data Reliability, ponents.
Maintainability
Boolean Bugs Control [Statements |Functionality, |Misunderstandings about what a ® OCle|o®
Reliability, Boolean expression (e.g., true and
Maintainability |false) means in the code.

The concept of “errors” was used by many author®idescribe problems in software sys-
tems. Livshits and Lam use it to describe secuaitgrs (resp. security vulnerabilities) (Liv-
shits & Lam, 2005). These errors represent recgiphoblems of a software system.

Table 22.

Security Errors by (Livshits & Lam, 2005)

SQL injection Control |Statements |Functionality |Pass input containing SQL com-
(Security) mands to a database server for ex-
ecution
Cross-site scripting |Control [Statements |Functionality |Exploit applications that output un-
(Security) checked input verbatim to trick the
user into executing malicious scripts
HTTP response Control |HTTP re- Functionality |Exploit applications that output input
splitting sponse (Security) verbatim to perform Web page de-
facements or Web cache poisoning
attacks
Path traversal Control |URL input Functionality |Exploit unchecked user input to con-
parameters |(Security) trol which files are accessed on the
server
Command injection |Control |[Statements |Functionality |Exploit user input to execute shell
(Security) commands.
Parameter tamper- [Control |Statements |Functionality |Pass specially crafted malicious
ing (Security) values in fields of HTML forms
URL manipulation [Control |URL input Functionality |Use specially crafted parameters to
parameters |(Security) be submitted to the Web application
as part of the URL.
Hidden field mani- [Control |URL input Functionality |Set hidden fields of HTML forms in
pulation parameters |(Security) Web pages to malicious values
HTTP header tam- [Control |URL input Functionality |Manipulate parts of HTTP requests
pering parameters |(Security) sent to the application
Cookie poisoning |Control [Statements, [Functionality |Place malicious data in cookies,
Cookie (Security) small files sent to Web-based appli-
access cations

The concept of “design defects” was used by Houl@amessi in the book “Object-oriented
Defect Management” (Younessi, 2002). These defegpsesent problematic parts of the
software system that are associated with one oempecific UML diagram (e.g., statement

56
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

diagrams). Some of them are very function-orienteck., if this defect does exist the model

shouldn’t compile.

Table 23.

Design Defects by (Younessi, 2002), Chapter 6

Null Diagram State State dia- Maintainability |Nothing happens between the start o
gram and end state.
Trap state State State dia- Functionality, |A state that can be entered but never []
gram Maintainability, |exited (i.e., no path to the stop state).
Reliability
Tightly Circular State State dia- Maintainability A tightly circular or reflexive form due o
gram to a limited number of states (i.e., all
states build a small circle).
Disjoint States State State dia- Maintainability (Independent state paths/streams in o
gram one diagram
Deadlock State State dia- Maintainability | The next transition from a state can- ([]
gram not logically take place.
Conflict State State dia- Maintainability | The transition from a guard or sync []
gram point cannot logically take place
God state State State dia- Maintainability |One event causes many resulting ([]
gram events (e.g., a very small fan-in to
fan-out ratio)
Hub state State State dia- Maintainability |Many independent fan-in events and ([]
gram many independent fan-out events
(e.g., a fan-in fan-out ratio near to 1)
Minion state State State dia- Maintainability [Many events causes only one or very ([]
gram few resulting events (e.g., a very
large fan-in to fan-out ratio)

Furthermore, Younessi lists many design defectssnnspection checklists (see appendix C

od (Younessi, 2002)).

Table 24.

Design Defects by (Younessi, 2002), Appendix C

© Copyright by VIDE Consortium

Global Variables Structure, |Calls Maintainability |There exists an externally declared [
Control variable that is referenced within a
function but has not been passed in
as a parameter.
Poor Naming Con- [Semantic [Names Maintainability |Identifiers are too long, consist of ([]
ventions single characters (except loop index-
es), or resemble a keyword.
Redundant Declara- [Structure, |Statements |Maintainability |Variables, parameters, or functions [
tions Control that are declared in one class, func-
tion, or compound statement but
never actually used in that context.
57

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Input Coupling

Structure,
Control

Statements

Maintainability

A variable that is assigned a value via
an input, but is not modified or refe-
renced before being passed to a
user-defined function as a function
call argument.

Magic Numbers

Control

Attributes,
Statements

Maintainability

There exist numbers other than -1, O,
or 1 in a program statement.

Hidden Loops

Control

Statements

Maintainability,
Reliability

A guarded variable from a loop guard
or a branch guard is modified within a
single branch of a guarded state-
ment, is modified within the loop
body, or is assigned a value inde-
pendent of itself within an "if* state-
ment branch (if this variable is not a
loop guard variable, it must occur in
the guard of the branch).

Uninitialized Va-
riables

Control

Statements

Functionality,
Reliability

There exists a variable that has not
been explicitly initialized prior to its
first use in an expression.

Lax Grouping

Control

Statements

Maintainability

Identical subexpressions in each
expression of two conditional (if)
statements, but there are no state-
ments between the guards of the two
(if) statements that modify the va-
riables occurring in the aforemen-
tioned subexpressions.

Zero lteration Defect

Control

Statements

Functionality,
Reliability

A variable occurs in a loop body (not
in a guard), that: a) is not initialized
before the loop, and b) is assigned
but not referenced within the loop
body, and c) after being assigned,
does not appear in an inner loop.

Superfluous Va-
riables in Loop:
(Does Not Apply to
Loop Control Varia-
ble)

Control

Statements

Maintainability

Temporary variables in a loop that do
not save time in computation or a
non-accumulative assignment to a
variable in a loop that appears (just
once) in the right-hand side of a sub-
sequent assignment statement.

Loops That May
Make No Progress

Control

Statements

Maintainability

There exist no variables from the loop
guard of a loop that are updated
within the body, except inside another
guarded command.

Redundant Loop
Computations

Control

Statements

Maintainability

There exists a subexpression that is
evaluated within a loop and involves
variables that are not changed within
the loop (these variables are global to
the loop body scope).

Loop Guard Too
Complex

Control

Statements

Maintainability

There exists a loop statement that
contains more than two conditional
constructs within its loop guard.

Loop Contains Post-
termination Struc-
ture

Control

Statements

Maintainability

A loop body that contains a condi-
tional (if) statement, whose block's
last statement breaks out (e.g., a
break statement).

Redundant Condi-
tional Assignment

Control

Statements

Maintainability

An equality guard component for a
conditional statement that matches

© Copyright by VIDE Consortium

58

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1

Date: 09 August 2007

an assignment statement that it
guards, but the variables in the guard
are not modified prior to the execu-
tion of the matching assignment.

Self-Assignment

Control

Statements

Maintainability

An assignment statement in which
the left-hand side and right-hand side
are identical

Dispersed Initializa-
tion

Control

Statements

Maintainability

A variable that is a control variable of
a loop, initialized more than five
statements away from where it is
employed in the loop, not referenced
or modified after the initialization and
before the loop.

Premature Initializa-
tion

Control

Statements

Maintainability,
Efficiency

A loop control variable for an inner
nested loop that is initialized twice:
once before entering the external
loop and once before entering or on
leaving the inner loop.

Redundant Accumu-
lation

Control

Statements

Maintainability

There exist two or more congruent
accumulative statements within a
loop that are of the form i =i + c1 and
j =]+ c2, where cl = c2.

Redundant Test on
Loop Exit

Control

Statements

Maintainability

An extra guard to test the exit condi-
tion of the guarded loop after a loop
statement. Between the guard and
the loop exit, there exist no state-
ments to change the vaiiables that
occur in the guard.

Redundant Guard

Control

Statements

Maintainability

A subexpression within a loop of a
conditional statement that has pre-
viously been established for the given
execution path.

Readjustment of
Loop Variable on
Exit

Control

Statements

Maintainability

An expression or statement that
readjusts a loop variable on exit from
a loop.

Redundant Internal
Guard

Control

Statements

Maintainability

A guard component that is applied
more than once in a loop body with-
out changing its component va-
riables.

Statement Duplica-
tion

Control

Statements

Maintainability

A statement that occurs more than
once within a loop body, although
between these duplicated state-
ments, the variables they contain are
not changed.

Duplicate Output

Control

Statements

Maintainability

There exists a variable that is output
via an output function and unmodified
before being output again by another
output function.

Function Comments

Semantic

Notes /
Comments

Maintainability

No comments describing the class,
attribute, or function's job, either
before or after the functions heading.

Multiple Exits from a
Function

Control

Statements

Maintainability,
Reliability

There exists more than one exit
statement within a function body.

Unassigned Ad-
dress Parameter

Control

Statements

Maintainability

There exists an address parameter
that is not assigned to a value within
a function.

© Copyright by VIDE Consortium

59

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

Function Side Ef- [Control |Statements |Maintainability,|A function that returns a value; and o
fects Reliability there exists: An address parameter
that may be used to change the con-
tents of a corresponding actual pa-
rameter; or an external variable that
is changed inside this function.
Amended Nonad- |Control |[Statements |Maintainability |There exists a nonaddress parameter []
dress Parameter that is amended inside the body of a
function.
Redundant Guard |Control |Statements |Maintainability |A variable that occurs in two relation- []
Test al expressions joined by the (AND)
operator.
Indirectly Termi- Control [Statements [Maintainability,|A single variable that is used as a ([]
nated Loops Reliability guard of an iterative statement, as-
signed within a guarded statement
(selection or iterative statements)
within the loop body.
Dual-Purpose Vari- [Control [Statements |Maintainability,| There exists a variable that is mod- L
able Usage Reliability ified in the body of a loop, then reas-
signed after the loop.
Double Initialization [Control |Statements |Maintainability,|A loop variable that is initialized more O
Efficiency than once prior to its use in a loop,
although the variable is not refe-
renced between the statements in
which it is initialized.
Subscript Within Control [Statements [Maintainability,| There exists an array the subscripts ([]
Bounds Reliability for which exceed the bounds.
Noninteger Sub- Control [Statements [Maintainability,|Subscripts of an array should always ([]
script Reliability be integers.
Incorrect Initializa- [Control |Statements |Maintainability,|Arrays and strings are usually re- ([]
tion Reliability quired to be set to default values.
Procedure That Control [Statements [Maintainability,|A procedure that has been specified o
Returns a Value as Reliability, to return no value but has an address
a Parameter Portability parameter that is assigned within the
body (i.e., side-effect).
Operation with No |Control |Statements [Maintainability [An operation that has no effect (i.e., o
Visible Effect side-effect or return value).
Overloaded Loop |Control |[Statements |Maintainability,| There exists an inner loop that o
Index Reliability changes an outer loop control varia-
ble.
Mixed-Mode Com- |Control |Methods, Maintainability,| Types do not conform for correct [
putation Statements [Reliability computation.
Division by Zero Control [Statements |[Reliability The denominator of operation has not ([]
been guarded against evaluating to
zero.
Integer Division Control [Statements |[Reliability Integer division truncates the re- ([]
mainder
External Object Control |Attributes, Maintainability,| The attributes of external objects ([]
Attribute Hard- Statements |Portability (e.g., afile) have been explicitly hard-
Coded coded.
Function Has No Control [Methods Maintainability,|A (nonvoid) function that contains a ([]
Return Value Reliability return statement with no return value.
Unused Input Control |[Statements [Maintainability |A variable that is assigned a value via []
an input function, not used or refe-
renced until being assigned another
60

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1

Date: 09 August 2007

value by another input function.

© Copyright by VIDE Consortium

Unmodified Output |Control |Statements |Maintainability,|There exists a variable that is as- [[
Reliability signed a value from an input function,
unmodified before being output again
by an output function.
Identifiers in Scope [Semantic [Names Maintainability,| Two or more entities (functions, va- | @ (@)
Are Character Simi- Reliability riables, parameters, ...) with similar
lar names.
Identifiers in Scope [Semantic |[Names Maintainability,| Two or more entity names (functions, | ® (@)
Differing in Case Reliability variables, parameters, ...) differ only
in case.
McCabe's Cyclo- |Control [Statements |Maintainability A cyclomatic complexity value of L L
matic Complexity more than 5 indicates that the func-
tion is too complex and should be
reduced, if possible.
Unacceptable Initia- |Control [Statements |Maintainability |A global variable that is initialized in | ® ([]
lization of Global its variable declaration without the
Variables use of the appropriate keyword.
Local Variables Not |Control [Statements |Maintainability |Local variables that are declared for a| @ ([]
Declared within block, not referenced at the top level
Their Minimal Scope of that block, but within an inner block
(at a lower level).
Unintentional Empty |(Control [Statements |Maintainability |There exists a loop within an empty | ® []
Loop body.
Inconsistent Use of [Control |Statements |Maintainability [There exists a body within a condi- ([] o
Delimiters tional (if-else) statement that is en-
closed in delimiters (e.g., a com-
pound statement), whereas the other
body counterpart is not a compound
statement.
Multiple Breaks in |Control |Statements |Maintainability |There exists more than one break L L]
Loop statement within the body of an itera-
tive statement.
Redeclaration of Control |Attributes, Maintainability [The name of an entity (i.e., class ([] ([]
Identifiers Variables, variable, parameter, etc.) is re-
Parameters, declared as a local variable in a lower
Statements block (e.g., as a local variable)
No Break at End of [Control |Statements |Maintainability,|The last statement in the body of a ([] ([]
Multiple Branching Reliability multiple branching statement is not a
(case) Statement break statement.
Default Is Not the [Control |Statements |Maintainability,|A multiple branch statement that ([] ([]
Last Label in a Reliability where the default label does not
Multiple Branch occur as the last label.
Noncompound Control |[Statements |Maintainability, There exists a multiple branch state- | ® ([]
Multiple Branch Reliability ment where its body statement is not
Body a compound statement.
Multiple Branch Control [Statements |Maintainability,| There exists a top-level case (or L L
Statement Fall- Reliability default) labeled statement within the
Through body of a multiple branch statement,
which is not the first case (or default)
labeled statement in the body, and is
not preceded by a break statement.
Goto Statements Control [Statements |Maintainability,| There exists a goto statement within | @ ([]
Considered Harmful Reliability the body of a function.
Allocating Nonavail- [Dynamic |Available Maintainability,|[Memory has been allocated where ([] ([]
61

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

able Memory Memory, Reliability, system memory has been exhausted.
Statements |Efficiency
Memory Is Deallo- |Control [Statements |Maintainability,IMemory has been deallocated with- | ® []
cated Improperly. Reliability, out using a removal routine (e.g.,
Efficiency destructor), using the proper removal
routine, or in an object by another
object.
The Assignment Control [Methods, Maintainability,| The type of the object and that of the | ® []
Operator Returns Statements |Reliability return type of the assignment opera-
Unexpected Type tor do not match.
Assignment Opera- |Control |Statements |Maintainability,|Attributes have been omitted while ([] ([]
tor Attribute Missing Reliability overloading the assignment operator.
Passing Derived Structure |Classes, Maintainability,|A derived class passed by value is ([] ([]
Class Objects by Parameters |Reliability not treated as a base class (it should
Value be)
Out-of-Order Initiali- |Structure |Classes, Maintainability, {In most multiple-inheritance situa- [[
zation of Base Inheritance, |Reliability tions, the order of declaration of base
Classes Statements classes matters.
Inheriting the same [Structure |Classes, Maintainability,| The branch from which the feature is | @ ([]
feature from more Inheritance |Reliability to be inherited has not been made
than one class explicit.
Improper Exception [Structure |Methods, Maintainability,|An exception propagates beyond the | @ ([]
Management Exceptions, |Reliability scope, is ignored, is passed from a
Statements server to a client improperly, or is
wrong. Exception-handling mechan-
ism is missing, incorrect, or falls into
an infinite loop.
Improper Inherit- Structure |Classes, Maintainability,|An unnecessary or inappropriate ([] o
ance Implementa- Inheritance |Reliability feature has been inherited by a sub-
tion class. Subclass violates the invariant
of its superclass. Subclass violates
the precondition of the superclass.
Subclass implements specification or
restriction. A feature that is supposed
to be implemented in a subclass is
missing. Superclass is not initialized.
Superclass initialization is incorrect.
Visibility rules have been violated.
Improper Assertion |Control |[Methods, Maintainability, |Precondition not checked at entry. ([] o
Statements |Reliability Postcondition not ensured at exit.
Class invariant not checked at con-
struction, at entering a precondition,
and at exit Modal assertions not
checked (for modal classes).
Use of Instance Control [Methods, Maintainability,|An instance operator has been used |@® ([]
Operators with Statements [Reliability with an expanded type (primitive
Expanded Types type)
The \ Character Control |[Statements |Maintainability,|The \ character has not been L L
Misrepresented Reliability represented as string \\.
Substring Extraction |Control |Statements |Maintainability,| The substring offsets have been used| ® L
Offsets Used Incor- Reliability in a relative fashion, as opposed to
rectly two zerobased offsets: one pointing
to the start, the other to the character
one past the end.
Strings Have Been |[Control |Statements |Maintainability,|Strings not intern()-ed have been L L
Compared Using Reliability compared using the == operator.
62

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

incorrect Operator
Static Method As- |Control |Statements |Maintainability,|Static method has been assumed to ([]
sumed Dynamic Reliability be selected dynamically.
Incorrect Overriding |Structure, |Methods, Maintainability,|An overridden constructor contains a [
of Methods in Con- |Control |[Statements |Reliability method that uses the subclasses
structor fields but has not been initialized in

that constructor.
Default Logical Control [Methods, Maintainability,|A statement has assumed return of L
Value Assumed Statements [Reliability logical value without comparison.
A Reference to a Control |Attributes, |Maintainability,|A feature declared as final allows L
Final Feature Mi- Statements |Reliability change of data values in an object
sused because it is called by reference and

not by value.
Expanded Type Control |[Statements |Reliability An overflow without warning occurred L
Overflow with respect to a type such as int,

long, float, or double.
Return Type De- Structure |Method Reliability A constructor has been declared with ([]
clared for Construc- a return type.
tor
void Type Declared |Structure |Method Maintainability,|A constructor has been declared with ([]
for Constructor Reliability a void return type.
The + Operator Control [Statements [Maintainability,|The + operator has mistakenly been []

Reliability used by the system to imply concate-

nation when addition was intended or

vice versa.
Array Problems Control [Statements [Maintainability,|No space has been allocated for ([]

Reliability array. No objects assigned to each

array location. The type of array

object and type of array element

incompatible.
Casting Over Non- |Control |Statements |Maintainability,|Casting has been used to work over ([]
expanded Types Reliability nonexpanded types (objects other

than primitives).

Lange and Chaudron investigated to what extengdess detect consistency defects and to
what extent defects cause different interpretatimndifferent readers. The defects they inves-
tigated are listed in Table 25.

Table 25.

Defects by (Christian F. J. Lange & Chaudron, 2006; Christian F. J. Lange et al., 2006)

Message without ~ |Semantic |Sequences |Compilability |In sequence diagrams arrows [JNORE AN
Name (EnN) representing messages exchanged

by objects should be annotated with

a name that describes the message.
Message without Structure |Sequences, |Compilability [No correspondence between the ® Oloe
Method (EcM) Calls message name and a provided

method name.
Message in the Structure |Sequences, |Compilability |This inconsistency occurs if thereis |®|O | O | @
wrong direction (ED) Calls a message from an object of class A

63
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

to an object of class B but the me-
thod corresponding to the message
is a member of class A instead of

class B.
Class not instan- Structure |Sequences, |Compilability [No class instantiation in a sequence |[® (O[O | @
tiated in SD (CnSD) Classes diagram of a class that is defined in

a class diagram of the model.

Object has no Class |Structure |Sequences, |Compilability [This inconsistency occurs if there is |® |O (O | @
in CD (CnCD) Classes an object in a sequence diagram
and no corresponding class is de-
fined in any class diagram.

Use Case without |Structure |Use cases, |Compilability, [A use case that is not illustrated by (@ (OO | @
SD (UCnSD) Sequences |Conformance |any sequence diagram.

Multiple definitions |Semantic |Use cases, |Compilability, [More than one class has the same (@ (O[O |@®

of classes with Sequences |Maintainability |name in a single model. The differ-
equal names (Cm) ent classes may be defined in the
same diagram or in different dia-
grams.
Method not called in |Structure |Use cases, |Maintainability [A method of a class is notcalledas @ (O[O | @®
SD (MnSD) Sequences a message in any sequence dia-
gram.

4.10 Error Patterns

The concept “error patterns” was used by Andy Loagsand Eoin Woods to describe more
managerial problems (Longshaw & Woods, 2004). Tlegsar patterns are intended to help
with system-wide decisions about how to handle doratechnical errors. In the literature
they are defined as follows:

» “[error patterns] relate to the use of error gendnag, handling and logging mechanisms
— particularly in distributed systems.” (LongshawMgoods, 2004)

» “[error patterns] provide a landscape in which sdle and consistent decisions can be
made about when to raise errors, what types of retooraise, how to approach error
handling and when and where to log errors.” (Longah& Woods, 2004)

In the following table we list error patterns thegre found in the literature. The main large
collection of error patterns was collected by (Lsimgw & Woods, 2004, 2005).

Table 26. Error Patterns by (Longshaw & Woods, 2004, 2005)

Big Outer Try Block |Control |Classes, Maintainability |Exceptional conditions are rarely ® e O e
Statements anticipated in the design of the sys-
tem and should be handled before
the crash of the system.

Log at Distribution |Semantic |Classes Maintainability |Propagating technical errors between | ® | ® |O | O
Boundary system tiers results in error details
ending up in locations (such as end-
user PCs) where they are difficult to
access and in a context far removed
from that of the original error.

Log Unexpected Semantic |Classes Maintainability |Standard or common exceptions ® o0 Oo
Errors should be handled separately from
unexpected or rare ones.

64
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
Make Exceptions Semantic |Classes Maintainability |Exceptions are used to indicate ex- | ® o
Exceptional pected error conditions occurring -

calling code becomes much more

difficult to understand.
Split Domain and Semantic Maintainability |Missing differentiation between “do- |® o
Technical Errors main errors” and “technical errors”.

Technical errors (e.g., DB problems)

must be handled while domain errors

(e.g., Missing customer name) can

be ignored.
Unique Error Iden- [Control |Classes, Maintainability |If an error on one tier in a distributed | ® o
tifier Statements system causes knock-on errors on

other tiers you get a distorted view of

the number of errors in the system

and their origin.
Hide Technical Semantic |Classes Maintainability,| The technical details of errors may ([] o
Detail from Users Usability cause unnecessary concern and

support overhead.
Ignore Irrelevant Semantic |Classes Maintainability | Technical errors or exceptions do not | ® ([]
Errors denote a real problem and so report-

ing them can just be confusing or

irritating for support staff.
Single Type for Structure |Classes, Maintainability, Exception Hierarchy with far too few |@® []
Technical Errors Inheritance |Reliability Classes.

4.11 Fault Patterns

The concept “fault patterns” is similar in namedesign patterns but is more similar to coding
or design defects. Fidel Nkwocha and Sebastianugibased the term to describe problems
in end-user programming environments such as Matlaibke Alexander used it for inherit-
ance and polymorphism problems. These fault patteepresent problematic parts of the
software system that produce faulty or uncompil@blée. In the literature they are defined as
follows:

» “Fault patterns are code idioms that may constitfatalts.” (Nkwocha & Elbaum, 2005)

» “[Fault patterns] are useful because they indicdle possible presence of faults that re-
sult from the use of inheritance and polymorphisAlexander et al., 2002)

Table 27.

Fault Patterns (in Matlab) by (Nkwocha & Elbaum, 2005)

Definition without a |[Control |Attributes, Maintainability,|A variable is declared and allocated, |® |0 |O | @®
Usage: DeflUsed Statements |Efficiency but never used - i.e., memory was

unnecessarily allocated.
Usage without a Control |Attributes, |Maintainability,|A variable is being utilized beforeits (® (O[O | @®
previous Definition: Statements |Reliability, definition — resulting in late discovery
Used!Def (Usability) in an interpreter.
File may not get Control [Statements |Maintainability,|A “file opening” statement is not @0 00
Closed: FO- Reliability followed by a corresponding “file
pened!Close closing” statement — sometimes be-

cause open streams may lead to

undefined behavior, may claim re-

sources for longer than necessary, or

may just cause failures if other opera-

tions are performed (e.g., open,

65
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
share).

Unmatched Re- Control |Statements |Maintainability,|A function returns an unexpected

turned Values: URe- Reliability number of output or returned values

turns were ignored.

Unreachable Func- |Structure |Statements [Maintainability [Functions that are not invoked

tions: Function!Used throughout the program.

Switch without a Control |Statements |Maintainability,|A switch statement without a default

Default: Reliability Clause — i.e., the default behavior is

Switch!Otherwise missing when the switch values do
not occur.

Improper Exception [Control |Statements |Maintainability,|A try without its corresponding

Handling: Try!Catch Reliability catch

Likely Infinite Loop: [Control |Statements |Maintainability,|A looping structure with no obvious

InfLoop Reliability exit strategy.

Table 28.

Fault Patterns by (Alexander et al., 2002)

ITU Inconsistent Structure |Classes, Maintainability,|A descendant class does not override
Type Use (context Inheritance, |Reliability any inherited method - thus, there
swapping) Methods can be no polymorphic behavior.
SDA State Definition|Structure, |Classes, Maintainability, |Refining methods implemented in the
Anomaly (possible |Semantic |Inheritance, |Reliability descendant must leave the ancestor
post-condition viola- Methods in a state that is equivalent to the
tion) state that the ancestor’s overridden
methods would have left the ancestor
in.
SDIH State Defini- |[Structure |Classes, Maintainability,|A local variable is introduced to a
tion Inconsistency Inheritance, |Reliability class definition where the name of
(due to state varia- Attributes the variable is the same as an inhe-
ble hiding) rited variable.
SDI State Defined |Structure, |Classes, Maintainability, If the computation performed by an
Incorrectly (possible [Semantic |Inheritance, |Reliability overriding method isn’t semantically
post-condition viola- Attributes equivalent to the overridden method,
tion) then subsequent state dependent
behavior in the ancestor will likely be
affected - the externally observed
behavior of the descendant will be
different from the ancestor.
11ISD Indirect Incon- |Structure, [Classes, Maintainability,|A descendant adds an extension
sistent State Defini- |Semantic |Inheritance, |Reliability method that defines an inherited
tion Attributes state variable — resulting in a data

flow anomaly by having an effect on
the state of the ancestor that is not
semantically equivalent to the over-
ridden method.

412 Flaws

One of the commonly used umbrella terms for sneelld antipatterns on the software design
level is “design flaw”. While only few problems atteemselves called or categorized as flaws
other problems are typically subsumed with thimteln general, flaws are problems that are
associated with one or more design principle orikgc. In the literature they are defined as

follows:

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

* “The structural characteristic of a design entity @esign fragment that expresses a devi-
ation fen set of criteria typifying the high-quglnf a design” (Marinescu, 2002)

The flaw concept is used to describe problems riédtice the quality of a software system
(mostly on the structural design level).

Beside the flaws on the code or design levels nwdhgr problems were described using the
flaw metaphor. Today, we have flaws on differerdgtedction layers, for development phases,
or technologies such as design flaws (Marinesc02p0r security flaws (Petroni & Arbaugh,
2003).

Table 29.

Design Flaws by (Marinescu, 2002)

Feature Envy Structure |Classes, Maintainability |A method that is more interested in o
Calls data of another class than the one of
its own.
God Method Structural |Classes, Maintainability,|A method that centralizes the func- ([]
Methods Portability tionality in a class.
Data Class Structure |Classes, Maintainability |Classes that do almost exclusively [
Attributes, store information for other classes.
Methods Optionally, these classes have getter
and setter methods for the attributes.
God Class Structural |Classes, Maintainability,|Classes with too many functionality ([]
Associations |Portability and associations to other classes.
Shotgun Surgery Historic |Versions, Maintainability,|Several classes are changed in a @)
Classes Portability group every time a specific kind of
change is to be made.
God Package Structural |Packages, |Maintainability,|Packages with too many client pack- ([]
Associations |Portability ages.
Wide Subsystem Structure |Subsystem |Maintainability | The interface to a subsystem is too []
Interface large (too many open packages and
classes)
Lack of Bridge Structure |Classes Maintainability |Absence of the Bridge Pattern ([]
Lack of Strategy Structure |Classes Maintainability |[Absence of the Strategy Pattern ([]
Table 30. Design Flaws by (Marinescu & Lanza, 2006)

© Copyright by VIDE Consortium

God Class Structural |Classes, Maintainability, |Classes with too many functionality ([]
Associations |Portability and associations to other classes.
Feature Envy Structure |Classes, Maintainability |A method that is more interested in o
Calls data of another class than the one of
its own.
Data Class Structure |Classes, Maintainability |Classes that do almost exclusively L
Attributes, store information for other classes.
Methods Optionally, these classes have getter
and setter methods for the attributes.
Brain Method Structural |Classes, Maintainability,|A method that centralizes the func- ([]
Methods Portability tionality in a class.
67

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
Brain Class Structural |Classes, Maintainability,|A class that tends to accumulate an [
Methods Portability excessive amount of intelligence,
usually in the form of several me-
thods affected by Brain Method.
Significant Duplica- |Semantic |[Methods, Maintainability,|ldentical code passages are distri- (@)
tion Statements |Reliability buted over the whole system
Intensive Coupling |Structural |Methods, Maintainability,|A method is tied to many other close [
Calls Portability operations in the system
Dispersed Coupling [Structural |[Methods, Maintainability,|A method is tied to many other distri- ([]
Calls Portability buted operations in the system
Shotgun Surgery Historic |Versions, Maintainability,|Several classes are changed in a @)
Classes Portability group every time a specific kind of
change is to be made.
Refused Parent Structure |Classes, Maintainability [Subclasses that inherit attributes and o
Bequest Attributes, methods that they do not use.
Methods
Tradition Breaker |Structure |Classes Maintainability |The interface of a class breaksthe |®|O (O |@®
Inheritance inherited “tradition”, e.g., has an
excessive increase.

4.13 Heuristics

Beside the explicit description of problems therhture has a large corpus of heuristics and
characteristics that should be applied — esp. erotject-oriented design level. While many
of them are descriptions of positive practicesamdg) structures / designs (e.g., “Minimize
Fanout in a class”) several of them are negatidnsegative practices (e.g., “Do not create
god classes”). Similar to patterns we can not uditmmally use or invert a heuristic and find
a bad or worst practice. However, in the case es¢megated heuristics it is possible. In gen-
eral, bad heuristics are problems that are assaocwith one or more design principle. In the
literature they are defined as follows:

» “[Heuristics] are meant to serve as warning mecltams which allow the flexibility of
ignoring heuristic as necessary” (Riel, 1996b)

* “[Heuristic is] A small and legible piece of desigxpertise that delivers experience from
the expert to the novice in the most effective mah(Gibbon, 1997)

* “Aheuristic is a rule of thumb. It is an advice bow to use design techniques in order to
solve design problems. It provides guidelines ifedifhg appropriate solutions.” (Grote-
hen, 2001)

The bad heuristic concept is used to describe enoblthat reduce the quality of a software
system (mostly on the design level).

Beside the bad heuristics on the code or desigeldewnany other problems were described
using the heuristic metaphor. Today, we have badistees on different abstraction layers,

for development phases, or technologies such asshies for object-oriented systems (Riel,

1996b) (Shadrin, 2005) and interactive systems K@oc& Gram, 1996).

In the following sections we will list most of theebad heuristics that were found in the litera-
ture survey. The first larger collection of bad hstics was collected by Arthur J. Riel:

Table 31.

Heuristics by (Riel, 1996b)

68
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

#2.1: All data should [Structure [Classes Maintainability |The classes gives access on far too | @® []
be hidden within its many information
class.
#2.2: Users of a Structure |Classes, Maintainability,|A class depends on its users. [] o
class must be de- Association |Portability
pendent on its pub-
lic interface, but a
class should not be
dependent on its
users.
#2.3: Minimize the |Structure |Classes, Maintainability,| Too many methods [[
number of messag- Methods Portability
es in the protocol of
a class.
#2.4: Implementa |Semantic |Classes, Maintainability, Too many similar methods in unre- | @ (@)
minimal public inter- Inheritance, |Portability lated classes (e.g. operations such
face which all Methods as copy (deep versus shallow),
classes understand equality testing, pretty printing, pars-
ing from a ASCII description, etc.).

#2.5: Do not put Structural |Classes, Maintainability, The complexity of the class interface | @ ([]
implementation Methods Portability is too big. Methods in the class inter-
details such as face that are not used. Methods that
common-code pri- are used by other methods (i.e.,
vate functions into common code) in the interface.
the public interface
of a class.
#2.6: Do not clutter |Structure |Classes, Maintainability,|Methods in a class interface that ([] ([]
the public interface Methods Portability cannot be used.
of a class with
things that users of
that class are not
able to use or are
not interested in
using.
#2.7: Classes Structure |Classes, Maintainability,|A class should only use operations in| @ ([]
should only exhibit Methods Portability the public interface of another class
nil or export coupl- or has nothing to do with that class.
ing with other
classes
#2.8: A class should |Structure, |Classes, Maintainability |A class with a large number of public | ® ([]
capture one and Semantic |Methods, responsibilities (e.g., interfaces).
only one key ab- Interfaces Multi-Noun class names.
straction.
#2.9: Keep related |Structure |Classes, Maintainability |Classes that dig data out of other ([] ([]
data and behavior in Methods, classes using getter-methods
one place. Statements
#2.10: Spin off non- |Structure |Classes, Maintainability |A subset of methods works on a L L
related information Methods, subset of attributes (i.e. different
into another class Statements responsibilities)
(i.e. noncommuni-
cating behavior).
#2.11: Be sure the |Structure, |Classes, Maintainability |A class that incorporate two or more |@® [
abstraction that you |Semantic |Methods, behaviors based on a role (e.g.,
model are classes Names Person’). Classes with different
and not simply the names but similar or identical beha-
roles objects play. vior (e.g., Mother and Father).

69

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

#3.1: Distribute Structure |Classes, Maintainability |The top level classes in a design L
system intelligence Methods, should share the work uniformly.
horizontally as un- Statements
iformly as possible
#3.2: Do not create |Structural,|Classes, Maintainability, |Classes with too many functionality ([]
god classes/objects |Semantic |Associations, |Portability and associations to other classes. Be
in your system. Names very suspicious of an abstraction

whose name contains Driver, Man-

ager, System, or Subsystem.
#3.3: Beware of Structural |Classes, Maintainability,|Classes with too many functionality ([]
classes that have Methods, Portability and associations to other classes.
many accessor Names Many accessor methods imply that
methods defined in related data and behavior are not
their public inter- being kept in one place.
face,
#3.4: Beware of Structure |Classes, Maintainability [Methods which operate on a proper ([]
classes which have Methods, subset of the data members of a
too much non- Statements class. God classes often exhibit lots
communicating of non-communicating behavior.
behavior
#3.5: The model Structure |Classes, Maintainability |In applications which consist of an ([]
should never be Methods, object-oriented model interacting with
dependent on the Statements a user interface, the model should
interface. The inter- never be dependent on the interface.
face should be The interface should be dependent
dependent on the on the model.
model.
#3.6: Model the real [Semantic [Names Maintainability [Names do not match the real world ([]
world whenever
possible.
#3.7: Eliminate Structure |Classes, Maintainability |Classes that do almost exclusively ([]
irrelevant classes Attributes, store information for other classes.
from your design. Methods Optionally, these classes have ac-

cessor or print methods.
#3.8: Eliminate Structure |Classes, Maintainability |A class with methods that aren’t used ([]
classes that are Methods, or required.
outside the system. Statements
#3.9: Do not turn an [Semantic [Names Maintainability |Be suspicious of any class whose ([]
operation into a name is a verb or derived from a
class. verb. Especially those which have

only one piece of meaningful beha-

vior (i.e. do not count sets, gets, and

prints).
#3.10: Agent Structure |Classes, Maintainability |A decoupling class with more me- ([]
classes are often Methods, thods than data that uses a class
placed in the analy- Statements with more data than method and is
sis model of an used by a third class.
application.
#4.1: Minimize the |Structure, |Classes, Maintainability [Too many classes are linked to this ([]
number of classes |Control |Methods, class by an extensive network of
with which another Calls, State- data or control flows.
class collaborates. ments
#4.2: Minimize the |Structure, |Classes, Maintainability |Too many messages are send be- (o]
number of message |Control Methods, tween this class and a collaborator
sends between a Calls, State-
class and its colla- ments

70

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

borator.
#4.3: Minimize the |Structure, |Classes, Maintainability |Too many different messages are o
amount of collabora-|Control |Methods, send between this class and a colla-
tion between a class Calls, State- borator
and its collaborator, ments
i.e. the number of
different messages
sent.
#4.4: Minimize fa- |Structure, |Classes, Maintainability |The product of the number of mes- [
nout in a class Control |Methods, sages defined by the class and the

Calls, State- messages they send is too high.

ments
#4.5: If a class con- |Structure, |Classes, Maintainability [The containment relationship should ([]
tains objects of Control |Attributes, always imply a uses relationship.
another class then Methods,
the containing class Calls, State-
should be sending ments
messages to the
contained objects
#4.6: Most of the Structure, |Classes, Maintainability |Attributes are not (enough) used by ([]
methods defined on |Control |Attributes, the methods in a class.
a class should be Methods,
using most of the Calls, State-
data members most ments
of the time.
#4.7: Classes Structure |Classes, Maintainability |Too many Objects in a class ([]
should not contain Attributes
more objects than a
developer can fit in
his or her short term
memory. A favorite
value for this num-
ber is six.
#4.8: Distribute Structure, |Classes, Maintainability |The classes in an inheritance hie- [
system intelligence |Control |Inheritance, rarchy should share the work un-
vertically down Methods, iformly.
narrow and deep Statements
containment hierar-
chies.
#4.9: When imple- |Control |Classes, Maintainability |Semantic constraints on a class L
menting semantic Attributes (instantiation) not within the construc-
constraints, it is best tor.
to implement them
in terms of the class
definition.
#4.10: When im- Control [Classes, Maintainability |Unnecessary constraints in a class [
plementing seman- Inheritance, that belongs to a subclass
tic constraints in the Methods,
constructor of a Statements
class, place the
constraint test in the
constructor as far
down a containment
hierarchy as the
domain allows.
#4.11: The semantic |Structure |Classes, Maintainability |Semantic information encoded in the ([]
information on Attributes, same class it is needed

71

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

which a constraint is Methods,

based is best placed Statements

in a central third-

party object when

that information is

volatile.

#4.12: The semantic|Control |Classes, Maintainability |Semantic information encoded in the (o]

information on Inheritance, classes that needs it.

which a constraint is Methods,

based is best de- Statements

centralized among

the classes involved

in the constraint

when that informa-

tion is stable.

#4.13: A class must |Structure |Classes, Maintainability [The contained class should not have []

know what it con- Attributes, a reference on the containing one.

tains, but it should Methods

never know who

contains it.

#4.14: Objects Structure |Classes, Maintainability |Classes shared as objects in other o

which share lexical Attributes, classes (i.e., its fields) should not use

scope should not Calls, State- each other.

have uses relation- ments

ships between

them.

#5.1: Inheritance Structure, |Classes, Maintainability |Inheritance is used instead of con- L

should only be used |Control |Inheritance, tainment.

to model a speciali- Calls, State-

zation hierarchy. ments

#5.2: Derived Structure, |Classes, Maintainability [Base classes with access to or con- ([]

classes must have |Control Inheritance, taining a derived class.

knowledge of their Calls, State-

base class by defini- ments

tion, but base

classes should not

know anything

about their derived

classes.

#5.3: All dataina |Structure, |Classes, Maintainability [Non-private attibutes in a base class ([]

base class should |Control |Attributes

be private, i.e. do

not use protected

data.

#5.4: Theoretically, |Structure |Classes, Maintainability | The inheritance tree is not depth (o]

inheritance hierar- Inheritance enough.

chies should be

deep, i.e. the dee-

per the better.

#5.5: Pragmatically, |Structure |Classes, Maintainability | The inheritance tree is too depth. A o

inheritance hierar- Inheritance popular value for this depth is six.

chies should be no

deeper than an

average person can

keep in their short

term memory.

#5.6: All abstract Structure [Classes, Maintainability |[An abstract class must have children. ([
72

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

classes must be Inheritance

base classes.

#5.7: All base Structure |Classes, Maintainability |An abstract class inherits from (JIOREONY
classes should be Inheritance another base class.

abstract classes.

#5.8: Factor the Structure, |Classes, Maintainability |Commonalities between all related |®|O|O|O
commonality of Semantic |Inheritance, classes should be shared in a com-

data, behavior, Attributes, mon ancestor.

and/or interface as Methods

high as possible in
the inheritance

hierarchy.

#5.9: If two or more |Structure, |Classes, Maintainability |Data commonalities between some |® |0 |O | O
classes only share |Semantic |Inheritance, related classes should be shared in a

common data (no Attributes, contained class.

common behavior) Methods

then that common
data should be
placed in a class
which will be con-
tained by each
sharing class.

#5.10: If two or Structure, |Classes, Maintainability |Commonalities between unrelated ® O[O|0
more classes have [Semantic |Inheritance, classes should be shared in a com-

common data and Attributes, mon ancestor.

behavior (i.e. me- Methods

thods) then those
classes should each
inherit from a com-
mon base class
which captures
those data and

methods.

#5.11: If two or Structure, |Classes, Maintainability |Classes implementing an interface |®|O|O | @
more classes only |Semantic |Inheritance, that is not needed or used.

share common Usage

interface (i.e. mes-
sages, not methods)
then they should
inherit from a com-
mon base class only
if they will be used
polymorphically.

#5.12: Explicit case |Structure, |Classes, Maintainability,|Case or Switch statements are used |0 |O |® | O
analysis on the type |Control |Inheritance, |Reliability to differentiate between different
of an object is Statements classes.
usually an error.
#5.13: Explicit case |Structure, |Classes, Maintainability,|Case or Switch statements are used |© O |®|O
analysis on the Control |Atrributes, Reliability to differentiate between different
value of an attribute Statements attribute values (e.g., states).
is often an error.
#5.14: Do not model |Structure, |Classes, Maintainability,|An attempt to model dynamic seman-| 0 |O |@® | O
the dynamic seman- (Control [Statements |Reliability tics with a static semantic relation-
tics of a class ship will lead to a toggling of types at
through the use of runtime.
the inheritance
relationship.
73

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

#5.15: Do not turn |Structure |Classes Maintainability |Be very suspicious of any derived ® O0@
objects of a class class for which there is only one

into derived classes instance.

of the class.

#5.16: If you think |Control |Classes Maintainability |Creation of classes at runtime o oCle e

you need to create
new classes at
runtime, take a step
back and realize
that what you are
trying to create are
objects. Now gene-
ralize these objects

into a class.
#5.17: It should be |Structure |Class, Inhe- |Maintainability [A method is overridden with an emp- |® | O | O | ®
illegal for a derived ritance ty method.

class to override a
base class method
with a NOP method,
i.e. a method which
does nothing.

#5.18: Do not con- |Structure |Class, Inhe- |Maintainability |Containment modeled as inheritance |© |O (O | ®
fuse optional con- ritance
tainment with the
need for inheritance,
modeling optional
containment with
inheritance will lead
to a proliferation of

classes.

#5.19: When build- |Semantic |Classes, Portability Inheritance hierarchy could be more |©|O|O|0O
ing an inheritance Inheritance, general to fit the domain instead of

hierarchy try to Names the system.

construct reusable
frameworks rather
than reusable com-

ponents.
#6.1: If you have an |Structural |Classes, Maintainability |A class inherits from two or more 0 OO0 @
example of multiple Inheritance classes (i.e., multiple inheritance)

inheritance in your
design, assume you
have made a mis-
take and prove

otherwise.

#6.2: Whenever Semantic |Classes, Maintainability |Inheritance is not based on a specia- | ® |0 |O | @
there is inheritance Inheritance, lization concept (e.g., is-a)

in an object-oriented Names

design ask yourself
two questions: 1)
Am | a special type
of the thing I'm
inheriting from? and
2) Is the thing I'm
inheriting from part

of me?
#6.3: Whenever you |Structural |Classes, Maintainability |One base class is derived from ® O 0le
have found a mul- Inheritance another base class above a class

tiple inheritance

74
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

relationship in an
object-oriented
design be sure that
no base class is
actually a derived
class of another
base class, i.e.
accidental multiple
inheritance.

#7.1: When given a
choice in an object-
oriented design
between a contain-
ment relationship
and an association
relationship, choose
the containment
relationship.

Structural

Classes,
Calls

Maintainability

Try to change associations into con-
tainments, if possible.

#8.1: Do not use
global data or func-
tions to perform
bookkeeping infor-
mation on the ob-
jects of a class,
class variables or
methods should be
used instead.

Structure,
Control

Attributes,
Calls

Maintainability

An externally declared variable that
is referenced within a class but is not
an attribute within the class.

#9.1: Object-
oriented designers
should never allow
physical design
criteria to corrupt
their logical designs.

Semantic

Classes

Maintainability

Design should be understandable
and not necessarily 100% perfect
regarding the real world

#9.2: Do not change
the state of an ob-
ject without going
through its public
interface.

Structural

Classes

Maintainability

The classes gives access on
attributes responsible to hold the
state

Table 32.

Heuristics by (Gibbon, 1997)

© Copyright by VIDE Consortium

CC1 Limit the num- |[Structure |Classes, Maintainability,|A class with far too many methods, [
ber of methods per Methods, Portability attributes, and consequently respon-
class Statements sibilities.
CC2 Limit the num- |Structure |Classes, Maintainability |A class with far too many attributes. ([]
ber of attributes per Attributes
class
CC3 Limit the mes- |Structure, |Classes, Maintainability |A class with far too many incoming ([]
sages that an object |Control |Usage messages (Users).
can receive

75

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming

Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
Type of [Design Enti- | Quality As- Qls|8|~
. . . . L. v|®|S| ®©
Name Quality ties in- pects af- Description ~|E|&| 8
Defect volved fected Z|8|a |-
o m
CC4 Minimise com- (Control |Methods Maintainability |A class with too much complexity @ O|0|@®
plex methods (e.g., too many complex methods)
CC5 Limit enabling [Structural |Classes, Maintainability | The classes gives access onfartoo |® O[O | ®
mechanisms that methods many information via methods
breach encapsula-
tion
CC6 Hide all imple- (Structural |Classes Maintainability | The classes gives access onfartoo |® (O[O |®
mentation details many information
CU1 Limit the num- |Structural |Methods, Maintainability,| Too many classes are coupled ® O|0|0
ber of collaborating Calls Portability among each other.
classes
CU2 Restrict the Structural |Classes Maintainability | The interface gives access on fartoo |® [0 |O | @
visibility of interface many information
collaborators
CA1 The aggregate |Structural |Classes, Maintainability |Too many aggregated classes @0 OC|@
should limit the Attributes
number of aggre-
gated
CA2 Restrict access |Structural,|Classes, Maintainability |Too many aggregated attributes are | ® O |O | @
to aggregated by Control |Calls accessed by clients
clients
RA1 Aggregation |Structure |Classes, Maintainability | The inheritance tree for classes that | ® |O|O | O
hierarchies should Attributes, are aggregated is too depth.
not be too deep Inheritance
RA2 The leaf nodes |Structure |Classes, Maintainability, |A leaf class with far too many me- e O|0|@®
in an aggregation Inheritance, |Portability thods, attributes, and consequently
hierarchy should be Methods responsibilities.
small, reusable and
simple
RA3 Stability should |Structure, |Classes, Maintainability,| The stability of an aggregation hie- |®[O|O|O
descend the hie- Historic |Inheritance, |Portability rarchy relies upon the stability of its
rarchy from rich Attributes, leaf nodes and the extent to which its
aggregates to their Versions uppermost aggregates have encap-
building blocks sulated them.
CI1 Limit the use of |Structure |Classes, Maintainability |The amount of classes with multiple |®|O|O | @
multiple inheritance Inheritance inheritance should be 0.
CI2 Prevent over- |Structure |Classes, Maintainability |A base class that isn’t doing much. |®|O|O | @
generalisation of the Methods,
parent class Statements
RI1 The inheritance |Structure |Classes, Maintainability | The inheritance tree is too depth. ® O|0|0
hierarchy should not Inheritance
be too deep
RI2 The root of all |Structure |Classes, Maintainability |A base class should be abstract. o O|0|@®
inheritance hierar- Inheritance
chies should be
abstract
RI5 Strive to make |Structure |Classes, Maintainability |An abstract class inherits from JNGRIONK |
as many interme- Inheritance another base class.
diary nodes as
possible abstract.
RI6 Stability should |Structure, |Classes, Maintainability,| The stability of a hierarchy relies ®O|O|O
ascend the inherit- |Historic |Inheritance, |Portability upon the stability of its base classes.
ance hierarchy Versions
RI7 Inheritance is a |Semantic |Classes, Maintainability |Inheritance is not based on a specia- |® [0 |O | ®
specialisation hie- Inheritance, lization concept (e.g., is-a)
76

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

rarchy

Names

Table 33.

Heuristics by (Grotehen, 2001)

© Copyright by VIDE Consortium

A class in a con- Structure, |Classes, Maintainability |A class should neither depend from L
tainment hierarchy [Control |Inheritance, its container or from one of its sibl-
should only depend Calls, State- ings. A class should not depend from
from its child ments classes below its siblings.
classes
Every attribute Structure |Classes, Maintainability |Do not use attributes in the public o
should be hidden Attributes, interface of a class.
within its class Calls
A client-server de- |Structure |[Classes, Maintainability |Do not use attributes or methods in (o]
pendency between Attributes, the public interface of a client class in
two classes should Methods, its server class. Do not inherit from a
not Lead to depen- Calls client class. Do not send messages
dencies from the to instances of a derived class.
server to the client
Avoid dependencies |Structure |Layers, Calls [Maintainability,|Avoid relationships from database L
from database Portability classes to classes outside the data-
classes to their base. Use callback functions or event
clients mechanisms if communication from a

database to its clients is required.
A class should cap- |Structure, |Classes, Maintainability |Do not distribute knowledge about a [
ture one and only |Semantic |Methods, key abstraction among many classes.
one key abstraction Interfaces Do not model different key abstrac-
with All its informa- tions in a single class.
tion and all its beha-
viour
Do not create unne- |Structure, |Classes, Maintainability |Classes that are too similar (and L
cessary classes to |Semantic [Methods, probably related). Model only one
model roles Names class for an entity with different roles

and provide the role information in

other ways e.g. in state attributes.
Avoid pure accessor |Structural |Classes, Maintainability,| Try to minimize the number of me- ([]
methods Methods, Portability thods which only return or change an

Names attribute of their class. Instead of

pure accessor methods use methods

which implement some interesting

behavior of the instance.
Avoid additional Structure, |Classes, Maintainability |Avoid associations and using rela- ([]
relationships from |Control |Inheritance, tionships that lead to a dependency
base classes to their Calls, State- from a base class to its derived class.
Derived classes ments
Avoid classes with |Semantic |Classes, Maintainability,|Data is stored redundantly in multiple L
properties implying Methods, Reliability classes. This heuristic is similar to
redundancies Attributes 3nf (Third normal form in Databases).
Avoid multivalued |Semantic |Attributes Maintainability |Eliminate every multivalued depen- L
dependencies dency.
Convert associa- Structure |Associations |Maintainability [Replace loose relationships by rela- ([]

77

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1

Date: 09 August 2007

tions, and uses
relationships in the
Strongest contain-
ment relationship
wherever possible

tionship that restrict visibility. Avoid
many loose relationships. The appli-
cation of this heuristic converts a
given class hierarchy into a narrow
and deep containment hierarchy.

class, classes of its
parameters, or
classes of instances
locally created.

Avoid contained Structure, |Classes, Maintainability,|Avoid a class specification where
instances that have |Control |[Methods, Efficiency different contained instances have to
to be modified Con- Statements be modified by concurrent transac-
currently tions (e.g., because of (static) class
variables).
All properties of the |Structure |Class, Inhe- |Maintainability | The interface of a derived class
base class interface ritance should fully implement its base class
must be usable in interface. If a base class instance is
Instances of its expected, no additional properties of
derived classes in a derived class should be needed.
every location
where a base Class
instance is expected
Common properties |Semantic,|Classes, Maintainability |Avoid properties that have the same
of instances should |Structure |Inheritance, meaning and are defined in different
be defined in a Attributes, locations. Move common properties
single Location Methods in derived classes to the base class.
Instable classes Structure, |Classes, Maintainability,|Classes that depend on many other
should not be base |Historic |Inheritance, |Portability classes should not be base classes.
classes Attributes, Classes that are instanciable should
Versions not be base classes
Do not misuse inhe- Structure, |Classes, Maintainability [Avoid using inheritance if you intend
ritance for sharing [Semantic |Inheritance, to share only the attributes of the
attributes Attributes, inherited base class among the de-
Methods rived classes. Use association of
aggregation of a shared instance for
sharing attributes.
The overloading Structure |Classes, Maintainability |Analyze exactly the differences in
should define only Methods, both methods than describe these
differences to the Statements differences in the overloading me-
overloaded method thod.
Avoid case analysis |Structure, |Classes, Maintainability,|Avoid case analysis on attributes of
on properties of Control |Atrributes, Reliability an instance. Avoid case analysis on
instances Statements attributes of an instance, which influ-
ence its behavior.
Prefer typing by Structure, |Classes, Maintainability, |If the differences are small the differ-
attribute before Control |Inheritance, |Reliability ing instances should be modeled in
typing by inherit- Statements the same class. Attributes should be
ance used to model the differences.
A method should Strucutre, |Classes, Maintainability (Use of too many foreign classes. This
use only classes of |Control |Methods, is an application of the law of Deme-
attributes of its Calls ter. The implementers of a method

should only use this restricted set of
classes in the method implementa-
tion.

4.14 llinesses

The medicine-based term iliness was used by Hawkitige book “” to describe problems on
the management level (Hawkins, 2003). These softwiesses represent problematic parts

78
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

of the software system that seem wrong, complicaitedumbersome to an experienced de-
veloper. In general, illnesses are abstract probldrat mostly cannot be pinpointed directly
in the source code or a software model. In thedlitee they are defined as follows:

* “[lllnesses are] a metaphor for describing prograrmg errors” (Hawkins, 2003)

While some ilinesses are general problems, e.ghenlevelopment process they do consist of
several smaller individual problems that are dlyeassociated with the architecture, design,
or code. llinesses such as “NIH syndrome” wereaxaiuded even if the refusal of external
code is more a productivity problem (and has naatieg of the quality of the resulting sys-

tem per se).

Table 34.

llinesses by (Hawkins, 2003)

Premature Optimi- [Semantic |Statements, |Maintainability,|Optimizing too early in the develop-
zation Comments |Portability ment process, e.g., by uncommunica-
tive code.
CAP Epidemic Semantic |Methods, Maintainability,| Duplicating code or comments using
Statements, |Portability Copy And Paste (CAP)results in
Comments distributed changes and bugs.
NIH Syndrome Semantic |External (Productivity) |Fear of (re-)using external code or
components libraries.
Complexification Semantic |Classes, Efficiency Making a solution more complex than
Methods it has to be
Over Simplification |Structure |Classes, Maintainability |Making a solution too simple than it
Methods, has to be and creating too many
Statements small methods and classes.
Docuphobia Semantic |Notes / Maintainability |Writing too few or uncommunicative
Comments comments and documentation
i Semantic |Comments, |Maintainability (Usage of uncommunicative hames
Names for variables or redundant comments
Hardcode Semantic |Attributes, Maintainability,|Hard-coded numbers and strings in
Names Portability the code
Brittle Bones Semantic |Methods, Maintainability, | Applications build on buggy libraries,
Statements |Reliability instable cores, or brittle frameworks
with missing, unused, overly different,
or overly complex features.
Requirement Defi- [Semantic,|Requirement [Maintainability,|Unfinished, incomplete, vague, ab-
ciency Structure |document Reliability stract, or large requirements
Myopia Semantic |Classes, Maintainability,|{Unfinished problems with sub-optimal
Methods Reliability, solutions (quick-fixes, workarounds,
Portability etc.).

4.15 Metric Thresholds

A relatively basic concept of defects is capturethwhe “threshold” concept. While metrics
are often used to assess the software quality predict the project development sometimes
thresholds are used to describe concrete problearenz and Kidd used this term in their
book “Object-oriented software metrics” to descrip@blems in object-oriented software
system that should be removed (Lorentz & Kidd,)99 the literature they are defined as
follows:

79
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

* “A measurement value that has been determined firquoject experiences to be signif-
icant in terms of desirable or undesirable desigmgh some margin of error.” (Lorentz

& Kidd, 1994)

Table 35.

Metric Thresholds by (Lorentz & Kidd, 1994)

© Copyright by VIDE Consortium

(Optimum) Number |Structure |Classes Maintainability |A system should consist of 20-40% o
of Key Classes key classes (i.e., classes central to

the business domain)
(Optimum) Number |Structure |Classes Maintainability |A system should consist of one to o
of support classes three times as much support classes

(i.e., classes providing basic service

or interface capabilities)
(Optimum) Number |Structure |Classes Maintainability [There shouldn’t be too many subsys- o
of subsystems tems (i.e., collections of classes that

supports a set of end-user functions)
(Optimum) Number |Structure |Method, Maintainability,| There shouldn’t be more than nine ([]
of message sends Calls Portability messages send by a method.
(Optimum) Number |Structure |Method, Maintainability |There shouldn’t be more than seven ([]
of statements Statements statements in a method.
(Optimum) Lines of |Structure |Method, Maintainability [There shouldn’t be more than six ([]
Code Statements (Smalltalk) or 24 (C++) lines of code

in a method.
(Optimum) Method |Control |[Method, Maintainability |Methods shouldn’t have a complexity ([]
complexity Statements over 65 (based on defined weights).
(Optimum) Number |Structure [Class, Me- [Maintainability |There shouldn’t be more than 20 ([]
of public instance thods public instance methods in a class.
methods in a class
(Optimum) Number |[Structure |Class, Me- |Maintainability [There shouldn’t be more than 20 ([]
of instance methods thods instance methods in a class (40 in Ul
in a class classes).
(Optimum) Number |Structure |Class, Maintainability,| There shouldn’t be more than 3 in- ([]
of instance variables Attributes Portability stance variables in a class (9 in Ul
in a class classes).
(Optimum) Number |[Structure |Class, Me- |Maintainability |There shouldn’t be more than 4 class []
of class methods in thods methods (i.e., static) in a class.
a class
(Optimum) Number |Structure |Class, Maintainability | There shouldn’t be more than 3 class L
of class variables in Attributes variables (i.e., static) in a class.
a class
(Optimum) Class Structure |Class, Inhe- |Maintainability [The inheritance hierarchy level ([]
hierarchy nesting ritance should be lower than 6.
level
(Optimum) Number |Structure [Class Maintainability |A system should consist of 10-15% o
of abstract classes abstract classes
(Optimum) Use of |Structure [Class, Inhe- |Maintainability |The amount of classes with multiple ([]
inheritance ritance inheritance should be 0.
(Optimum) Number |Structure |Class, Inhe- |Maintainability |The amount of methods overridden ([]
of methods overrid- ritance should be less than 3.
den by a subclass
(Optimum) Number |Structure [Class, Inhe- [Maintainability |The amount of methods inherited ([]
of methods inherited ritance should be high.
by a subclass
(Optimum) Number |[Structure |Class, Inhe- |Maintainability |[The amount of methods added L

80

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

of methods added ritance should be between 1 and 20 (de-
by a subclass pends on the inheritance level).
(Optimum) Class [Structure |Class, Me- |Maintainability |The message connections withina @ |O|O | @
cohesion thods, class and the use of instance va-
Attributes, riables.
Calls
System Global Structure |Class, Inhe- |Maintainability [There should be at most only one ® OO0
ritance system global, class variable, or pool
dictionary
Average number of |Structure |[Methods, Maintainability | The average amount of parameter |®|O (O |@®
parameters per Parameters per method should be less than 0.7
method
Use of friend func- |Structure |Class, Me- |Maintainability [The amount of friend classes should |®|O | O |®
tions thods, Calls be 0.
Average number of |Structure |[Methods, Maintainability |The average amount of comment [JNONNAN]
comment lines per Statements, lines per method should be less than
method Comments 1.
Average number of |Structure |[Methods, Maintainability | The average amount of commented |®|O (O |@®
commented meth- Statements, methods should be between 65%
ods Comments and 100%.
Class Coupling Structure |Class, Me- |Maintainability |The message connections between |(®|O|O|®
thods, classes via methods and instance
Attributes, variables.
Calls

4.16 Negative Patterns

Furthermore, the concept “Negative Pattern” is vargilar to the antipattern concept — as
antipatterns these patterns represent problematits pf the software system that seem
wrong, complicated, or cumbersome to an experiedes@loper. In general, these negative
patterns are problems that are associated wittooneore specific refactorings (i.e., concrete
treatments) that might be applied to remove théepatin the literature they are defined as
follows:

* “[negative patterns] can be expressed in negatment ‘avoid XYZ' ...[and] have a cor-
responding positive pattern: ‘avoid XYZ, do PQRead™ (Veryard, 2001)

The concept of negative patterns is used to desthié experience and knowledge that was
acquired by experts and have been proven benefloidhe following sections we will list
most of these negative patterns that were fourttierliterature survey. Several unexplained
or non-product focused problems such as “Avoid lsipgint of failure” were excluded from
the list.

Table 36. Negative Patterns collected by (Veryard, 2001)

Avoid GOTO (GO- |(Control |Statements |Maintainability,| There exists a goto statement within
TO considered Reliability the body of a function.
harmful)

81
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Avoid executing Control |Statements |Maintainability,|Execution of (or jumps to) system []
data Reliability, parts that might have been data.
Functionality

Avoid hard-coding |[Control |Statements |Maintainability,|Constant numbers or Strings that []
data into program Reliability appear multiple times in the system
Cycles lead to dead-|Structure |Classes, Maintainability,| There is a cycle in the call structure |®
locks Calls Portability
Minimize Use of Control |Statements |Maintainability,Too many interrupts o
Interrupts Portability
Globals Considered |Structure, |Calls Maintainability | There exists an externally declared |@®
Harmful Control variable that is referenced within a

function but has not been passed in

as a parameter.
Hyperspaghetti Structural |Classes, Maintainability,| Classes call many other classes and | ®
Objects and Sub- Methods, Reliability the coupling between classes or
systems Calls subsystems is high
Don't Interruptan [Control [Statements |Reliability Interrupting an interrupt o
Interrupt
Avoid inhibiting Control |Statements |Reliability Changing the behavior of garbage o
garbage collection collection
Avoid excessive Control |Statements |Maintainability,|Doing too much work upfront. ([]
initialization over- Efficiency
head
Explicit Invocation - {Control |Statements |Maintainability,|Components and Classes are ([]
Tight Coupling Portability coupled too tighly
Implicit Collabora- |Control |Statements |Maintainability, {Implicit (rather than explicit) reflection | @
tion Protocols - Portability of time-ordered collaboration proto-
Code Pollution cols.
4.17 Pitfalls

A relatively old concept “pitfall” was used often the 88' and 98" of the last century to de-
scribe problems in different situations. Bruce Febater used this term in his book to de-
scribe problems in object-oriented software develept and systems (Webster, 1995). These
pitfalls represent problematic parts of the sofevaystem that seem wrong, complicated, or
cumbersome to an experienced developer. In genmtfalls are problems that are associated
with one or more specific refactorings (i.e., catertreatments) that might be applied to re-
move the pitfalls. In the literature they are defiras follows:

» “[pitfalls] threaten to undermine the acceptancedause of object-oriented development
before its promise can be achieved” (Webster, 1995)

» “A pitfall is code that compiles fine but when extsr produces unintended and some-
times disastrous results” (Daconta et al., 2000;d0ata et al., 2003)

» “[pitfalls are] the knowledge of which will be usgfin instructing new programmers and
in developing tools to aid in multi-threaded progmaing.” (Choi & Lewis, 2000)

The concept of pitfalls is used to describe thesemce and knowledge that was acquired by
experts and have been proven beneficial.

Beside the pitfalls on the object-oriented codedesign levels many other problems were
described using the pitfall metaphor. Today, weehgitfall on different abstraction layers, for

82
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

development phases, or technologies such as pitfalteal-time systems (Stewart, 1999),
java programs (Daconta et al., 2000), or multidlder systems (Choi & Lewis, 2000).

In the following sections we will list most of trepitfalls that were found in the literature

survey. The first larger collection of pitfalls wesllected by Bruce F. Webster:

Table 37. Pitfalls by (Webster, 1995)
Type of |Design Enti- | Quality As- © = _g -
Name Quality ties in- pects af- Description L2le 88
Defect volved fected =\ 8|g|=
o m
Confusing is-a, has- |Semantic |Inheritance, |Maintainability (Inheritance is not based on one @0 O|0
a and is- Names specialization concept (e.g., is-a) or
implemented-using mixes several forms of inheritance
relationships in one inheritance tree.
Confusing interface [Semantic |Classes, Maintainability,|Inheritance from interfaces and @ OC|lo|@®
inheritance with Inheritance, |[Reliability “real” classes is confused or
implementation Names changed by using own implemented
inheritance methods.
Using Inheritance |Semantic |Classes, Maintainability |A base class is subclasses justto |@®|O|O|®
badly (Violate en- Inheritance get access to its attributes and me-
capsulation) thods
Using Inheritance (Structural [Classes, Maintainability |A class inherits from two or more o0(0|0|@®
badly (Invert is-a by Inheritance classes and generate a kind of
multiple inheritance) superclass (by derivation)
Using Inheritance (Structural [Classes, Maintainability |A class inherits from two or more o0(0|0|@®
badly (Using mul- Inheritance classes (i.e., multiple inheritance)
tiple inheritance)
Having base Structural |Classes, Maintainability |A (concrete) base class implements [® | O[O | @
classes do too much Methods, too much or too little behavior.
or to little Attributes
Not preserving base (Structural, |Classes, Maintainability,|Invariants, assertions, or other in- @0 0|0
class invariants Behavioral |Statements [Reliability formation from the base class is not
“inherited” in the subclass
Converting non- Structural [Classes, Maintainability |Classes that look like modules, @000
object code straight Methods, libraries, data containers, or single
into objects Attributes functions.
Letting objects be- |Structural [Classes, Maintainability |Classes have too many data mem- (@ |O|O|@®
come bloated Methods, bers and methods or have very
Attributes large methods.
Letting objects ooze |Structural [Classes, Maintainability [The information gives access on far |@|O|O | @
Visibility too many information
Creating swiss army [Historic ~ |Versions, Maintainability [A class or class hierarchy is @ OClo|@®
knife objects Classes changed for different reasons over
time (again and again).
Creating hyperspa- |[Structural |Classes, Maintainability,|Classes call many other classes and| ® |O | O | ®
ghetti objects and Methods, Reliability the coupling between classes is
subsystems Calls high (and not clearly separated by
components such as layers)
Copying objects Control Classes, Reliability, Objects are copied in awrong man- (O |® | ® | @
Statements |Maintainability [ner (e.g., to swallow, by assignment,
slicing, etc.)
Testing objects for |Control Statements |Reliability, Multiple checks if a object is “null”’ [0 (O |® | @
quality and identity Maintainability
Not keeping track of |Control Statements |Reliability, Information (objects) are disposed [O (O |® | @
objects Efficiency, by one object but not another object.
Maintainability
Consuming memory |Control Statements |Efficiency Construction of object with many @O0 0|0
83

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

inadvertently large instance variables

Confusing switch |Structure, |Statements |Maintainability,|Switch statements o if-the-else 0 O|® O
statements and Control Reliability cascades are used to differentiate

polymorphism between object types.

Another group of pitfalls was collected by Dacoataal. for the Java language. As these pit-
falls are platform-specific only an excerpt of the@ documented pitfalls in (Daconta et al.,
2000) and the 50 pitfalls in (Daconta et al., 2083)iven in the following table:

Table 38. Java Pitfalls by (Daconta et al., 2000) (Daconta et al., 2003)

Hidden Fields Structure |Classes, Maintainability, |A field in a subclass overrides the ® O|O|0
Attributes, Reliability field of the same name in a super-
Inheritance class.

Forward References|Control |Statements |Compilability |[Referencing a local variable in the [JNORE AN
same scope before it is defined.

Use StringBuffer Control |Statements |Efficiency Using concatenation for Strings ol0le e

instead of ‘+'

Too many Submits |Control |HTML, JSP, |Efficiency, Duplicated submits as the processing| O |0 | ® | ®
Statements |Reliability is too slow

Pitfalls on a similar language-specific level arewn for programming languages such as C
(Koenig, 1989), more Java (Laffra, 1996), or tedbgies such as Jarkarta tools (Dudney &
Lehr, 2003).

4.18 Principles (Design Principles)

One of the commonly used terms for best practiceshe software architecture and design
level are “principles”. In general, principles ayeidelines that should be followed, However,
the absence of a principle or their inversion reen¢ problematic (micro-)structures in the
software design that have a negative impact omjtladity of a software system (i.e., the soft-
ware design). In the literature they are definetbsws:

» “[principles] govern the micro-structure of objectiented software applications” (Mar-
tin, 2000)

* “design principles can provide us with valuable stijor curing architecture smells.”
(Roock & Lippert, 2006)

One of the best known sets of principles was ctdtédy Robert C. Martin. He envisioned
principles as the abstract root of more specifiariséics.

84
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Table 39.

Principles collected by (Martin, 2000) and (Roock & Lippert, 2006)

© Copyright by VIDE Consortium

DRY - Don’'t Repeat |Semantic |Methods, Maintainability,| Do not write the same or similar O
Yourself Statements (Reliability code more than once. Also called
“Once and Only Once* principle.
SCP - Speaking Code |Semantic |Names, Maintainability | The code should communicate its o
Principle Comments purpose. Comments in the code
could indicate that the code commu-
nicates its purpose insufficiently.
OCP - Open Closed |Structure |Classes, Maintainability |Software entities (classes, modules, [J
Principle Inheritance functions, etc.) should be open for
extension, but closed for modifica-
tion.
LSP - Liskov Substitu- [Structure |Classes, Maintainability |One instance of a class must be []
tion Principle Inheritance, usable for all instances where the
Attributes, type is the superclass. Not only is it
Methods required that the compiler translates
the source code, but after the mod-
ification the system must still func-
tion correctly.
DIP - Dependency Structure |Classes, Maintainability |High-level concepts shall not depend ([]
Inversion Principle Inheritance, on low-level con-
Calls cepts/implementations. The depen-
dency should be vice versa, because
high-level concepts are less liable to
change than low-level concepts. One
can introduce additional interfaces to
adhere to the principle.
ISP - Interface Segre- |Structure |Classes, Maintainability |Interfaces should be small. The []
gation Principle Inheritance, methods of single interfaces should
Calls possess a high number of couplings.
REP: Reuse/Release [Unknown |Classes, Portability The elements that are reused are ®
Equivalency Principle Inheritance, the elements that will be released.
Calls
CRP: Common Reuse |Unknown |Classes, Portability The classes of a package are reused O
Principle Inheritance, as a whole.
Calls
CCP: Common Clo- |Historic |Versions, Maintainability,| The classes of a package shall be (@)
sure Principle Classes Portability closed against the same type of
changes. If a class must be
changed, all classes of the package
must be changed as well.
ADP: Acyclic Depend- |Structure |Packages, [Maintainability,|The dependency structure between @)
encies Principle Calls Portability packages shall be acyclic.
SDP: Stable Depend- |Structure |Packages, |Maintainability,|A package shall only depend on []
encies Principle Calls Portability packages that are at least as stable
as itself.
SAP: Stable Abstrac- |Historic |Versions, Maintainability,| The more stable a package is, the []
tions Principle Classes Portability more abstract it should be. Instable
packages should be concrete.
TDA: Tell, Don't Ask |Structure |Calls, State- |Maintainability,|Don’t ask an object about an object, o
ments Efficiency but tell it what to do. Similar to the
“Law of Demeter": Each object shall
only talk to “friends,” i.e. only to
objects that it retains as fields or
receives as parameters.
85

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

SOC: Separation Of |Structure |Classes, Maintainability |Do not mix several concerns within
Concerns Methods, one class.

Interfaces
Further, more basic principles were described byafC& Nicola, 1993) (Appendix C) that
represent potential threats to object-oriented @epde. However, as many of these princi-
ples are not applicable to architecture and dgsigducts only an excerpt is listed.

Table 40. Principles by (Coad & Nicola, 1993)

The “-er-er” principle|Semantic [Names Maintainability |Class names that end in “-er” (e.g., |®|O|(O|@®
Changer, Controller, etc.) do proba-
bly not represent real objects.
The throw out the |Structure |Calls, State- |Maintainability,| Throw out objects that do nothing ®O(0|0
middle man prin- ments Efficiency more than take a request and pass it
ciple on to another object.
The strip search Semantic [Names Maintainability |Compound (CamelCase) names ®/0 0O
principle should be analyzed for similarity with
other names.
The “it's my name; |Semantic [Names Maintainability |Class names should be as general as| ® |0 (O | O
generalize it” prin- possible (and reasonable)
ciple
The “more than just |Structure |Class, Maintainability |An object acts as just a data hider o e 0|0
a data hider” prin- Attributes, when another object sends it a mes-
ciple Methods sage.
The “don’t butt into |Control |Statements |Efficiency, Objects shouldn’t send other objects |® | O (@®| O
someone else’s Maintainability |a message to peek at its values and
business” principle then another to get the work done.

4.19 Puzzles/ Puzzlers

A relatively new concept “puzzle” was used by Blaaid Gafter in their book to describe

problems in object-oriented Java systems (Bloch &#it&€3, 2005). These puzzles represent
platform-specific problems of the software systdrattappear correct but are unknowingly
wrong, complicated, or cumbersome. In general, leszare problems that are associated with
one or more idiosyncrasies of the (Java) progrargrianguage. In the literature they are de-
fined as follows:

» “Puzzles exploit counterintuitive or obscure belwagithat can lead to bugs” (Bloch &
Gafter, 2005)
As these puzzles are platform-specific only an gtcef the 95 documented puzzles in

(Bloch & Gafter, 2005) (not including the 81 morengral traps in appendix A) is given in
the following table:

86
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Table 41.

Puzzles by (Bloch & Gafter, 2005)

Puzzle 2: Time for a [Control |Statements |Reliability, Not all decimals can be represented [0 (O |® | @
change Functionality |by floating point
Puzzle 11: The last |Control |Statements |Reliability, The + operator performs stringcon- |0 |0 ® | @®
Laugh Functionality |catenation if and only if one of its

operands is of type String.
Puzzle 25: Incle- Control |[Statements |Reliability, Do not assign the same variable o0l @@
ment Increment Functionality |more than once in a single expres-

sion.
Puzzle 29: Bride of |Control |Statements |Reliability, Once a float reaches NaN further o|j0 @O
Looper Functionality |computations might get corrupted.
Puzzle 47: Well, Control |[Statements |Reliability, A single copy of each static fieldis |®|O |@®|O
Dog my Cats! Functionality |shared among its declaring class and

subclasses.
Puzzle 59: What's |Control |Statements |Reliability, Integer literals beginning witha“0” |O|O|®|O
the difference? Functionality |are interpreted as octal values.

While these are platform-specific problems they megertheless relevant to the platform-
independent level. As models on the PIM level amgto be transformed to the PSM level
these problems should be taken into consideratitverewhile modeling the PIM or in the

development of PIM to PSM transformators. Beingeaysindependent the consideration of
these problems in general-purpose transformersialitg-checking transformers (i.e., on the
PSM level) seems better in order to not overloalRIM level (that should not consider all
platform-specific quality defects, e.g., for Ada@obol).

4.20 Rules (Design Rules)

The concept “rules” is used by Johnson and Footdesxribe problems in object-oriented
languages such as Smalltalk. These rules reprgsedalines how these systems should be
build. In the literature they are defined as folsow

» “[rules] help the designer create standard protogodbstract classes, and object-oriented
frameworks.” (Johnson & Foote, 1988)

» “[rules] include both good practices for this kinof design and specific requirements
from the stakeholders for this system. "(Liu et 2002)

Johnson & Foote present several design rules feeldging better, more reusable object-
oriented programs.

Table 42.

Design rules by (Johnson & Foote, 1988)

Recursion Introduc- |Structure, |Classes, Maintainability |If one class communicates with a ® O[O|0
tion Semantic |Associations, number of other classes, its interface
Calls, Names to each of them should be the same
(i.e., similar naming of methods).
Eliminate Case Structure, |Statements |Maintainability (It is almost always a mistake to check| ® |O | O | ®
Analysis Control the class of an object.
87

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

instance variable.

Reduce the Number |Structure |Methods Maintainability,|Messages that have a dozen or more L
of Arguments Efficiency arguments are hard to read (except
constructors).
Reduce the Size of |Structure |Methods, Maintainability, |It is easier to subclass a class with ([]
Methods Statements |Reliability small methods, since its behavior can
be changed by redefining a few small
methods instead of modifying a few
large methods.
Hierarchies should (Structure |Classes, Maintainability |A well developed class hierarchy o
be Deep and Nar- Inheritance should be several layers
row deep.
The Top of the Structure |Classes, Maintainability Inheritance for generalization or code ([]
Hierarchy should be Methods, sharing usually indicates the need for
Abstract Inheritance a new subclass.
Minimize accesses |Structural |Classes Maintainability |Classes can be made more abstract []
to variables. by eliminating their dependence on
their data representation.
Subclasses should |Structure, |Classes, Maintainability |Subclass redefines method, adds no ([]
be specializations |Semantic |Inheritance new ones, or
Split Large Classes |[Structure |Classes, Maintainability |Large classes should be viewed with []
Methods, suspicion and held to be guilty of
Statements poor design until proven innocent.
Factor Implementa- (Structure, |Classes, Maintainability |If some subclasses implement a ([]
tion differences into |Semantic |Methods, method one way and others imple-
subcomponents Statements ment it another way then the imple-
mentation of that method is indepen-
dent of the superclass. It is likely that
it is not an integral part of the sub-
classes and should be split off into
the class of a component.
Separate Methods |Structure |[Classes, Maintainability |A class should almost always be split ([]
that do not Commu- Methods, when half of its methods access half
nicate Calls of its instance variables and the other
half of its methods access the other
half of its variables.
Send messages to [Structure |Classes, Maintainability |An inheritance-based framework can L
components instead Methods, be converted into a component-
of to self. Calls based framework black box structure
by replacing overridden methods by
message sends to components.
Reduce implicit Structure |Classes, Maintainability |A class is hard to split into two parts ([]
parameter passing. Methods, because methods that should go in
Attributes different classes access the same

Liu collected several production rules to identifigonsistencies in UML models. However,

several rules such as cleanup-rules are not ldstedo their specific nature.

© Copyright by VIDE Consortium

88

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Table 43.

Inconsistency Rules by (Liu et al., 2002)

Law of Demeter.

keep a reference to the singleton
class object. (A Singleton pattern is
recognized if the class has a static
method returning an instance of the
class and a static attribute that stores
instances of this class.)

An object is absent |Structure |Sequence |Maintainability |If feature A is a specialization of []
from the specialized feature B illustrated in the corres-
sequence diagram. ponding diagrams, then an inconsis-

tency occurs if an object that appears

in B’s diagram, is absent from that of

A
Conflicting states [Structure |State Reliability When two features have overlapping (@)
reachable in state specifications, conflicting states may
diagrams. be reached simultaneously.
No Attributes may |[Structure |Classes, Compilability |Attributes with the same name @)
have the same Attributes
name within a Clas-
sifier.
A design model Structure |Classes, Conformance, |When a Singleton pattern is used in a o
should obey the Attributes Maintainability |design, no other class objects should

Furthermore, Liu described further rules in her teiathesis. We list the one not described in

Table 43.

Table 44.

Inconsistency Rules by (Liu, 2002)

© Copyright by VIDE Consortium

An object of a beha- |Structure |Classes, Compilability |Definition of an object is missing in ([]
vioral diagram is Objects, the class diagrams.
undefined in class Behav. Dia-
diagrams. grams
A message of a Structure |Classes, Compilability |Definition of a method is missing in []
behavioral diagram Methods, the class diagrams.
is undefined in the Behav. Dia-
corresponding class grams
definition.
A message in a Structure |Classes, Compilability |Definition of a parameter is missing in ([]
behavioral diagram Methods, the class diagrams.
has a parameter Behav. Dia-
that is absent from grams
its correspondence
in the class dia-
gram.
A message in a Structure |Classes, Compilability |Definition of a parameter is missing in ([]
behavioral diagram Methods, the class diagrams.
is missing a para- Behav. Dia-
meter whose cor- grams
respondence exists
in the class dia-
gram.
89

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

A message is ab- |Structure |Sequence |Maintainability |If feature A is a specialization of L
sent (from the spe- feature B illustrated in the corres-
cialized sequence ponding diagrams, then an inconsis-
diagram) tency occurs if a message that ap-
pears in B’s diagram, is absent from
that of A.
The Associatio- Structure |Associations |Compilability |Association Ends have the same ® 0| 0|0
nEnds must have a name.
unigue name within
the Association.
At most one Associ- |Structure [Associations |Compilability [Multiple association Ends are aggre- |®|O (O | O
ationEnd may be an gation or composition.
aggregation or
composition.
When multiple Structure |Classes, Maintainability |Missing Facade class. ® O0@
classes in a pack- Calls
age are accessed
from outside the
package, a Facade
pattern can be used
and a Facade class
should be placed as
a common interface
to the package.

4.21 Sins (Code sins)

The concepts (design-oriented) “sins” are typicabgd as a term to emphasize the problems
accompanied with quality defects. Several authaes the term to describe recurring and
named problems.

Furthermore, at least in German the concept “caale(ger. “Code Sinden”) is used as a
wrapper for code smells and design flaws (Simaad.e2006).

The concept of “sins” was used by Howard in thekbtd® Deadly Sins of Software Securi-
ty” (Howard et al., 2005) to describe concreteaitins where security holes are opened un-
knowingly or by lax behaviour of the developers.

Table 45.

Security Sins by (Howard et al., 2005)

Buffer Overrun Control |Statements |Functionality |A program allows input to write o/ e 00
beyond the end of the allocated buf-
fer.

Format String Prob- [Control |Statements [Functionality (Input from an untrusted user is al- ® ® o0 e

lems lowed to pass through a format
String; this can result in anything
from arbitrary code execution to

spoofing user output.

90
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

Integer Overflows [Control |Statements |Functionality, |Integer overflow crashes and logic []
Reliability errors due to failure to check the
range on integer types.
SQL Injection Control |Statements, |Functionality, |Building SQL statements with input ([]
Queries Reliability from untrusted or unknown users —
i.e., they can "inject" their own com-
mands into the SQL statements.
Command Injection |Control |[Statements [Functionality, |Untrusted user inputis passed to a []
Reliability compiler or interpreter, or worse, a
command line shell.
Failing to handle Control |Statements |Functionality, [A program's error handling strategy ([]
Errors Reliability leads to the program crashing, abort-
ing, or restarting — a weakness ex-
ploited in denial of service attacks.
Cross-site Scripting [Control |Statements |Functionality, |[Unvalidated input from the user is []
Reliability echoes directly back to the users
(e.g., via a web page) — giving it
access to anything your website
could do, including retrieving cookies,
etc.
Failing to protect Semantic |Statements |Functionality |Transmitting data over the network, ([]
network traffic even if that data is not private - at-
tackers can eavesdrop, replay, spoof,
etc. any unprotected data sent over
the network.
Use of magic URLs |Control |Statements, [Functionality [Passing sensitive or secure informa- ([]
and Hidden Form HTML tion via the URL query string or hid-
fields den HTML form fields.
Improper use of Semantic |Statements |Functionality [Using most SSL and TLS APIs with- o
SSL and TLS out checking for certificates from lax
authorities, subtly invalid certificates,
or stolen/revoked certificates.
Use of weak pass- [Semantic |Statements [Functionality [Using passwords without consider- o
word-based sys- ing risks such as phishing, social
tems engineering, eavesdropping, key-
loggers, brute force attacks, etc..
Failing to store and [Semantic |[Statements |Functionality |Information spends more time stored o
protect data security on disk than in transit — without
equivalent permissions and encryp-
tion for any data stored.
Information leakage [Semantic |Statements, |Functionality |Giving helpful feedback allows at- o
HTML tackers to learning about the internal
details the system (e.g., if the pass-
word or name was invalid)
Improper File Semantic |Data Access |Functionality |An attacker can slip changes in files o
Access from a filesystem (e.g., new file or a
link), particularly if the files are ac-
cessed over the network.
Trusting network Control |[DNS Access |Functionality |Domain names on a server or o
name resolution workstation are overridden and sub-
verted with a local HOSTS file.
Race conditions Control |Statements |Functionality, |A race condition occurs when two (@)
Reliability different execution contexts are able
to change a resource and interfere
with each other.
91

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Unauthenticated key|Control |Statements |Functionality |Exchanging a private key without o0 0@
exchange properly authenticating the enti-
ty/machine/service that the system is
exchanging the key with.

Cryptographically |Control |Statements |Functionality |Use of weak (e.g., small) random o oloe®

strong random numbers an attacker can use to

numbers breach the security of the system.

Poor Usability Semantic |Security Functionality |Security only works if the secure way |@ |O [O|O
features also happens to be the easy way.

4.22 Smells

The concept “smell” or “bad smell” was coined byrik&eck and Martin Fowler in the Book
“Refactoring: Improving the Design of Existing CddéFowler, 1999). These smells
represent problematic parts of the software syskemseem wrong, complicated, or cumber-
some to an experienced developer. In general, sraed problems that are associated with
one or more specific refactorings (i.e., concreg¢atments) that might be applied to remove
the smells. In the literature they are definedodisws:

* “[Smells] ... suggest (sometimes they scream for)ptssibility of refactoring”(Fowler,
1999)

* “Smells (especially code smells) are warning sighsut potential problems in code. Not
all smells indicate a problem, but most are worthfiy look and decision.{Wake, 2003)

* “[Smells] are present when the existing systemdtire hampers or even prevents mod-
ifications.” (Roock & Lippert, 2006)

* “Code smell is a popular expression among Extrem@sgRamming practitioners corres-
ponding to signs that suggest that some partsettude are problematic or violate pro-
gramming guidelines.{Correa & Werner, 2004)

* “A common category of problem in your code thatcates the need to refactor ifAm-
bler & Sadalage, 2006)

e "... code smell is any symptom that indicates somgtimay be wrong. It generally indi-
cates that the code should be refactored or theativdesign should be reexamined.”
(Wikipedia, http://en.wikipedia.org/wiki/Code_smgll

* "A code smell is a hint that something has gonengrsomewhere in your code. Use the
smell to track down the problem(WikiWikiWeb, http://c2.com/cgi/wiki?CodeSmell

Beside the smells on the code or design levels m#mr problems were described using the
smell metaphor. Today, we have smells on diffeadastraction layers, for development phas-
es, or technologies such as architecture smelledR& Lippert, 2006), test smells (Deursen

et al., 2001), aspect smells (Monteiro & Fernan@886), database smells (Ambler & Sadal-
age, 2006), OCL smells (Correa & Werner, 2004)jguts smells (Elssamadisy & Schalliol,

2002), or user story smells (Cohn, 2004).

In the following sections we will list most of theesmells that were found in the literature
survey. The first large collection of smells weddlected by Kent Beck and Martin Fowler
(Fowler, 1999).

92
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

Table 46.

Bad smells in code (Fowler, 1999)

© Copyright by VIDE Consortium

Alternative classes |Semantic,|Classes, Maintainability |Two classes are doing similar thing @)
with different inter- [Control |Methods, and have similar interfaces but use
faces Statements, different method names, method
Names structures, or are not related (i.e., are
not using a shared superclass or
interface).
Comments Semantic |Notes / Maintainability |Superfluous or redundant description []
Comments of the software.
Data class Structure |Class, Maintainability |Classes that do almost exclusively L
Attributes, store information for other classes.
Methods Optionally, these classes have getter
and setter methods for the attributes.
Data clumps Structure, |Class, Maintainability |Data items (i.e., attributes, parame- (@)
Message |Attributes, ters, local variables, etc.) that appear
Parameters, in groups all over the system (e.g., id,
Local Va- surename, forename, salary).
riables
Divergent change [Historic |Versions, Maintainability |A class is changed for different rea- L
Classes sons over time.
Duplicated code Semantic |Methods, Maintainability,|ldentical code passages are distri- (@)
Statements (Reliability buted over the whole system
Feature envy Structure |Classes, Maintainability |[A method is occupied more with data o
Calls and methods in other classes than its
own.
Inappropriate Inti- [Structure |Classes, Maintainability |Classes access far too many internal o
macy Attributes, parts (attributes or methods) of other
Calls classes.
Incomplete library |Structure |Classes Maintainability,|An external (library) class that misses ([]
class Portability some functionality but cannot be
changed)
Large class Structure |Classes, Maintainability, |A class with far too many methods, ([]
Methods, Portability attributes, and consequently respon-
Statements sibilities.
Lazy class Structure |Classes, Maintainability |A class that isn’t doing much. ([
Methods,
Statements
Long method Structure |Methods, Maintainability,|A very large method. ([]
Statements |Reliability
Long parameter list [Structure |Methods Maintainability,|A method with too many parameters. []
Efficiency
Message chains Structure |Calls, State- |Maintainability,|One object asks another object for o
ments Efficiency, data in a third object (and so on).
Portability
Middle man Structure |Calls, State- |Maintainability,|A method delegates the functionality o
ments Efficiency to another method (or class).
Parallel inheritance |[Historic, |Classes, Maintainability |Creating a subclass in one hierarchy (@)
hierarchies Structure |Inheritance requires the creation of another sub-
class in a different hierarchy
Primitive obsession [Structure |Attributes, Maintainability |Far too many primitive types are ([]
Parameters, used (in a class or method)
Local Va-
riables
93

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1

Date: 09 August 2007

Refused bequest Structure |Classes, Maintainability [Subclasses that inherit attributes and o
Attributes, methods that they do not use.
Methods
Shotgun surgery Historic |Versions, Maintainability,|Several classes are changed in a @)
Classes Portability group every time a specific kind of
change is to be made.
Speculative general-|Structure |Relations, Maintainability,|Classes, methods, attributes, or code ([]
ity Calls, Inhe- |Portability, passages do only exist for future,
ritance Reliability potential features
Switch statements |Structure, |Statements |Maintainability,|Similar Switch statements are used O
Control Reliability to differentiate between behavior in
different classes.
Temporary field Semantic,|Statements |Maintainability,|Fields are only set at specific times ([]
Control Reliability and the time when the content is
valid is nondeterministic.
Table 47. Code smells by (Wake, 2003)

Type Embedded in |Semantic |Names Maintainability |Type information is redundantly en- ([]
Name coded in the name / identifier of an
attribute, method, etc.
Uncommunicative [Semantic [Names Maintainability |The name does not communicate the ([]
Name intent (e.g., short names, abbrevia-
tions, ...).
Inconsistent Names [Semantic [Names Maintainability [Names are not consistent throughout (@)
the system.
Complicated Boo- |[Structure |Statements |Maintainability |Complex condition involving Boolean L
lean Expression operators (“and”, “or”, “not”).
Magic Numbers Control |Statements |Maintainability,|Constants that appear multiple times (@)
Reliability in the system
Null Check Control |Statements |Reliability Multiple checks if a object is “null” ([]
Special Case Control |Statements |Maintainability,|Check for particular values or states ([]
Reliability before doing work
Simulated Inherit- |Structure, [Statements |Maintainability,|Similar Switch statements are used (@)
ance (Switch Control Reliability to differentiate between behavior in
Statement) different classes.
Table 48. Code smells by (Kerievsky, 2005)

© Copyright by VIDE Consortium

Indecent Exposure |[Structural |Classes Maintainability |The classes (or packages, etc.) gives ([]
(aka: Unnecessary access on far too many information
Openness)
Solution Sprawl Semantic |Classes, Maintainability [Many small features are realized ([]
Statements without consolidating or using exist-
ing features (i.e., methods)
94

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

plexity

statements (i.e., if, switch etc.)

Combinatorial Ex- [Structural |Classes, Maintainability |Code duplication for many slightly (@)
plosion Methods, different features (e.g., queries)
Statements
Oddball Solution Semantic |Classes, Maintainability |Different solutions do exist for the O
Names, same problem.
Statements
Conditional Com- [Control |Statements |Maintainability [Large and complex conditional ([]

Table 49.

Code smells by (Tourwé & Mens, 2003)

interface of the root class.

Obsolete Parameter |Structural,|Classes, Maintainability,|Parameter are not used in any of ([]
Behavior |Methods, Reliability implementations of the given class
Parameters
Inappropriate Inter- [Structural |Classes, Maintainability, | Differences between common inter- o
faces Methods Reliability faces of direct subclasses and the

Table 50.

Architecture smells (Roock & Lippert, 2006)

class in a different hierarchy

Obsolete Classes, |Structure |Classes, Maintainability |Classes are not in the control path ([]
Unused Element Calls and not used in the system.
(Class)
Treelike Dependen- |Structure |Classes, Maintainability |Classes are only used by one other o
cy Hierarchies Calls class.
Static Cycles Structure |Classes, Maintainability,|Classes are used in a cycle O
(Class) Calls Portability
Visibility of Depen- |Structure |Classes, Maintainability, |Internal information of classes is (@)
dency Graph Calls Portability used by other classes
Type Queries Structure, |Classes, Maintainability,| The type of an object is identified (@)

Control |Statements |Reliability programmatically.
List-like Inheritance (Structure |Classes, Maintainability |Classes have only one subclass ([]
Hierarchies Inheritance
Subclasses do not [Structure |Classes, Maintainability |Subclasses redefine no methods of ([]
redefine methods Inheritance the superclass
Hierarchy without (Structure |Classes, Maintainability (Inheritance hierarchies without poly- o
polymorphy Inheritance morphy. Superclasses that are used

only sparely or never.

Parallel Inheritance |Historic, [Classes, Maintainability |Creating a subclass in one hierarchy O
Hierarchies Structure |Inheritance requires the creation of another sub-

© Copyright by VIDE Consortium

a1

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

© Copyright by VIDE Consortium

Deep inheritance Structure |Classes, Maintainability | The inheritance tree is too depth. o
Hierarchy Inheritance
Unused Elements [Structure |Packages, [Maintainability |[Packages are not in the control path L
(Package) Calls and not used in the system.
Static Cycles Structure |Packages, |Maintainability,|Packages are used in a cycle O
(Package) Calls Portability
Package too small |Structure |Package Maintainability |A package with far too few classes L
(or other types — e.g., enums) and
consequently responsibilities.
Package too large |Structure |Package Maintainability |A package with far too many classes L
(or other types — e.g., enums) and
consequently responsibilities.
Deep or Unba- Structure |Packages, |Maintainability |[A package hierarchy that is too deep o
lanced Package Inheritance or unbalanced.
Hierarchy
Packages Not Semantic |Package Maintainability,|Package names that occur multiple ([]
Clearly Named Namess Reliability times in the system or that does not
communicate its intention.
No Subsystems Structure |Subsystem |Maintainability [No subsystems defined ([]
Subsystem too large|Structure |Subsystem |Maintainability |Subsystem with far too many pack- L
ages.
Subsystem too Structure |Subsystem |Maintainability (Subsystem with far too few pack- ([]
small ages.
Too many Subsys- |Structure |Subsystems |Maintainability [Too many subsystems defined. ([]
tems
Subsystem-API Structure |Subsystem, |Maintainability,|Clients are bypassing the subsystem- ([]
Bypassed Calls Reliability API.
Subsystem-API too |[Structure |Subsystem |Maintainability |Subsystem-API with far too many L
Large open packages.
Static Cycles (Sub- |Structure |Subsystems, |[Maintainability,| Subsystems are used in a cycle o
system) Calls Portability
Overgeneralization |[Structure |Subsystems, |Maintainability,|Clients need to reimplement many o
Calls Reliability “real” / non-abstract functionality.
No Layers Structure |Layers Maintainability |No layers defined L]
Upward references |Structure |Layers, Calls [Maintainability,|Lower-level layers use upper-level L
between Layers Portability layers
Strict Layers Vi- Structure |Layers, Calls |Maintainability,|Upper-level layer skipped middle- L]
olated Portability level and used lower-level layer.
Inheritance between |Structure |Layers, Inhe- [Maintainability,|Classes in layers inherit from another o
protocol-oriented ritance Portability or have a common superclass.
Layers
Too many Layers |Structure |Layers Maintainability [Too many layers defined. ([]
References be- Structure |Layers, Calls [Maintainability,|Layers use sister-layers. [
tween Vertically Portability
Separated Layers
96

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1

Date: 09 August 2007

Table 51.

OCL smells by (Correa & Werner, 2004)

Magic Literal Control |OCL code |Maintainability [Numeric or string literal that appears
in the middle of an OCL expression
without explanation.

And Chain Control |OCL code Maintainability [Complex Boolean expression (esp.
AND)

Long Journey Structure, |OCL code Maintainability |[An OCL expression that traverses

Control many associations between different
classes of the model.

Rules Exposure Structure, |OCL code Maintainability |Business rules details are specified in

Control the pre- or postconditions of system-
level operations.

Duplicated Code Structure, |OCL code |Maintainability |Duplicated OCL expressions.

Control

Table 52.

Database smells by (Ambler & Sadalage, 2006)

Multi-purpose col- |Data DB Column, [Reliability, A column is used for several purpos-
umn structure |(Attribute) Maintainability |es. (Similarily, an attribute in a data
class.)
Multi-purpose table |Data DB Table, Reliability, A table is used to store several types
structure |(Class, Maintainability |of entities. (Similarily, a class is used
Attributes) to store different types of objects)
Redundant data Data Database, Reliability, Data is stored in different places
structure |(Classes, Maintainability |(e.g., birthday).
Attributes)
Tables with too Data DB Table, Maintainability |Iltems consist of too much data and
many columns structure |Class, table probably lacks cohesion.
Attributes
Tables with too Data DB Data, Efficiency Table encompasses too much infor-
many rows Instances mation.
"Smart” columns Data DB Data Reliability, Data in Columns is encoded — e.g.,
structure Maintainability |data type is embedded in a number.
Fear of change Mental Database Maintainability |Afraid to change the database.

4.23 Styles, Conventions, and Rules

Finally, another set of concepts that is associafigul quality defects are styles, conventions,
or rules for source code or software models. Bebwaty of these conventions or guidelines
stands a reasonable rationale or a typical re@pnoblem in a software system. However,
they are mostly used to check or improve the irfisgucture” of methods while antipatterns
and smells are more concerned with the structutbeotoftware design expressed in classes,
packages, or layers. Typically, these styles amgetad to improve or assure the readability
and maintainability of a software system. In ther&ture they are defined as follows:

97
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

* “[conventions are] guidelines for creating effeaiWML diagrams ... [and] are based on
proven principles that will lead to diagrams thataasier to understand and work with.”
(Ambler, 2006)

In the following sections we will list important ltections of these styles that were found in
the literature survey. The first larger collectimin(bad) styles relevant to software design was
collected by Ambler. While most of the 300 styles applicable to MDSD we will only list

an excerpt of the styles.

Table 53.

Style conventions by (Ambler, 2006)

© Copyright by VIDE Consortium

9. Minimize the Structure |Diagrams Maintainability |A diagram that holds more than six []
number of bubble elements (bubbles).
types
10. Include White Layout |[Diagrams Maintainability |Elements in a diagram that are too ([]
Space in a diagram close together
12. Avoid many Layout [Diagrams Maintainability [Several lines close together are hard []
close lines to follow.
16. Reorganize large|Structure [Diagrams Maintainability |Diagram is too large ([]
Diagrams into sev-
eral smaller ones
23. Name common |Semantic [Diagrams Maintainability [One modeling element appears (@)
Elements consistent- under different names
ly across diagrams
26. Apply color or Layout |[Diagrams Maintainability |More than six colors in a single dia- ([]
different fonts spa- gram
ringly
27. Describe dia- Structure |Diagrams Maintainability [Missing comments / notes about the []
grams with notes diagram
35. Prefer Naming [Semantic,Names Maintainability |A stereotype such as <<getter>> o
conventions over Structure was used instead of naming the
Stereotypes method appropriately (e.g., “get...”)
58. Begin Use-case |Semantic [Names Maintainability |A use case that begins with no or a ([]
names with a strong weak verb (i.e., too general such as
verb “process”)
63. Name actors Semantic [Names Maintainability |[A name should accurately reflect its L
with singular do- role within your model.
main-relevant nouns
76. Avoid more than |Structure [Diagrams Maintainability [Too many associations (e.g., in- [
two levels of use cludes) for a use case.
case Associations
80. Place the inherit- |Layout [Diagrams Maintainability {Inheritance order should flow from ([]
ing use case below top to bottom
the base use case
96. Prefer complete |Semantic |Classes, Maintainability [Names should not contain abbreva- [
singular nouns for Names tions or verbs and should be in sin-
class names gular form.
97. Name Opera- Semantic |Classes, Maintainability |An operation that begins with no or a ([]
tions with strong Names weak verb (i.e., too general such as
verbs “process”)
112. Model relation- (Layout |Relationship |Maintainability [Relations with the exception of inhe- []
ships horizontally ritance should be associated hori-

zontally.
114. Model Collabo- |Structural |Collaboration [Maintainability |Missing relationship that describes ([]

98

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming

Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
ration between two the collaboration
elements only when
the have a relation-
ship
125. Name unidirec- |Semantic |[Association [Maintainability |An association from A to B where the L
tional Associations in name implies the other direction
the same direction (e.g., ltem -usedBy-> List should be

Item <-uses- List)
137. A subclass Structure |Classes Maintainability |Subclasses that reject attributes or o
should inherit every- methods from their parents.
thing
154. Make packages |Structure [Packages, [Maintainability |Anything within a package should L
cohesive Calls make sense when considered with

the rest of the package contents.
156. Avoid cyclic Structure |Packages, |Maintainability,|Packages are used in a cycle O
dependencies be- Calls Portability
tween packages
158. Strive for left to [Layout |Diagrams Maintainability [Message flow that is unordered and ®
right ordering of makes a zig-zag.
messages
213. Name transition |Semantic |Names Maintainability |[Names of results of events are al- L
events in past tense ready processed.
224. Apply connec- |Layout, [Diagrams Maintainability [Diagrams with too many lines can be ®
tors to avoid un- Structure simplified using connectors.
wieldy activity edges
248. Have fewer Structure |Diagrams Maintainability |Too many activity partitions. L
than five swim lanes
287. Indicate Semantic |Objects Maintainability |Objects are not easily discriminable L
attribute values to and Attributes are uncommunicative.
clarify instances

Other style conventions for programming languageshsas C++ (Sutter & Alexandrescu,
2004), C# (Baldwin et al., 2006) or Java (Vermeudeal., 2000) are very similar and mostly
platform-specific.

Additionally, tools such as Findbugs, PMD, Checkstgtc. have large collections of styles
they are checking. However, as these are not inmii@ focus of the VIDE project we will
not list them.

99
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

5 Domain-specific Quality Defects

This section addresses Task 4Modelling domain-specific parts of the modelghat was
concerned with the identification and formalizatmfrquality defects specific to our particular
domain of business applications. The domain-speedriabilities of the domain in respect to
quality were analysed and results were used inxéansion (i.e., variant) of the core defect
model for our specific domain — summarizing andrabterizing quality defects of this do-
main.”

Modelling addresses arbitrary applications domaimsever it is often important to apply the
generic modelling concepts to specific applicatiomains to make the models more concrete
and understandable to the domain users. The VIDBegrtherefore focuses on the "particu-
lar domain of business applications” to producegpamming semantics to enable (program-
ming) behaviour for business oriented personakasribed in Deliverable 1 (Vide, 2007a).

This focus on the domain of business applicatitnmikl also be reflected by Quality Assur-

ance aspects on model level and related methodgufaity defect detection that should be

focused especially on those aspects importantusiniess applications. Therefore this chapter
describes the business application domain andspeégific requirements towards quality as-
surance.

5.1 Business Application / Business Domain

Business applications in general are software egjpbins to effectively plan, manage a busi-
ness and its process. Typical examples of busepgstcations are

» EnterpriseResourcePlanning ERP) is a unified, integrated business managemenesyst
to effectively plan and manage organization inalgdilata and processes.

* ProductLife cycle ManagementRLM) that manages the entire life cycle of a product
from its concepts, design and manufacturing, teiserand product disposal.

» CustomerRelationshipM anagementGRM) offering structured interaction with custom-
ers and which will be used as example in sectiar5.

A key ingredient of most enterprise systems thatcate business applications is a unified
database to store data for the various system rasdliherefore most architectures support a
Three Tier Architecture that separates the Usearfinte, Application / Business Logic and
the persistence/data layer. Due to customer denfandsore flexibility of business processes
and cross organizational cooperation SAP evolvedaichitecture into the E-SOA Architec-
ture.

100
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

IIIIIIII PEOPLE
e PRODUCTIVITY
[
AI _____ EMBEDDED
alvwticre : ANALYTICS
Composites .)> _____ % SERVICE
COMPOSITION
_____ SERVICE
Enterprise ENABLEMENT

Services
N N BUSINESS PROCESS PLAT-
FORM

Repository
. LIFE-CYCLE
MANAGEMENT

¢»ﬁ

@ O O
Appl. Platform

Objects, Engines,
and Components

Part- cy/

ner 3¢ Bus. Process Platform

Figure 3. SAP E-SOA Architecture

The SAP E-SOA concept enhances of what is conglderéhe market as a service-oriented
architecture (SOA). E-SOA is built upon the teclogyl platform SAP NetWeaver which is
evolving into a complete Business Process Platf@@®P) comprising fundamental end-to-
end business processes as well as a strong tecimfiiaatructure.

The scope of E-SOA can roughly be characterizethéyollowing six key elements

» People Productivity. Pattern-based user interface with role-orientamhsistent portal
navigation, cross-application work centers, tearftaboration, self services, and inte-
grated office functionality to empower end userdddhe best job possible.

* Analytics: Seamless integration of transactional and amalyttontent together with a
unified modelling environment for business expartd developers.

» Service Composition Model-driven composition of new services as vesllorchestration
of existing services to form new business proceasdscomposite applications in order to
easily innovate systems as required by changinonéss processes.

» Service Enablement One common, standard-based service infrastruetitre one cen-
tral Enterprise Service Repository (ESR) to guaaniniform service definition, imple-
mentation, and usage across all types of servidser(Interface, cross-application com-
munication) and for all relevant interaction modgignchronous, asynchronous).

» Business Process PlatformOne BPP shared across all applications providassable
business functionality (provided by platform pracesmponents) as well as the complete
technical infrastructure necessary for e.g., seregabling, re-use, and business process
composition.

» Lifecycle Management One common application life cycle management<iads SAP
solutions from installation and configuration toeogtion, change management, and sup-
port as a key prerequisite to lowering TCO.

101
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

With these key elements, E-SOA defines a compidtastructure for building and operating
the next generation of service-oriented businepicgtions.

The User interface layePéople Productivity& Analyticg and persistence layer (withip-
plication Plattform and build upon th&letWeavestack) are not the main focus for the VIDE
project. This analysis therefore focuses on (bssimelevantprogramming and query as-
pectsof the middle / application layer (mainfybjectswithin the Application Platformand
the Service Compositiotayer) with special emphasis on data manipulationugh queries
due to the often data intense nature in many bssiapplication. New architectures such as
Service Oriented Architectures (SOA) or SAP e-SO8pCased, 2007) have similar abstrac-
tion layers.

Data Intense Applications in the context of VIDEans that VIDE application are expected
to be data centric and build on top of a persigdager, such as a for instance an OO data-
base. Data Intense Applications implement a cextharacteristics that potentially influence
the specific defects of the domain. However som#hefcharacteristics described are of ge-
neric nature and not specific to database appbicati

5.1.1 Applications for SME

Enterprise/business applications for SME diffexafrthe enterprise applications for larger
customers. While SME customers usually implemeatgame type of operations and proc-
esses as bigger customers; they are usually mucé digerse in their business operations
and process. Therefore the standard business ajptis need to be much more adaptive to
the specific needs. Since SMEs are much more estsitiveadaptations'customizations
need a veryefficient implementation. For the same reasons the Total Gbfwnership
(TCO) is very crucial for SMEs.

5.1.2 CRM example

5.1.2.1 CRM & CRM System

CustomerRelationshipM anagement is a management concept, which intensigsstematize
and improve the relationships between corporatagmstheir customers. It can be defined as a
customer-oriented corporate strategy that utilimesdern information and communication
technologies to establish long-term, profitabletaoer relationships through holistic and
individual marketing, sales and service instruméHrippner & Wilde, 2002).

A driving force behind CRM is the awareness thaaineng existing customers is signifi-
cantly cheaper and more profitable than acquirieqyy mustomers; whereby customer loyalty
is highly correlated with customers’ satisfactiothapreviously bought products and services
(Heskett et al., 1994; Hippner et al., 2006). Amalbjective of CRM is thus to establish deep
relationships with customers and to extend thertesyatically.

To support customer relationship managent&RM systemsprovide comprehensive IT so-
lutions. It typically includes interfaces to othmarporate information systems such as enter-
prise resource planning (ERP) or supply chain memamt (SCM) (Hippner et al., 2004).
The actual realisation of a CRM system is vendecsiz and depends on the architecture of
the overall business software solution. CRM systerag be classified into two distinct func-
tional categories (Hippner et al., 2004).

* Operational CRM
Operational CRM supports marketing, sales and aemiocesses by providing the appli-

102
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

cations and tools for supporting direct customéeractions. These operational systems
are responsible for controlling and coordinatingvéttes across different customer inter-

action points (e.g. field service, branch officemmpaign, website) and communication
channels (e.g. e-mail, phone, personal contacy.aMoidance of simultaneous, uncoordi-
nated customer contacts over multiple channels isx@mplary responsibility in this task

area.

Analytical CRM

Analytical CRM systems are concerned with the otilb, storage, and analysis of cus-
tomer data by using business intelligence techsigéenalytical CRM systematically
stores all relevant data about customer contactse@actions (e.g. purchase data, billing
and payment, campaign responses, survey respaesa@s)s) in a data warehouse. This
data may be combined with demographics and othterredd data before it is analysed by
employing data mining methods or used for answeongine analytical processing
(OLAP) queries.

5.1.2.2 SAP CRM

SAP offers several CRM products such as mySAP CRIMch was recently renamed to SAP
CRM (Buck-Emden & Zencke, 2004; SAP, 2007b). Tippleation supports the entire oper-
ational CRM field and provides components and fiometlities supporting the three funda-
mental CRM processes marketing, sales, and senibés application is implemented using
object-oriented programming and some important Mess objects of each process are
grouped together below (Stirmer, 2006):

Marketing: Lead

Sales Opportunity, Customer Quote, Sales Contract, iSerContract, Sales Order, and
Service Order

Service Customer Return, Service Request, and Servicéir@ation

5.1.3 Lead and Opportunity Management

Figure 4 shows a Sales Scenario example that fearseales processes of enterprises selling
one or more products. This involves different tisinganging from Opportunity Management
to quotations to customers, sales orders and iavpiocessing. This figure shows also the
different user roles that are involved in each stejhe sales process.

103
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
Legend
ﬁ
Field Service 0 Identify 4 Create L — _)QSHES/
Representative Opportunity Sales Order Processing
¢ £ 3
Check
k L create 1..»| Account > Creditworth. | >| Payment
Sales Manager Opportunlty Mgmt- @ ¢
; S
Avail. to
% (Evaluate g Promise | > Stock
Opportunity —
Office ¢
Sales Assistant Process — 5
% 2.4 Payment r--» Payment
~—~—
Financial Create - — tati
Assistant L Quotation > Quotation 9.
3 Create [_ . Pricin Return
) 7 ICI
Warehouse Quotatlon 9 Order
Assistant
10.
O —
Approve o
Return
Customer

Figure 4. Sales Scenario

In the following, we will focus on pre-sales proses such as lead management and opportu-
nity management. These processes support salempetsn actively tracking potential sell-
ing possibilities.

Lead and Opportunity management provides a stredtapproach to turning an initial recog-
nition of a selling opportunity (i.e., a potent@bssibility for selling products to a customer)
into a sales contract. In that process, the SAP GRfMvare guides the sales representative
through a multilevel process and generates negs sted activity suggestions on the basis of
best-practice sales strategies.

The opportunity management process may start withrenymous address and, by degrees,
track additional prospect attributes such as prodierests, discretionary budget amounts,
likely competitors, and the success probabilitympteteness and consistency checks ensure
the correctness of the collected data after eagh Jthe accurately documented process im-
proves reporting capabilities: Sales managers ceasuore their salesperson productivity,
campaign effectiveness and can, for example, d@term which sales phases the most pros-
pects were lost (Amberg & Schumacher, 2002; Hipeheat., 2006).

Figure 4 shows also the different steps of the dppdy process. This process starts by the
identification and the creation of an opportundyg., after a sales contact at a fair. Then, the
opportunity is evaluated and qualified, i.e., fedsy is clarified, information is gathered
about the customer, and a selling team is defiffed.go decision is made, a quotation is
made and sent to the customer, which either actleptsales offer or rejects it. After that the
opportunity should be closed and the reasons foresis or failure should be documented. In
the success case, the opportunity becomes a sdks o

In the following, we present in more details sonusibess objects in opportunity manage-
ment. These objects are shown in Figure 5 anddhegiscussed briefly below:

104
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

* The Opportunity class uniquely identifies the opportunity and #je the various in-
volved parties. It holds references to other classigh additional business information
and to the documents and activities created dwppgprtunity processing. Some direct at-
tributes of the opportunity class are:

» priority: specifies the priority of the opportunity

* processStatusValidSinceDate: the date when therappty entered the current life
cycle phase.

» The Party class represents individuals or organizations lires with the opportunity.
Specialized classes may represent customers, stgptir employees. Parties are used
within the opportunity to specify the prospect,grdtal competitors, the responsible sales
team, and other internal or external stakehold&wse attributes of a party are:

» partyType: specifies whether a party is an orgditimaa business partner, or any spe-
cialization of these party types.

* partyRole/PartyRoleCategory: describe the role péry in an opportunity.

» The SalesForecastlass contains estimations for the anticipated gzt an opportunity
represents. it contains various fields such as

* expectedRevenueAmount: the expected amount ofpgpertunity
» probability: the success probability of the oppaity, expressed in percentage.

* The clasdtem represents a product or service which will pogsid# sold to the prospect
of the opportunity. It contains product informatiguantities, and values. An item may be
associated with master data product information.

* An opportunity passes through several phases diutsniifetime. The clasSalesCycle
specifies the sales cycle and the current phasa apportunity. Other attributes of this
class are:

» salesCycleCode: the sales cycle in which the oppiyt exists.

* phaseProcessingPeriod: the time period for whichgortunity exists in the current
phase.

105
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming

Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
-« inlmrfaes
Core:
T,
{ — # Lintmrfanes =
2 =5 -
2 intmrlaes = Tea = fction
CRUD <]1
=Commitl) < < enumerations =
~create () - 7 S Emumerson= > LifeCylzeState
+update O ~Follback O . FrogressState s
~read & onTrack last S mnumanslion= >
SR L , i | oS ConzistencyState
~delete 0 ' Op gt rbunity Actiong siow stopped consistent
[N Elialled inFrocress i i
pant) inConsistent
' lozky) 1 ' +progresstERED]
| 2 +CONZistency
=re0pen 0 1/ lifeCysleState
b =stopped [
i -
progress 0
y f Tt g SalesCycke
[' | Ttem [Opporriysiate] pr——— - startDate - Eoate
y } Wescription : ESring FesultReasonCode “endDate : Set=
y | £ quantity ¢ Bk Froadshow =phaseProcessingDatePeriod : Period
3 | =netimaount : Znt -OpportunityState Telephonelnguiry
1 | 1| ExtemalPartrier +zalesCycle | drfque i
i I esultReaso
|
I'L | +zalesPhaseCode
! |
Ll 1 f +salesCyeleCodd
Opportunity — = mmumeration= = < < mnumerstions >
STn} Cueshomisation SalesCycleCode SalesPhazeCode
<salesTeam : Pariy . . ~CALCULATE FROM_ITEMS : EEcgiesn GeneralOpportunity IdentifyOpportunity
—etternalParty : Py 1 ~daysSlow : Hat TewCustomer QualifyOppartunity
=responsibleEmplayee Pty ma_} +daysStalled : Eat EvaluateOpportunity
“prospect : Paly +Eource CreateProposal
= pricrity 1 soustomizeDiata Securedgreement
= procezsStatusyalidSincelate : Elal= 1 ClaseOppartunity
=checkConsistency O
=setFrocessStatutsalidSinee (nd : EDst=) +
) : 1 1% +source
=zetProspect (aros : Parly)
SalesForcast
+galesForecast = =
=propability : SEa0.1] = 100
—expectedRevenueAmount - ESighecimsl

Figure 5.

-weightedForecast : EDoubie

=EspectedProcessingDateP eriod

+ PPrevicd

-caleweightedForecast (retum : Cumr=ncy, propafility © null, valus © Cunrency)l

=getweightedForecast

=setExpectedProcessingStartDate

nd : EDete)

Main Classes in Opportunity Management

The Opportunity example described in this sect®onded as a domain model for the Oppor-
tunity Management scenario as described above.eXample is a typical structure and be-
havioural model containing information and businkeggc that can be found in CRM imple-

mentations. The models shown are implemented as EBbtels and will be used as basis for
defect detection. There faults may be manuallyoohiced into the models to verify the cor-
rectness of the error detection.

Figure 6 shows the body of the methedProcessStatusValidSince, which is defined in the
classSalesForecast. as an example for a behavioral model for qual&tection. The model
was created using the tool TopCased (TopCased,)208é implemented behavior is also
outlined in a Java notation on top of Figure 6.

© Copyright by VIDE Consortium

106

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1

Version 1.0 Date: 09 August 2007
Addefined in the clazs opportunity L
public void zetProcessStatusy alidSince(D ate nd]

if[thiz. zalesF orecast. expectedProceszingD atePerniod. startD ate » nd)
thiz. procezsState’f alidSincel ate = nd;
1
F1
read zelf
CF2 QFz
1]
Read salesFDregast ‘
OF3 CF3
L]
read expectedF){DcessingD atePenod |
\EFd
read StartD ate ‘
new date
F& CFY
¢<dataStores >
tartDate
[ztartD atdy, > newD ate]
ztartDate » newDate
OFa
L]
zet new date ‘
elze
CFa ©
]
Figure 6. Diagram of setProcessStatusValidSince()

107
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

The implementation consists of simple decisionaac(if) with a Boolean expression and an
assignment.

5.2 Consequences for Quality Assurance in MDSD for théBusiness
Domain

Based on the previous description of the domaintaedcenario we conclude that the follow-
ing characteristics are very important aspectoftiwre systems in the business domain:

» Systems are very large, complex, and incorporataynthifferent application domains
(e.g., CRM, Logistics, etc.)

» Development is conducted by large, probably (glgpalistributed teams

* Internationalisation such as multiple language suppnd adoption to country specific
regulations, such as taxes

» Evolution is triggered by external factors (e.fpaeges of laws or taxes)
» Application are targeted to support larger orgainrs

Due to the mission critical nature of business igapibns some quantity characteristics from
ISO 9126 (ISO/IEC, 2000a, 2000b) are more cruam should, therefore, be emphasised
when evaluating the behavioural models. The charatics considered more important are
emphasised bold in detailed quantity charactesstiescriptions below. For those marked
important a short description is given why they @asidered important.

5.2.1 Maintainability

The set of attributes that focus on the effort et make corrective, preventive, perfective,
or adaptive modifications to the software system.

» Changeability: Attributes of software that bear on the effort resedor modification,
fault removal or for environmental change. (ISO ®1P2991, A.2.5.2). Business Applica-
tions mainly evolve based on changes in the orgtoiss they are supporting as well as
requirements from outside of such organisationhsaglaw, tax and compliance rules. In
addition the applications need to be adapted fecifip industries (e.g. SAP currently
supports 25 industry solutions), countries (e.gPAIrrently supports 120 countries) and
languages (e.g. SAP currently supports 31 lang)d§&d>, 2007a). Therefore implemen-
tation should be easily changeable.

* Analyzability: Attributes of software that bear tre effort needed for diagnosis of func-
tional deficiencies or causes of failures, or figntification of parts to be modified. (ISO
9126: 1991, A.2.5.1).

» Testability: Attributes of software that bear o thffort needed for validating the modi-
fied software. (ISO 9126: 1991, A.2.5.4).

» Stability: Attributes of software that bear on the risk of xpected effect of modifica-
tions. (ISO 9126: 1991, A.2.5.3). Business applicest require a high level of stability
since many developers, consultants, etc. work ahdrange the system — a system a
company’s main business processes may depend on.

» Encapsulation/ Modularization: Business application are targeted to support langer
ganizations, are often very complex, and cannatripfemented by a small team. There-
fore, large development teams and consequentlyigtabution of work are necessary.
This requires binding design decisions (i.e., madgétion) but also the need for consis-

108
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

tent software documents (e.g., code or modelsihEunore, it is very important to follow
coding guidelines, use consistent code stylesgber@ to interface specifications.

* Multi Languages support: Globalisation affects business and the applicatiat are
operating the applications that need to supportiplellanguages.

* Understandability (Code), Readability: Attributessoftware to be understood by the de-
veloper, tester, or maintainer. (Boehm). Similachangeability and modularization the
code or model of a system needs to be easily utathelzble by the developers and archi-
tects — especially in large, distributed, and rinual teams.

5.2.2

Efficiency

The set of attributes that focus on the relatigndietween the level of performance of the
software and the amount of resources used, unatedstonditions.

5.2.3

Time Behaviour: Attributes of software that bear on response amggssing times
and on throughput rates in performing its functigisO 9126: 1991, A.2.4.1)
Business applications require a high level of tefigsiency since a company’s main
business processes may depend on the applicatmn. &pplications that implement
critical processes, will slow down the hole orgatitn.

Resource behaviour:Attributes of software that bear on the amountesburces used
and the duration of such use in performing its fiomc (ISO 9126: 1991, A.2.4.2). An
important requirement for business applicationssésaling therefore the resource
consumption of the overall system as well as th&nass applications needs to be
considered. In order to provide SME applicationss iessential that software grows
with the organisation.

Reliability

The set of attributes that bear on the capabilitgaftware to maintain its level of perform-
ance under stated conditions for a stated peridiohef.

Fault Tolerance: Attributes of software that bear on its abilityrt@intain a specified
level of performance in cases of software faultsobinfringement of its specified
interface. (ISO 9126: 1991, A.2.2.2). Business igppbns require a high level of
stability since companies depend on the applicatifhile failures are always
possible, but a failure in one module should nop $he hole application.

Maturity: Attributes of software that bear on the frequentfadure by faults in the
software. (ISO 9126: 1991, A.2.2.1). Business apgibns require a high level of
stability since companies depends on the applicafldverefore the code should be
mature.

Recoverability: Attributes of software that bear the capability to re-establish its
level of performance and recover the data diregfiigcted in case of a failure and on
the time and effort needed for it. (ISO 9126: 1992.2.3).

5.2.4 Portability

The set of attributes that bear on the ability aftvgare to be transferred from one environ-
ment to another.

Adaptability: Attributes of software that bear on the opportuityits adaptation to
different specified environments without applyingper actions or means than those
provided for this purpose for the software consder(ISO 9126: 1991, A.2.6.1).

109
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Adaptability is a very important characteristic &iandard software providers that are
required to build in as much flexibility to adajt $pecific customers and customer
problems as required. However archiving that gealary difficult since the demand
for adoption by customers is difficult to foresespecially in the more heterogeneous
SME market. The need for Adaptability required S#Pship the platform (SAP
ERP...) including the source codes to allow custontersodify and adapt (more
related to QA - Changeability). However for SMEsga kinds of adaptation will be
too cost intensive. However VIDE models should \alloleveraging
changes/modification to configurations for applicas with a higher level of
adaptability.

- Installability: Attributes of software that bear dhe effort needed to install the
software in a specified environment. (ISO 9126:11,992.6.2).

- Replaceability: Attributes of software that beartba opportunity and effort of using
it in the place of specified other software in #mevironment of that software. (ISO
9126: 1991, A.2.6.4)

5.2.5 Functionality

The set of attributes that bear on the existen@esdt of functions and their specified proper-
ties. The functions are those that satisfy statathplied needs.

- Suitability: Attribute of software that bears on the presenckappropriateness of a
set of functions for specified tasks. (ISO 912691,9A.2.1.1). As outlined in section
5.3.1.1 security is an important issues for busirsggplications.

« Accuracy: Attributes of software that bear on the provisidiright or agreed results
or effects. (ISO 9126: 1991, A.2.1.2). Accuracyedults is certainly one of the most
important quality characteristic of business sofaveaand directly effected by
behavioural models.

- Interoperability: Attributes of software that bemr its ability to interact with specified
systems. (ISO 9126: 1991, A.2.1.3). While interapdity is important especially for
collaborative business applications as providedth®y SOA architecture. However
interoperability depends to a large extend on agerability of static structures such
as data types. Interoperability is influenced lagshe behavioural models therefore it
is not considered especially important for the gcopthe project.

- Security: Attributes of software that bear on its abilitypieevent unauthorized access,
whether accidental or deliberate, to programs atd. qISO 9126: 1991, A.2.1.5). The
information that is stored in enterprise systemsftisn the major asset of an enterprise
that needs to be protected.

5.2.6 Usability

A set of attributes that bear on the effort neefdedise, and on the individual assessment of
such use, by a stated or implied set of userke effort needed for use, and on the individual
assessment of such use, by a stated or impliexf ssers

- Understandability (System): Attributes of softwdhat bear on the users' effort for
recognizing the logical concept and its applicépilflSO 9126: 1991, A.2.3.1).

- Learnability: Attributes of software that bear dmetusers' effort for learning its
application (for example, operation control, inpadfput). (ISO 9126: 1991, A.2.3.2).

110
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

- Operability: Attributes of software that bear orethsers' effort for operation and
operation control. (ISO 9126: 1991, A.2.3.3).

The Quality Attribute Usability refers to the Usldlyiof an application build using the VIDE
languages. Since the project is focussing on tlckdral implementation and cared less about
user interface issues. The Quality Attribute Usgbitan be neglected when evaluation the
quality of VIDE code. Certainly the tools for crigwt VIDE code are obliged to usability.

5.3 Sources for Domain specific quality defects

The following programming languages and technicqaresmportant in the SAP development
environment: ABAP, ABAP-OO, Java, HTML, BSP, Micoft Visual Basic and C/C++.
HTML and BSP are both language used for generatsegy interfaces, Microsoft Visual Ba-
sic is used to integrate with Microsoft producissts as Microsoft Office, and the major use
of C/C++ is for implementing basic elements, sushh& APAP compiler. None of these lan-
guages are used for the implementation of busiluggs within SAP and therefore of less
interest.

Business logic is implemented using ether Java BARA Since Java is a general purpose
language and APAB has been especially developedriplementing business application,
including building mechanism for database manipmfaand queries that are both essential
part of the VIDE language, we’ll focus on ABAP ftire extracting quality defectABAP
(AdvancedBusinessApplication Programming) is a high level 4GL programming langeiag
invented and used by SAP to implement all kindsusfiness applications on top of databases.

Since the VIDE language defines model level prognamy semantics, one can expect quality
defects to be similar — respective subclassesqguality defects on the code level. Therefore
this section derives the domain specific model cisférom existing tools and guidelines
(code guidelines, naming conventions, database ssacce) for the ABAP language.
Testing distinguishes betwestatic anddynamictests (Perry, 2000). A dynamic test the exe-
cution of a program with some test data is testdtle a static test used the static definitions
of a program (usually the code, documentation...}dsting. Since the VIDE models itself —
that means without generated code or model sinomatare static definitions we’ll focus on
static testing in the next sections.

5.3.1 (Development) Guidelines

Guidelines are a very well known and common meadmarnd ensure unification and compli-

ance for development artefacts such as code, sepaticies or documentation. Many of the

existing defects/fault models originate from suciidglines that have been modified and for-
malized in order to automate them for fault detattiAn important source for business spe-
cific defect models are therefore guidelines faating business applications that will be in-
vestigated in this chapter.

5.3.1.1 Security Guidelines

Security certainly is important for business apgiens. SAP provides comprehensive docu-
mentation about how to develop secure ABAP (SAR)52) and Java applications (SAP,
2005b). The guidelines address topics such as-siesscripting (XSS), SQL injection, input

validation, URL encoding, secure data storage, if@ggvirus scanning, and more. For each
topic the security vulnerability is described ahany standard solutions from the SAP Net-
Weaver platform exist this is presented, includingctions and interfaces that need to be
used. If no solution is available from the SAP Ne#wer platform, recommendations are

111
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

given about appropriate security measures to t@ké chapter will outline the security
guidelines considered important for VIDE from thBAP Security Guidelines (SAP, 2005a).
A complete list of security guidelines can be foum{SAP, 2005a, 2005b).

Passwordsare used for user authentication to protect agiitins. Dealing with passwords in
favour of other authentication mechanisms, sucénaertcards, requires some considerations.
For instance passwords ...

* should not be saved or transmitted in plaintext,
» should not be hard-coded in the source code,
» should not be recorded in log/protocol/trace files

Cross-site Scripting (XSS) and SQL injectionare well known attack mechanisms often
seen for collaborative websites where is userlasvald to edit the content. The edits are then
processed by a program. If the processing is datieut verification this mechanism may be
used to insert malicious code, such as JavaSarigth, into the code based. A golden rule
of thumb is therefore ttnever trust any information coming from the outsiénd never as-
sume anything about it{SAP, 2005a). Whenever software processes inmum frarious
sources, e.g.

e Userinput from a GUI ,

» Parameters from a configuration file,
» Data from a database,

» Data from remote function calls,

it should make sure that this input is in the expgédorm. This may be enforced by calling
appropriate check method. Their use may be cheaied defect detection

5.3.2 Programming style

Most Programming languages allow for different pemgming styles that do not influence
the semantics of the program. For instance usiradigntation has no effect on the program-
ming semantics (except for Python programs) buytshalprogrammer to understand the code
better. Programming style-guides usually includgrirction for the use of comments, naming
conventions and the use of indentations. Code cuiores are often specific to different pro-
gramming languages. They usually cover naming catimes (filename, class name, variable
names...), indentation, commenting, declarationgestants, white space and good pro-
gramming practices. A list of naming conventions $pecific languages may be found in
(Wikipedia, 2007).

For VIDE many of the programming style guides oetfect the textual syntax (e.g. indenta-
tions) However some programming style guides aféecethe visual syntax (e.g. naming
conventions) or even instances of the meta modg! KEaming conventions, proper comment-
ing) and may therefore be enforced by defect/fdedéction.

Some examples of programming style guides for tBAR language are taken from (Blu-
menthal & Keller, 2006a, 2006b, 2006¢; Heuvelmared.e2003).

5.3.2.1 Naming conventions

Naming convention defined rules for character seqeg to be used for identifiers in source
code and documentation. Naming convention increaseto increase the consistency of
source code and documentation for easier readmdgratanding and improved source code

112
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

appearance. An example for naming conventions AR code are conventions fekternal
names External nameare repository objects with public visibility (Bhenthal & Keller,
2006c¢):

* CL_<name> for global classes
* IF_<name> for global interfaces
* CX_<name> for exception classes

* CL_OS_<name>, IF_ OS_<name> andCX_ OS_<name> should be used for Object
Services

e CL_BADI_<name>, IF_ BADI _<name> andCX_ BADI _<name> should be used for
Object Services

The naming conventions should be not be usethternal namedo indicate what is visible
form other Objects. Other naming conventions alated to languages issues. Usually the
English language has to be used for code idergiisrwell as for comments.

5.3.2.2 Source code sequence

Programming language guidelines often recommendrin structure or sequence of pro-
gramming artefacts. For instance the structure@eh programs is usually

1. Package declaration
Import

Class declaration
Class attributes

a s b

Class methods
a. Constructor
b. Main method

Also within method implementation programmers stdollow given structures and coding
sequences. Example for recommendation on thosetwtes can be found for instance in
(Blumenthal & Keller, 2006a) which recommends sexes for the sequence of

* Declaration vs. Implementation— Declarations (like imports, interface definits)rand
implementation should be separated. Usually deabeus are first and followed by the
implementations.

» Sequence of program parts- Declarations or top down approach recommendetioB
up means that within a program things are defirefdrie they are used. Top down means
that the program is structured among the importaa@e main components (interfaces,
classes ...) come first and are followed by helpasszs. The selected approach should be
used consistently within any given program.

» Sequence of declarations- The sequence of component declarations shosiddoa done
in a consistently. For example 1. Types 2. Const@8ntStatic components 4. Instance
components and 5. Field symbols

* Sequence of statements in procedures (or methods)Procedures (or methods) should
also be structured in a consistent manner. For ARAdrams (but also for other pro-
gramming languages such as Java) it is recommestdedan implementation with local
declarations (types, local variables...) followedfbyctional statements.

113
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

5.3.2.3 Avoid outdated programming constructs

As programming languages and libraries evolve sprmgramming constructs or interfaces
are replaced with other (better) programming camstor interfaces. In order to stay compati-
ble with legacy code theld programming constructs or interfaces valid foinget In Java for
instance library method are markedkeprecated which mean that they may be re-
moved/replaced in further releases. Java comppaoms allow checks for deprecated meth-
ods which results in a warning. Other programmiaigglages do not have such a build-in
support. Therefore ether guidelines on how to dagi legacy and new code are give or
methods for automatic defect detection are usedexemple for the ABAP languages is the
use of binary operators (Blumenthal & Keller, 200@€BAP supports relational operators (
<>, <, >, <=, =>) as well as character operatdtQ(NE, LT, GT, GE) to express binary opera-
tors. Relational operators are more readable thexdifieir use is recommended.

5.3.2.4 Guidelines specific for ABAP-OO

The ABAP language evolved from a functional progmang language in to an Object Ori-
ented programming language ABAP-OO. With the apgeae of the OO concepts and some
language extensions a couple of recommendationgiaeg in (Blumenthal & Keller, 2006Db).
For instance Blumenthal and Keller recommend mste interface design that should be
easy only when needed. They recommend to

e Declare classes as final

* Restriction of the number of public components. @orrents that can be private should
be declared private

» Attributes that are declared public shouldREAD-ONLY
» Consider private instantiation of clagsREATE_PRIVATE and offer factory methods)

5.3.3 Tool based defect detection
The ABAP development environment contains a cowle@nalysis tools (Eilenberger &
Schmitt, 2003):

* The ABAP Debuggeris a debugger for the ABAP language used for dyoanalysis
such as bug detection.

* The Runtime Analysis tool allows analysis of the duration and perforoenf ABAP
code, from individual statements up to completadaations.

» TheCoverage Analyzeris a monitor for tracking how often a processihgck was exe-
cuted. The tools is for dynamic analysis of runrsggtems and used to exhibit unreached
code blocks

* TheRuntime Monitor is an instrument that supports the recording fafrmation on user
triggered events that can be used to replay ussicse

* The Memory Inspector is used to analyse memory snapshots, e.g. thé adsa core
dump

 The ABAP Unit are unit tests (Perry, 2000) for the ABAP langudgé used to define
and verify test cases for unit test, but doesntitam any kind of generic defects of
smells, but specific test cases.

» The ABAPCode Inspectoris used for static analysis of ABAP code.

Since defect analysis and fault detection focusethe static analysis we’ll focus on tools for
static analysis of ABAP coding which is in this edke ABAP code inspector.

114
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

5.3.3.1 ABAP Code Inspector

The ABAP Code Inspectas a tool for static code analysis of ABAP codended td'help
you easily identifying some of these types (mando@n syntax, performance and security) of
shortfalls” (Eilenberger & Schmitt, 2003}igure 7 below shows a screenshot of the tool
showing the results of an analysis.

ey EHETN:

@ i E o Dunt mjallie] | =
Code Inspector: Results from

Ponsnn Besponiis KEEPIN Inspection ﬂ- viass. 1

HaEsageE

<

| Tasts 1 I.'-rl-:-lil.‘u-r.'- j:"l"-l"| |
.L Juk o ' heprp ey 1 3 I !
PaMarrEhg e T o
Eacurily Chiscks

Symime Chackibenpranos

B (CBlegoey o ST

Siach far G0MH

Enformation

slessage Coge OB

Program I BC_ B TERT KCOPIM_S0OM nciuse 2_BC0_5_TEST_sCOFM_SOMN Bow D00
3:I:IIP] SN 'fi_'& -’L'!ul’\! L1l |'-'|'l'-_" 1

Frogram Z_BC_ & TEST _KCOPIM_GOM nciute Z_BC_E_TEET _MOOfMM_S0M Row 000 a

ey

JEBE

L] 4]

05D OS5 O - = -

= =

=

|
14
B B SRS

COPIM_S0DN Include I_BC_E_TEET_ECOPMN_SDN Fow 000 a

?'l'lﬂ@.f-f"“'ﬁ'i': ui I -'.a
Figure 7. Result screen ABAP Code Inspector

The tool allows checking all kinds of ABAP codecBuas programs, function groups or
classes. The system can be extended to suppottoaddlicheck. However more interesting
are the standard checks that come with the sysiembuild-in checks fall into three catego-
ries

* Syntax checks

» Security checks and

» Performance checks

that are described in more detail below. The tatds allows to defines so call&barch Op-
tionsthat allows the definition of search patternsetst tompliance to for instance the naming
rules described above.

5.3.3.2 Syntax check

The first level of syntax checks are “normal” syntdecks for the ABAP languages that are
similar to syntax check other language parserdy siscthe parser developed for the textual
VIDE syntax. Those checks are of little interesis defect/fault detection since they are al-
ready checks by the language parser.

» References to program external units:Verifies if external program units (e.g. subrou-
tine calls) exist and interfaces are used correctly

* Multi-language enabling: Searches for constructs that hamper the use obgrgn in
different languages — for example, text literalghout text IDs. Text literals appear in
the language in which they were typed, and argrodessed by translation services.

» Package checkDetect the illegal use of objects from other paelsadhis check is often
performed by a compiler.

115
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Character portability (EBCDIC/ASCII portability): Detects whether a program be-

haves differently in EBCDIC (Extended Binary Codedcimal Interchange Code) and

ASCII (e.g., the comparison of character fields)isTmaybe extended to other character
encodings, e.g. Unicode.

Generation limits: Determines if generation limits, such as the maximmumber of ob-
jects, are close to being reached. This check digpen transformation rules and limit of
the targeted platform.

Statements in wrong context:Scans for statements that are used in an inapptegan-
guage context. For example, t&®MMIT WORK statement within &ELECT ... ENDSE-
LECT loop leads to the loss of the database cursor.

Unnecessary items:Searches for form subroutines that are not used pmogram, or
fields that do not have read access. This chegftas performed by a compiler.

5.3.3.3 Security checks

Some ABAP statements can endanger the stabilitg, idéegrity and security of the overall
system. The Code Inspector therefore performs @leanf security checks to detect critical
coding. The checks performed are listed below.

Internal statements: ABAP supports so called internal statements intdnaldy for in-
ternal use by SAP. Their signature may change wtthotice and should therefore not be
used in programs.

Authority checks: For better performance SAP systems enforce autonaatihority
checks only for programs (SAP transactions) callieeictly by a user. Automatic author-
ity checks for function calls within programs ndedbe implemented by the programmer,
which is checked by this check. In VIDE those clseniay also be enforced using AOP
(see (Vide, 2007b)).

Database operation:Some ABAP statements potentially risk the portapitif the code

to other database systems (native SQL statemenEXEC and database hints) or the data
integrity ROLLBACK WORK). Therefore security checks through warnings foose
statements. Introducing native SQL into ABAP coslespecific to ABAP. However the
opaque expression in Action Semantics similar aguations of native code that should be
checked to increase the portability of VIDE code.

Repository objects: SAP systems store all development fragments (erggrams,
screens, global types...) as repository objectserdtitabase. From which they may be re-
trieved (e.gREAD REPORT) afterwards. However this should only be donerttgrnal de-
velopment tools. This behaviour is specific for S&yBtems and therefore unimportant for
VIDE coding.

Access to database table®atabase tables may contain confidential infornmatsuch as
personal data. Therefore their access should ltected and performed only when the
access is authorized. The check allows the spatidit of critical database tables and
check if access to the data is only done aftercaightion. In VIDE those checks may also
be enforced using AOP (see (Vide, 2007b)).

Handling system return codesNot handling return codes (e.qg. if the method tilmay
be suspicious and is therefore checked.

116
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

5.3.3.4 Performance checks

Performance checks are usually done using dynassing methods. However some static
programming constructs are know to be performaniteal. The Code Inspector implements
a couple of those checks focussing on inefficietbldase queries (SQL) such as for example
WHERE clauses that do not use an existing database.ifithese checks are specific to SQL
as query language. Therefore they can not be eaddpted for the OCL queries using in the
VIDE language. However badly designed OCL queriey mlso have a bad impact on the
system performance and should therefore be verikiedinstance (OCLjelect maybe used
similar to the (SQL)WHERE statements and may cause similar impacts on tsterayper-
formance.

117
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

6 Resulting defect model for the business domain

After listing the main collections of quality defecand describing the domain specific re-
guirements this section is concerned with the seleof domain-specific quality defects tar-
geted in the VIDE project. As we have seen the mmpbrtant characteristics of quality de-
fects is their focus on non-functional problemsaftware models, and that they are project-
independent, language-independent, symptom-basddreatment-oriented.

The following list is compiled from the quality éets outlined in sections 4 combined with
the domain and the quality characteristics fordbeain from section 5.2 and 5.3. The fol-
lowing Table 54 is a selection of the most impartamd frequent quality defects in the data-
oriented business domain. This selection was basdbe following objective, and subjective
criteria:

* The sum of interestingnes®{Dots) should include at least 2 full dots in suwhjéctive)
* The propability of the quality defect in a PIM shabbe high (subjective)

* It should be possible to associate concrete tra@sr(e.g., refactorings) with the quality
defect.

* The quality defect should not focus on problems w@uld make the model not compila-
ble (e.g., duplicated attribute names in a clasd)reot conforming to a standard.

The selection serves as a basis and priority disdefect detection methods conceptualized
during WP4 and reported in deliverable D4.2. Thelementation of these detection tech-
niques in the VIDE development environment willdmaducted during WP9.

Table 54. Selected Quality Defects targeted for VIDE WP9

Long method Structure |A very large method. ® O |@ |® Relation to the VIDE behavior
model
Long parameter list Structure |A method with too many para- |® O |O |@ |Intersection between the VIDE
meters. behavior & structural models
Feature envy Structure |A method is occupied more ® O |0 |0

Intersection between the VIDE

with data and methods in other behavior & structural models

classes than its own.

Duplicated Code Control |Duplicated OCL expressions. |® |O |® |O |Problems in OCL code
Message chains Structure |One object asks another object|® O |O |O :
for data in a third object (and Interse_:ctlon between the VIDE
behavior & structural models
SO on).
Lazy class Structure |A class that isn’t doing much. |® |O |O |® |Relation either to the behavior

or structural model

The Blob (God Class) |Structural |Classes with too many functio- (® |O |O (@
nality and associations to other
classes.

Data class Structure |Classes that do almostexclu- @ (@O | @
sively store information for
other classes. Optionally, Data orientation & Problems in
these classes have getter and structural models

setter methods for the
attributes.

Data clumps Structure |Data items (i.e., attributes, ® | ® | O | O |Data orientation & Problems in

Intersection between the VIDE
behavior & structural models

118
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 4 — Deliverable D4.1
Date: 09 August 2007

parameters, local variables, structural models
etc.) that appear in groups all
over the system (e.g., id, sur-
name, forename, salary).
Type Embedded in Semantic |Type information is redundant-
Name ly encoded in the name / iden- L -
tifier of an attribute, method, AR SIS [e
etc.
Uncommunicative Semantic [The name does not communi-
Name cate the intent (e.g., short Problems in identifier
names, abbreviations, ...).
Inconsistent Names Semantic [Names are not consistent Problems in identifier
throughout the system.
Complicated Boolean |Control Complex condition involving Problem in Code & Relation to
Expression Boolean operators (“and”, “or”, the VIDE behavior model
“not”). (optionally, in OCL code)
Combinatorial Explo- |Control Code duplication for many Problem in Code & Relation to
sion slightly different features (e.g., the VIDE behavior model
queries) (optionally, in OCL code)
Conditional Complexity |Control Large and complex conditional Problem in Code & Relation to
statements (i.e., if, switch etc.) the VIDE behavior model
(optionally, in OCL code)
Magic Literal Control Zun;zrrl;: icr)]rtiterlrrnr?icljlct;laera(l)ftg?]t Problem in Code & Relation to
OpC?L expression without expla- iz WP EehEvien igii)
. P P (optionally, in OCL code)
nation.
Redundant data Data Data is stored in different plac- Data orientation & Problems in
es (e.g., birthday). identifier
Prolems i dta ases (s
. P y Persistence layer)
sion.
Coupling Structure, P_arts are linked by an exten- Intersection between the VIDE
Control sive network of data or control -
behavior & structural models
flows.
9. Minimize the number [Structure |A diagram that holds more A
of bubble types than six elements (bubbles). ERE IS
10. Incl_ude V_\Ihlte Layout Elements in a diagram that are Problems in Diagrams
Space in a diagram too close together
16. Reorganize large [Structure |Diagram is too large
Diagrams into several Problems in Diagrams
smaller ones
26. Apply color or dif- |Layout More than six colors in a single —
ferent fonts sparingly diagram PO 11 D
27. Describe diagrams |Structure |Missing comments / notes Problems in Diagrams
with notes about the diagram 9
158. Strive for left to Layout Message flow that is unor-
right ordering of mes- dered and makes a zig-zag. Problems in Diagrams
sages

These 25 quality defects represent the currentlgtnmseresting ones that will be targeted in
the realization of the quality defect diagnosisiniginVP9. If all of the quality defects will be
used is still uncertain — for example, quality d¢$ethat affect multiple locations (e.g., Incon-
sistent Names) or unused elements (e.g., “Strivdefoto right ordering of messages” when
no sequence diagrams are used) might be excluded.

119
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

7 Concluding Remarks

In this report we presented an extensive overvieexisting quality defects affecting quality
aspects of software products, processes, progetsprganizations as well as techniques for
their diagnosis (presented in D4.2) based on asic literature review. This review was
used to summarize the existing literature and coasan objective and comprehensive over-
view about quality defects, related concepts, &ed tiagnosis techniques. We selected more
than 560 black and grey publications publishedcimotarly literature, identified 43 concepts
with quality defects, and listed 800 quality deseict this report. We classified, evaluated, and
discussed the research on the quality defects baisdtie quality defect description, their
types and different criteria such as the type dfwse artifact concerned, the process they
are embedded into, and the quality aspect affedtkd.results of the work in WP 4 of the
VIDE project is as follows:

* In contrast to the insular and inconsistent calbest in other publications this report
presents the results of a systematic literatureevevo create a comprehensive and uni-
form collection of these quality defects and totstaquality defect body of knowledge.

* The collection of definitions of existing qualitefct related concepts and the synthetiza-
tion of a consistent and uniform definition of gtyatefects.

» The analysis of existing quality defects regardihgir applicability in the context of
Model-driven Software development.

* The construction of an information model based &ALLP.0 that describes the informa-
tion that might be used to diagnose quality deffeéiDSD models and especially PIMs.

* The selection of quality defects that should beddsed in the VIDE environment in or-
der to support the modelers during their desigiviiels. This information will be used in
WP9 to design and realize the diagnosis techniques.

* Finally, the identification of gaps in the curregesearch and body of knowledge in order
to support where future research is needed.

7.1 Recommendations

Furthermore, we identified important open reseasshes that remain to be solved. In sum-
mary, we identified the need for an comprehensivelogy to systematize the defect corpus,
a naming taxonomy to equalize and systematize #imeen, an formalization of the quality
defects based on different languages and envirotsnfery., MDSD, OO, AOP, etc.), as well
as specific defect diagnosis techniques for thisicayery. Additionally, more empirical evi-
dence s required about the precise effects of tadity defects on the quality aspects on the
models and the resulting software systems.

7.2 Outlook

Researches in software engineering are more and eguipped with techniques and method
for the systematic identification of symptoms, diagis and prognosis of quality defects, and
indication of treatments and preventive measureseNheless, in order to handle the increas-
ing amount of knowledge about software systems rremfeniques of the diagnosis of quality

defects on all levels of software products, proegsprojects, and organizations are required.
As the field of software engineering matures amdpbssibilities for more advanced diagnosis

120
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

and prognosis techniques increase, the field diveoé quality assurance based on quality
defects promises to be an exciting area for futesearch.

The sister-report D4.2 will include a summary ofalifly defect diagnosis techniques, their

characteristics, benefits, and shortcomings. Be#iéediagnosis techniques it will include

visualization concepts for quality defects in MD&Bd the information model based on UML

2.0 and compares it with available information fratiher environments such as eclipse-
UML, or Java.

The work package WP9 will be used to realize tlaguaiosis and visualization techniques for
QDs in the VIDE environment.

121
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

8 Glossary

Analyst / Designer: Analysts/Designers are responsible for the comegphodel of business
entities and the high level business logic. They design artefacts and models pro-
duced by the business analyst and transforms themai design. Analysts/Designers
work on PIM level in the VIDE tool stack.

Analyst/VIDE Programmer: The Analyst/VIDE Programmer is responsible for toenple-
tion of the behavioural model to allow model sintiga (i.e. for testing) and the trans-
formation of the models into code. Analysts/VIDE&rammers work on PIM level in
the VIDE tool stack.

AOP: AspectOriented Programming is a programming paradigm that attenptaid pro-
grammers in the separation of concerns, speckicaibss-cutting concerns, to ad-
vance the modularization of software. AOP usesstutsing expressions that encap-
sulate the concern in one place.

Architect: The architect is responsible for building the sfanmations of the behavioural
models described using VIDE into platform spectiicling. The architect is an expert
in the target platform (i.e. Struts, ...) and thegseanming language (i.e. Java) but al-
so has a sufficient understanding of UML and VIDEbe able to define the transfor-
mation. Architects work on PIM&PSM level in the VIlXXool stack.

ATL : The ATLAS TransformatiorLanguage is a result of the MODELWARE project. This
transformation language is closely related to tM@ Qtandard and provides a running
implementation.

BPMN: Business Process Modelling Notation. The OMG diath BPMN provides a notation
that is understandable by business users, inclualisgess analysts (creating the ini-
tial drafts of the processes), the technical dgya® (responsible for implementing the
technology that will perform those processes), thiedousiness people (who will man-
age and monitor those processes).

Business Analyst:The Business Analysts advise enterprises on aeaby@nception and im-
plementation of IT solutions. They constitute threnmection between the customer
and the involved IT specialists and need techn&salwell as social competences.
Business Analysts work on CIM level in the VIDE kstack.

CIM: A ComputationlndependenModel represents the user requirements in an abstrac
high level view on a software or business systehe ffansition of a CIM Model into
a Platform Independent Model (PIM) should be doowmmatically using a model
transformation.

Domain User (Customer):The Domain User is the end user of the construstéiivare so-
lution. He works for the customer and is an experhis special domain typically
without knowledge technical issues. The Domain Userks on CIM level in the
VIDE tool stack.

EMF: Eclipse Modeling Framework is a modelling framework for building te@nd other
applications based on a structured data model. pMFides tools and runtime sup-
port to produce a set of Java classes for the madsdt of adapter classes that enable
viewing and command-based editing of the model, amhasic editor. EMF provides
the foundation for interoperability with other EMfased tools and applications.

GEF: GraphicalEditing Framework allows developers to create a rich gragtaditor from
an existing application model. Developer can takeaatage of many common opera-

122
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

tions provided in GEF and/or extend them for thecdir domain. GEF employs an
MVC (model-view-controller) architecture which eted simple changes to be ap-
plied to the model from the view.

GMF: The GraphicalModeling Framework provides a generative component and rentim
infrastructure for developing graphical editorsdzasn the Eclipse Modeling Frame-
work (EMF) and Graphical Editing Framework (GEF).

IDE: IntegratedDevelopmentEnvironment assists computer programmers in dewvedppi
software usually consisting of a source code edaocompiler and/or interpreter,
build-automation tools, and a debugger. The VID&jqut will extend an existing IDE
with tools for describing UML2 Action Semantics

M3/M2/M1 Layers: Metamodelling is defined into a four-layered atebiure. The M3 layer
provides a meta-meta-model at the top layer. Thdsnbdel is the language used by
MOF to build meta-models, called M2-models. Thes2bdels describe elements
of the M1-layer, and thus M1-models. The MO-layeused to describe the real-world.

MDA: ModelDriven Architecture is a software design approach interidesipport model-
driven engineering of software systems. MDA wasated by the OMG.

MDST: Model Driven Software Testing derives test cases in whole or in part feomodel
that describes some (usually functional) aspecttheftest system. In VIDE testing
should be supported on model (e.g. model simulptma code level verify the cor-
rectness of code transformations.

ModelBus: ModelBus are tools dedicated to model driven dgwalent developed by the
MODELWARE project. The key feature of ModelBus ssgibility to exchange mod-
els in heterogeneous formats and a transparegratien of model based tool.

MOF: MetaObject Facility is standard for Model Driven Engineeringoposed by the
OMG. MOF provides a meta-meta-model at the toprlayel means to create and ma-
nipulate models and meta-models. There are twwarteversions of this standard,
MOF 1.4 (Object Management Group 2002) and MOF (@0ject Management
Group 2004).

OCL: ObjectConstraintLanguage. OCL statements serve as the most preesesmf mod-
el specification within the UML and MOF model ane@ta-model definitions. For that
purpose OCL was defined to be able to express r@onis for any kind of UML ele-
ments. OCL moreover provides means to expressfasttdqrder) query on some in-
stance of a UML class diagram.

OMG Object ManagemenGroup (OMG) is a consortium, originally aimed attisgf stan-
dards for distributed object-oriented systems, iangow focused on modelling (pro-
grams, systems and business processes) and maeel-ftandards in some 20 vertic-
al markets.

Petri Net: Petri Nets are a formal, graphical, executablertegle for the specification and
analysis of concurrent, discrete-event dynamicesyst a technique undergoing stan-
dardization, initially developed by C. A. Petri ftire specification of concurrent (pa-
rallel) systems.

PIM: A Platform IndependenModel is a model of a software or business systenishin-
dependent of the specific technological platforredu$PSM Level) to implement it.
The transition of a PIM Model into a Platform-sgec{(PSM) model should be done
automatically using a model transformation.

PSM: A Platform Specific Model is a model of a software or business systamisHinked to
a specific technological platform (e.g. a specgrogramming language, operating

123
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

system or database). The PSM Model should allovafioautomatic transformation in-
to code.

Query: A query is the extraction of data from a struetlisource of information. In the VIDE
context, queries are sub-expressions of the ViDiguage which extract data from a
UML class diagram.

QVT: Query /Views / Transformations is an emerging OMG standard providelsnology
neutral solutions for querying, transforming anceafying views of MOF-based
models.

SDL: The Specification andDescriptionLanguage is a specification language for describing
system behaviour. Its major use case is in thedelenunication industry for descrip-
tions of process control and real-time applications

SME: Small & Medium-sizedEnterprises is an abbreviation to classify compambsse
headcount or turnover falls below certain limits.

Tefkat: Open source model transformation language deedlap Queensland University.
User: A person who interacts with a system.
User Interface (Ul): All aspects of a system with which a user carradieand perceive.

UML: Unified ModelingLanguage is a specification language for object tindedefined
at the OMG. UML2 Action Semantics is an essentat pf UML 2.0 for the VIDE
project.

UML Action semantics: UML Action Semantics refers to the capabilitiesW¥IL to de-
scribe behaviour algorithmically. UML Action Semiastwere in UML 1.4 separated
from the rest of UML; since UML 2, one should ratispeak of the behavioural part
of UML (which is sub-divided in UML actions, actties, and behaviour). Contrary to
its name, UML Action Semantics, does primarily defan abstract syntax rather than
semantics.

Visual Design: The portion of a user interface that is concenvét the aesthetic quality of
an application. Composed of variables that addeespecific purpose or function,
such as font, color, and images, which impact pyearance, organization and layout
of the graphical elements in a user interface.

XMI: XML M etadatd nterchange is a MOF-based specification providirggrules of XML
serialization of models, allowing their transfetvween standard-compliant tools.

124
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

9 References

Abreu, F. B. E. (1997). Pedagogical patterns: pigkip the design patterns approa®bject Expert,
UK * vol 2 (March April 1997), no 3, p 37, 41, J¥se

Alexander, R. T., Offutt, J., & Bieman, J. M. (2003yntactic fault patterns in OO prograntaper
presented at the Eighth IEEE International Confegesn Engineering of Complex Computer
Systems (ICECCS), pages 193-202.

Allen, E. (2002) Bug patterns in JavaBerkeley: Apress, USA, New York, NY.

Amberg, M., & Schumacher, J. (2002). CRM-Systemd Basistechnologien. In M. Meyer (Ed.),
CRM-Systeme mit EAI - Konzeption, Implementierurd) Evaluation(pp. 21--59). Wiesba-
den: Vieweg.

Ambler, S. W. (2006)The Elements of UML 2.0 Stylest Edition): Cambridge University Press.

Ambler, S. W., & Sadalage, P. J. (200Bgfactoring Databases: Evolutionary Database Degigt
Edition (March 3, 2006)): Addison-Wesley Professilon

Andrea, J., Meszaros, G., & Smith, S. (20@@talog of XP Project 'Smelldaper presented at the
3rd International Conference on XP and Agile Preessn Software Engineering (XP 2002),
Alghero, Sardinia, Italy, pages 130-133.

ArgoUML. (2007). ArgoUML User Manual - chapter 15. Retrieved 15. June, 2007, from
http://argouml-stats.tigris.org/documentation/mdsua4/ch15.html

Aurum, A., Petersson, H., & Wohlin, C. (2002). $taf-the-art: software inspections after 25 years.
Software Testing, Verification and Reliability (2, 133-154.

Baldwin, K., Gray, A., & Misfeldt, T. (2006)lhe Elements of C# Stylést Edition): Cambridge Uni-
versity Press.

Basili, V. R., Caldiera, G., & Rombach, D. (199%he Goal Question Metric Approach. In J. J. Mar-
ciniak (Ed.),Encyclopedia of Software Engineerifist Edition ed., pp. 528-532). New York:
John Wiley & Son.

Baumeister, J., Puppe, F., & Seipel, D. (206Bfactoring Methods for Knowledge Badeaper pre-
sented at the 14th International Conference onrigeging Knowledge in the Age of the Se-
mantic Web (EKAW), pages 157-171.

Becker, P. (2000a). Common design mistakes, pdihd C/C++ Users Journal, X&), 73-78.

Becker, P. (2000b). Common design mistakes, pdm&.C/C++ Users Journal, 1), 77-84.

Bennett, K. H., & Rajlich, V. T. (2000)Software Maintenance and Evolution: A Roadm@aper
presented at the Future of Software Engineeringklod22nd ICSE, Limerick, Ireland, pages
73-87.

Biolchini, J., Mian, P. G., Natali, A. C. C., & Tvassos, G. H. (2005pystematic Review in Software

Engineering (No. RT-ES 679/05). Rio de Janeiro: Systems Emging and Computer
Science Department, COPPE/UFRJ.

125
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Bloch, J., & Gafter, N. (2005)lava Puzzlers: Traps, Pitfalls, and Corner Cagkst Edition): Addi-
son-Wesley Professional.

Blumenthal, A., & Keller, H. (2006a). An insidergside to writing robust, understandable, maintaina-
ble, state-of-the-art ABAP programs - PartSAP Professional Journal, Wellesley Informa-
tion Services, Jan./FeB3--26.

Blumenthal, A., & Keller, H. (2006b). An insidersiige to writing robust, understandable, maintaina-
ble, state-of-the-art ABAP programs - PartSAP Professional Journal, Wellesley Informa-
tion Services, March/ApriB--26.

Blumenthal, A., & Keller, H. (2006c). An insidersiige to writing robust, understandable, maintaina-
ble, state-of-the-art ABAP programs - PartSAP Professional Journal, Wellesley Informa-
tion Services, May/Jun8--28.

Booch, G. (2007). Website of the Handbook of Sofewarchitecture - Pattern Section. Retrieved
11. July, 2007, fronhttp://www.booch.com/architecture/patterns.jsp

Boundy, D. (1993). Software cancer: the seven eadyning signs.Software Engineering Notes
(SEN), 182), 19.

Brown, W. J., Malveau, R. C., McCormick, H. W., &Mbray, T. J. (1998)AntiPatterns: refactor-
ing software, architectures, and projects in cridiew York: John Wiley & Sons, Inc.

Brown, W. J., McCormick, H. W., & Thomas, S. H. @89. AntiPatterns and Patterns in Software
Configuration Managemeifist Edition): John Wiley & Sons, Inc.

Bruntink, M., van, D. A., Tourwe, T., & van, E. R2004). An evaluation of clone detection tech-
niques for crosscutting concerriaoceedings. 20th IEEE International ConferenceSmit-
ware Maintenance, Chicago, IL, USA, 11 14 Sept420@os Alamitos, CA, USA: IEEE
Comput. Soc, 2004, p 200 9

Brykczynski, B. (1999). A survey of software inspen checklists.Software Engineering Notes,
24(1), 82-89.

Buck-Emden, R., & Zencke, P. (2004)ySAP CRM: The Offcial Guidebook to SAP CRM Release
4.0: SAP Press.

Buschmann, F., Henney, K., & Schmidt, D. C. (20(Hattern-oriented Software Architecture: On
Patterns and Pattern Languag@#ol. 5). New York: John Wiley & Sons, Inc.

Cheung, S.-C., & Kramer, J. (1993)actable Flow Analysis for Anomaly Detection ins@ibuted
Programs.Paper presented at the 4th European Software &smgig Conference on Software
Engineering (ESEC/FSE), Garmisch-Partenkirchenmaay, September 13 - 17, 1993, pages
283-300.

Choi, S.-E., & Lewis, E. C. (20007 study of common pitfalls in simple multi-threagedgrams.
Paper presented at the Thirty-first SIGCSE techsigaposium on Computer science educa-
tion (SIGCSE), Austin, Texas, United States, p&#&329.

Ciolkowski, M., Laitenberger, O., Rombach, D., ShHl, & Perry, D. (2002)Software inspections,
reviews and walkthrough®aper presented at the 24th International Conéeren Software
Engineering (ICSE 2002), New York, NY, USA, Soagps 641-642.

Coad, P., & Edward, Y. (1993pbject-oriented DesigfiLst Edition): Prentice Hall.

126
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Coad, P., & Nicola, J. (1993pbject-oriented Programminglst Edition): Prentice Hall.

Cockton, G., & Gram, C. (1996Pesign Principles for Interactive Softwafést edition (June 30,
1996)): Springer.

Coelho, W., & Murphy, G. (2007). ClassCompass: Avgare design mentoring systeif{l), 2.

Cohn, M. (2004).User Stories Applied: For Agile Software Developmést Edition (March 1,
2004)): Addison-Wesley Professional.

Copty, S., & Shmuel, U. (2005Multi-threaded testing with AOP is easy, and id8rbugs!Paper
presented at the 11th European Conference on &dPaticessing (EUROPAR), Lisbon Por-
tugal, 30 Aug.-2 Sept. 2005, pages 740-749.

Correa, A. L., & Werner, C. (2004ppplying Refactoring Techniques to UML/OCL Mod®&aper
presented at the 7th International Conference enuthified Modeling Language: Modeling
Languages and Applications (UML), Lisbon, Portugadtober 11-15, 2004, pages 173-187.

Daconta, M. C., Monk, E., Keller, J. P., & Bohnergs, K. (2000)Java Pitfalls: Time-Saving Solu-
tions and Workarounds to Improve Progratist Edition): John Wiley & Sons.

Daconta, M. C., Smith, K. T., Avondolio, D., & Rialdson, W. C. (2003More Java Pitfalls: 50
New Time-Saving Solutions and Workarou(ids Edition). Indianapolis Indiana: Wiley Pub-
lishing Inc.

Demeyer, S., Ducasse, S., & Nierstrasz, O. M. (2008ject-oriented reengineering patterrSan
Francisco: Morgan Kaufman Publishers.

Deursen, A. v., Moonen, L., Bergh, A. v. d., & Kdg, (2001).Refactoring Test Coddaper pre-
sented at the Second International Conference oamefig Programming and Flexible
Processes (XP), pages 92-95.

Dromey, R. G. (1996). Cornering the ChimdEEE Software, 13), 33-43.

Dudney, B., Krozak, J., Wittkopf, K., Asbury, S.,@sborne, D. (2002)I2EE Antipatterng1st Edi-
tion): John Wiley & Sons, Inc.

Dudney, B., & Lehr, J. (2003)akarta Pitfalls: Time-Saving Solutions for Struiast, JUnit, and Cac-
tus (1st Edition (July 25, 2003)): John Wiley & Sons.

Eilenberger, R., & Schmitt, A. S. (2003). Evalugtihe Quality of Your ABAP Programs and Other
Repository Objects with the Code Inspec®AP Professional Journal, Wellesley Information
Services, May/Jun@&--30.

Elssamadisy, A., & Schalliol, G. (2008ecognizing and responding to "bad smells" in en&gro-
gramming. Paper presented at the 24th International Conderem Software Engineering
(ICSE), Orlando FL USA, 19-25 May 2002, pages 6226

Farchi, E., Nir, Y., & Ur, S. (2003Concurrent bug patterns and how to test thBagper presented at
the International Parallel and Distributed ProgegSymposium (IPDPS), Nice France, 22-26
April 2003, pages 7 pp.

Fenton, N. E., & Neil, M. (1999). Software metrissiccesses, failures and new directidasirnal of
Systems and Software,(243), 149-157.

127
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Fenton, N. E., & Ohlsson, N. (2000). Quantitatinalgsis of faults and failures in a complex softevar
systemIEEE Transactions on Software Engineering(86797-814.

Fincher, S., & Utting, I. (2002). Pedagogical patse their place in the genr8IGCSE Bulletin, USA
*vol 34 (Sept. 2002), no 3, p 199 202, 18 refs.

Fowler, M. (1999).Refactoring: Improving the Design of Existing Codest Edition): Addison-
Wesley.

Freimut, B. (2001).Developing and Using Defect Classification Scherfieschnical Report No.
IESE-Report No. 072.01/E). Kaiserslautern: FrauehtESE.

Galvans, A. (2006, 15 March 2006). Performance fatterns and bug-hunting. Retrieved 1. June,
2007, fromhttp://www.testingreflections.com/node/view/3398

Gamma, E., Richard, H., Johnson, R., & Vlisside¢1994).Design Patterns: Elements of Reusable
Object-Oriented Softwar@rd printing Vol. 5): Addison-Wesley.

Gibbon, C. A. (1997)Heuristics for object-oriented desigehD Thesis, University of Nottingham,
from http://www.cs.nott.ac.uk/~cah/pdf/cag-phd.pdf

Glass, R. L. (2003)Facts and Fallacies of Software Engineerii@pston: Addison-Wesley Profes-
sional.

Green, R. (1996). How to Write Unmaintainable Code.Retrieved 21.11.2005, 2005, from
http://mindprod.com/jgloss/unmain.html

Grotehen, T. (2001)Objectbase Design: A Heuristic ApproadPhD Thesis, University of Zurich,
Zurich, from
http://www.ifi.unizh.ch/ifiadmin/staff/rofrei/Disstationen/Jahr_2001/thesis_grotehen.pdf

Hallal, H. H., Alikacem, E., Tunney, W. P., Borod&y.,, & Petrenko, A. (2004 Antipattern-based
detection of deficiencies in Java multithreadedvearfe. Paper presented at the Fourth Inter-
national Conference on Quality Software (QSIC), Bischweig Germany, 8-9 Sept. 2004,
pages 258-267.

Hawkins, B. (2003)Preventative Programming Techniques: Avoid and €ariCommon Mistakes
(1st Edition): Charles River Media.

Heskett, J., Jones, T., Loveman, G., Sasser Wt,)& Schlesinger, L. (1994). Putting the service-
profit chain to work. IrHarvard Business Reviefpp. 164--174): Harvard Business Review.

Heuvelmans, W., A, K., B.Meijs, & Sommen, R. (200Bhhancing the Quality of ABAP Develop-
ment SAP PRESS.

Hippner, H., Hoffmann, O., Rimmelspacher, U., & @] K. D. (2006). IT Unterstitzung durch
CRM-Systeme am Beispiel von mySAP CRM. In H. HippReK. D. Wilde (Eds.),Grundla-
gen des CRM, Second Editpp. 15--44). Wiesbaden: Gabler.

Hippner, H., Rentzmann, R., & Wilde, K. D. (2004Aufbau und Funktionalitaten von CRM-
Systemen. In H. Hippner & K. D. Wilde (Edsl].-Systeme im CRM: Aufbau und Potenziale
(pp. 13--42). Wiesbaden: Gabler.

128
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Hippner, H., & Wilde, K. D. (2002). CRM - Ein Ubditk. In S. Helmke, M. Uebel & W. Dangel-
maier (Eds.) Effektives Customer Relationship Management: Instnte, Einfuhrungskon-
zepte, Organisatiofpp. 3--37). Wiesbaden: Gabler.

Ho, W. J., Seung, G. K., & Chang, S. C. (2004). Megng software product quality: a survey of
ISO/IEC 9126]EEE Software, USA * vol 21 (Sept. Oct. 2004), np 88 92, 11 refs.

Hovemeyer, D., & Pugh, W. (20043inding bugs is easyRaper presented at the 19th annual confe-
rence on Object-oriented programming systems, kages, and applications (OOPSLA),
Vancouver, BC, CANADA, pages 132-136.

Hovemeyer, D. H. (20055imple and effective static analysis to find biRJsD Thesis, University of
Maryland at College Park, from https://drum.umd/ddpace/bitstream/1903/2901/1/umi-
umd-2689.pdf.

Howard, M., LeBlanc, D., & Viega, J. (2009)9 Deadly Sins of Software Secuiityst edition (July
26, 2005)): McGraw-Hill Osborne Media.

HPL. (2005). Hillside Pattern Library. Retrievéd. Oct., 2005, fromittp:/hillside.net/patterns/

IEEE-610. (1990)IEEE Std 610.12-1990. IEEE standard glossary dirsok engineering terminolo-
gy. Institute of Electrical and Electronics Engineers

IEEE-1044. (1995)IEEE guide to classification for software anomal{d®. IEEE Std 1044.1). New
York, NY, USA: IEEE.

ISO. (2005).1SO 9000: Quality management systems -- Fundantemtadl vocabularyNo. %!().
#pub-ISO:adr#: ISO.

ISO/IEC-9126-1. (2003)Software engineering: product quality. Part 1, Qyamodel(Ed. 1.). Preto-
ria: International Organization for Standardizatiomternational Electrotechnical Commis-
sion.

ISO/IEC-9126-3. (2004)Software engineering: product quality. Part 3, hm& metrics (Ed. 1.).
Pretoria: International Organization for Standaatlan/International Electrotechnical Com-
mission.

ISO/IEC-25000. (2005)Software Engineering -- Software product Qualitgilezements and Evalua-
tion (SQuaRE) -- Guide to SQuaR&andard).

ISO/IEC. (2000a).TR 9126-2: Software engineering - Product qualitPart 2: External metrics
ISO/IEC.

ISO/IEC. (2000b)TR 9126: Software engineering - Product quali§O/IEC.

Johnson, R. E., & Foote, B. (1988). Designing Rbles€lasseslournal of OO Programming,(2),
22-35.

Kasyanov, V. N. (2001)A support tool for annotated program manipulati®taper presented at the
Fifth European Conference on Software MaintenamceReengineering (CSMR), pages 85-
94.

Kataoka, Y., Ernst, M. D., Griswold, W. G., & NotkiD. (2001).Automated support for program
refactoring using invariantsPaper presented at the International Conferenc&astware
Maintenance (ICSM), pages 736-743.

129
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Kerievsky, J. (2005Refactoring to patternglst Edition). Boston: Addison-Wesley.

Khan, K. S., Riet, G. t., Glanville, J., Sowden, A, & Kleijnen, J. (2001)Undertaking Systematic
Reviews of Research on Effectiveness: CRD's Guidimmcthose Carrying Out or Commis-
sioning ReviewgNo. CRD Report 4, ISBN 1900640201): NHS CentreReviews and Dis-
semination, University of York.

Kitchenham, B. (2004 Procedures for undertaking systematic revi¢Wschnical Report No. TR/SE-
0401). Keele: Department of Computer Science, Kdelgersity and National ICT, Australia
Ltd.

Koenig, A. (1989)C Traps and Pitfall§1st Edition): Addison-Wesley Professional.

Kuranuki, Y., & Hiranabe, K. (2004AntiPractices: AntiPatterns for XP practicd3aper presented at
the Agile Development Conference (ADC), Salt Lakey ©T USA, 22-26 June 2004, pages
83-86.

Laffra, C. (1996) Advanced Java: Idioms, Pitfalls, Styles and Prograng Tips(1st Edition): Pren-
tice Hall.

Laitenberger, O. (2002). A Survey of Software Irdfme Technologies. ItHandbook on Software
Engineering and Knowledge Engineerif\pl. Il, pp. 517-555): World Scientific Publishgn

Lange, C. F. J. (2006dmproving the quality of UML models in practid@aper presented at the 28th
international conference on Software engineeri@$l), Shanghai, China, pages 993-996.

Lange, C. F. J., & Chaudron, M. R. V. (200&ffects of defects in UML models: an experimental
investigation.Paper presented at the Proceeding of the 28tiattenal conference on Soft-
ware engineering, Shanghai, China, May 20-28, 2p86es 401-411.

Lange, C. F. J., Chaudron, M. R. V., & Muskens(2D06). In practice: UML software architecture
and design descriptioBoftware, IEEE, 22), 40-46.

Laplante, P. A., & Neill, C. J. (2006Antipatterns: Identification, Refactoring, and Masament(1st
Edition). Roca Baton: Auerbach (Taylor & Francio@p).

Liggesmeyer, P. (2003). Testing safety-criticaltwafe in theory and practice: a summadfy.Infor-
mation Technology, 45), 39-45.

Liu, W. (2002).Rule-Based Detection Of Inconsistency In Softwagsidh.Master Thesis, University
of Toronto, Toronto, Canada, fromitp://www.cs.toronto.edu/fm/pubs/pdf/liu02b.pdf

Liu, W., Easterbrook, S., & Mylopoulos, J. (200Rule-Based Detection Of Inconsistency In Uml
Models.Paper presented at the Workshop on Consistendydpne in UML-Based Software
Development (WCPUSD) at the Fifth International @oence on the Unified Modeling Lan-
guage (UML), Dresden, Germany, October 20, 2008e9d 06-123.

Livshits, B. V., & Lam, M. S. (2005)inding security vulnerabilities in java applicatie with static
analysis. Paper presented at the Proceedings of the l4ttereoge on USENIX Security
Symposium - Volume 14, Baltimore, MD, pages 271-:286

Long, J. (2001). Software reuse antipatteBwftware Engineering Notes (SEN)(486

Longshaw, A., & Woods, E. (2004patterns for Generation, Handling and ManagemenEobrs.
Paper presented at the OT, pages 26.

130
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Longshaw, A., & Woods, E. (2009Yore Patterns for the Generation, Handling and Mgement of
Errors. Paper presented at the EuroPLOP, pages 14.

Lorentz, M., & Kidd, J. (1994)Object-Oriented Software Metrics: a Practical GuitRrentice Hall.

Love, T. (1991). Timeless Design of Information ®yss. Object Magazine, November-December
1991 46.

Mantyla, M. (2003).Bad Smells in Software - a Taxonomy and an EmpiBtady.Master Thesis,
University of Technology, Helsinki, from
http://www.soberit.hut.fi/sems/shared/deliverabfmsblic/mmantyla_thesis_final.pdf

Mantyla, M., Vanhanen, J., & Lassenius, C. (20@3)axonomy and an initial empirical study of bad
smells in codePaper presented at the International Conferenc&aftware Maintenance
(ICSM), Amsterdam Netherlands, 22-26 Sept. 2008epa881-384.

Marinescu, R. (2002Measurement and Quality in Object-Oriented DesighD Thesis, Politehnica
University of Timisoara, Timisoara.

Marinescu, R., & Lanza, M. (2008Rbject-Oriented Metrics in Practice: Using Softwawvketrics to
Characterize, Evaluate, and Improve the Design bfe€t-Oriented Systemdst Edition):
Springer.

Martin, R. C. (2000)Design Principles and Design Patter@bjectMentor.

Mellor, S. J., Kendall, S., Uhl, A., & Weise, D.O@4). MDA Distilled Addison Wesley Longman
Publishing Co., Inc.

Melton, H., & Tempero, E. (2006)entifying Refactoring Opportunities by ldentifyiDependency
Cycles. Paper presented at the Twenty-Ninth Australasiamliter Science Conference
(ACSC), Haobart, TAS, Australia, January 16 - 190&0pages 35 - 41

Mendes, E. (20054 systematic review of Web Engineering Resedabper presented at the Interna-
tional Symposium on Empirical Software Engineeripages 498-507.

Mens, T., & Tourwe, T. (2004). A survey of softwaefactoring.lEEE Transactions on Software
Engineering, 3(2), 126-139.

Moha, N., & Guéhéneuc, Y.-G. (200%)n the Automatic Detection and Correction of Sofewarc-
hitectural Defects in Object-Oriented DesigRaper presented at the 6th International Work-
shop on Object-Oriented Reengineering (WOOR) ifjumstion with the 19th European Con-
ference on Object-Oriented Programming (ECOOPY, 2005, pages

Moha, N., Huynh, D.-L., & Gueheneuc, Y. G. (2008)Taxonomy and a First Study of Design Pat-
tern DefectsPaper presented at the International Workshop esign Pattern Theory and
Practice (IWDPTP), Budapest, Hungary, Septembe&8®%pages

Monteiro, M. P., & Fernandes, J. M. (2006). Towaad€atalogue of Refactorings and Code Smells
for AspectJ.Transactions on Aspect-Oriented Software DevelopTeéxOSD) 214-258.

Munro, M. J. (2005)A Measurement-Based Approach for Detecting DesigiblEms in Object-
Oriented System®No. EFoCS-57-2005).

Nakamura, T. (2007). HPC Bug Base. Retrievedld6e, 2007, frorhttp://www.hpcbugbase.org

131
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Nkwocha, F., & Elbaum, S. (2009jault patterns in MatlabPaper presented at the First workshop on
End-user software engineering (WEUSE) in conjumctidgth the 27th International Confe-
rence on Software Engineering (ICSE), St. Louissdduri, pages 1-4.

Ortega, M., Perez, M., & Rojas, T. (2003). Congimicof a Systemic Quality Model for Evaluating a
Software ProducSoftware Quality Journal, 13), 219-242.

Pai, M., McCulloch, M., Gorman, J. D., Pai, N., Boga, W., Kennedy, G., et al. (2004). Systematic
Literature and Meta-Analyses: An illustrated, sbgpstep guideNational Medical Journal of
India, 112), 86-95.

Parsons, T., & Murphy, J. (2004&)ata Mining for Performance Antipatterns in Compon8ased
Systems Using Run-Time and Static Analyzper presented at the 6th International Confe-
rence on Technical Informatics (CONTI), TimisodR@mania, May 2004, pages 113-118.

Parsons, T., & Murphy, J. (2004#. Framework for Automatically Detecting and Assagdperfor-
mance Antipatterns in Component Based Systems Rsimglime Analysi®?aper presented at
the 9th International Workshop on Component Ori@rReogramming (WCOP), in conjunc-
tion with 18th European Conference on Object-Oddrifrogramming (ECOOP), June 2004,
pages 8.

Perry, W. E. (2000)Effective Methods of Software Testing, Seconddediliohn Wiley & Sons Inc.

Petroni, N. L., Jr., & Arbaugh, W. A. (2003). Thargjers of mitigating security design flaws: a wire-
less case studyEEE Security & Privacy Magazine (ISPM),1], 28-36.

PPR. (2005). Portland Pattern Repository. Retdet0. Oct., 2005, fronhttp://c2.com/ppt/
http://en.wikipedia.org/wiki/Portland_Pattern Rejpoy

Rech, J. (2004)Towards Knowledge Discovery in Software ReposgaiteSupport Refactoringra-
per presented at the Workshop on Knowledge Orieltaititenance (KOM) at SEKE 2004,
Banff, Canada, pages 462-465.

Rech, J., & Ras, E. (2007, in work). Aggregation ¥fahrungen in Erfahrungsdatenbankeinstli-
che Intelligenz6.

Rech, J., Ras, E., & Decker, B. (2007). Intellig&ssistance in German Software Development: A
Survey.IEEE Software, 24), 72-79.

Riel, A. J. (1996a)Object-oriented Design HeuristicReading, Mass.: Addison-Wesley Pub. Co.
Riel, A. J. (1996b)Object-Oriented Design Heuristi¢dst Edition): Addison-Wesley Professional.
Rising, L. (2000)The pattern almanac 2008oston: Addison-Wesley.

Robbins, J. E. (1998Pesign Critiquing Systen{dlo. Tech Report UCI-98-41).

Robbins, J. E. (1999Cognitive Support Features for Software Developniertls. Ph.D. Thesis,
University of California, Irvine.

Robbins, J. E., Hilbert, D. M., & Redmiles, D. A997). Argo: a design environment for evolving
software architecturefroceedings of International Conference on Softwargineering.
ICSE 97, Boston, MA, USA, 17 23 May 1997 * New Wévk USA: ACM, 1997, p 600 1

132
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Robbins, J. E., Hilbert, D. M., & Redmiles, D. E908a). Extending design environments to software
architecture desigriLlth Knowledge Based Software Engineering ConfereBgracuse, NY,
USA, 25 28 Sept. 1996 * Automated Software EngimgeNetherlands * vol 5 (July 1998),
no 3, p 261 90, 58 refs.

Robbins, J. E., Hilbert, D. M., & Redmiles, D. BE908b). Software architecture critics in Ardyo-
ceedings of 1998 International Conference on ligefit User Interfaces, San Francisco, CA,
USA, 6 9 Jan. 1998 * New York, NY, USA: ACM, 1p9}1 4

Robbins, J. E., Medvidovic, N., Redmiles, D. F.R&senblum, D. S. (1998c). Integrating architecture
description languages with a standard design methaateedings of the 20th International
Conference on Software Engineering, Kyoto, Jap&n23 April 1998 * Los Alamitos, CA,
USA: IEEE Comput. Soc, 1998, p 209 18

Robbins, J. E., & Redmiles, D. F. (1998). Softwarehitecture critics in the Argo design environ-
ment.Knowledge Based Systems(1)147-60.

Robbins, J. E., & Redmiles, D. F. (2000). Cognisupport, UML adherence, and XMI interchange in
Argo/UML. Information and Software Technology, Netherlandsl*42 (25 Jan. 2000), no 2,
p 79 89, 25 refs.

Roock, S., & Lippert, M. (2006Refactoring in Large Software ProjeqiBaperback): John Wiley &
Sons.

SAP. (2005a). Secure Programming - ABAP. from htthpsvw.sdn.sap.com/irj/sdn/devguide2004s

SAP. (2005b). Secure Programming - Java. from itpsw.sdn.sap.com/irj/sdn/devguide2004s

SAP. (2007a). Enterprise Service-Oriented Architext (Enterprise SOA). from
http://www.sap.com/platform/esoa/index.epx

SAP. (2007b). SAP CRM. frommttp://www.sap.com/solutions/business-suite/crn@ndpx

Schmidmeier, A. (2004)Patterns and an Antiidiom for Aspect Oriented Peogming.Paper pre-
sented at the EuroPLoP, pages 21.

SEI. (2006) CMMI for Development, Version 1(Rlo. CMU/SEI-2006-TR-008).

Shadrin, G. (2005). Three Sources of a Solid Okpraznted Design - Design heuristics, scientifigall
proven OO design guidelines, and the world beybedbeginningJAVA developer's journal
(JDJ), 145).

Simon, F., Olaf Seng, O., & Mohaupt, T. (2006pde Quality Managemeifist Edition): Dpunkt
Verlag.

Simon, F., Steinbruckner, F., & Lewerentz, C. (2004etrics based refactoring?aper presented at
the 5th European Conference on Software MaintenandeReengineering (CSMR), Lisbon
Portugal, 14-16 March 2001, pages 30-38.

Smith, C. U., & Williams, L. G. (20015oftware Performance AntiPatterns - Common Perfocea
Problems and their Solution®aper presented at the 27th International Compéarsure-
ment Group Conference (ICMG), pages 797-806.

133
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Smith, C. U., & Williams, L. G. (2002)New Software Performance AntiPatterns: More Ways to
Shoot Yourself in the FodPaper presented at the 28th International Compigarsurement
Group Conference (ICMG), Reno, Nevada, USA, Decer@HS, 2002, pages 667-674.

Smith, C. U., & Williams, L. G. (2003More New Software Antipatterns: Even More Wayshioos
Yourself in the FootPaper presented at the 29th International Compdésisurement Group
Conference (ICMG), pages 717-725.

Stewart, D. B. (1999). 30 pitfalls for real-timeftseare developer&Embedded Systems Programming
(ESP), 1211).

Sturmer, F. (2006)A Rule-based Approach for Business Logic Modellim@RM Business Objects.
Diploma Thesis, University of Mannheim & SAP-AG.

Sutter, H., & Alexandrescu, A. (2004)++ Coding Standards: 101 Rules, Guidelines, andtBwac-
tices(1st Edition (October 25, 2004)): Addison-WeslegfEssional.

Tahvildari, L., Kontogiannis, K., & Mylopoulos, J2003). Quality-driven software re-engineering.
Journal of Systems and Software(3)6225-239.

Tate, B. (2002)Bitter Java(lst Edition (April 2002)): Manning Publication®C
Tate, B., Clark, M., Lee, B., & Linskey, P. (200Bjtter EJB(1st Edition): Manning Publications Co.

Taylor, R. N., & Osterweil, L. J. (1980). Anomalgtéction in concurrent software by static data flow
analysislIEEE Transactions on Software Engineering (TSE),&265-278.

Telles, M. A., & Hsieh, Y. (2001)The Science of Debuggifigist Edition): Coriolis Group Books.

TopCased. (2007). TopCased. frbitp://www.topcased.org/

Tourwe, T., & Mens, T. (2003). Identifying refadtay opportunities using logic meta programming.
IEEE Computer Reengneering Forum; Univ. Sannio. - In ProceediBgventh European
Conference on Software Maintenance and Reenginperihos Alamitos, CA, USA, USA
IEEE Comput. Soc, 2003, xi+2420 2091-2100, 203kRef

Tourwe, T., & Mens, T. (2003)dentifying refactoring opportunities using logieeta programming.
Paper presented at the Seventh European ConfepenSeftware Maintenance and Reengi-
neering (CSMR), Benevento Italy, 26-28 March 2(&8jes 91-100.

van Emden, E., & Moonen, L. (2002). Java qualityuagnce by detecting code smelReengineering
Forum; Virginia Commonwealth Univ.; IEEE Comp®urd, E.. - Los Alamitos, CA, USA,
USA IEEE Comput. Soc, 2002, x+2349 2097-2106, ZRafs.

Vermeulen, A., Ambler, S. W., Bumgardner, G., Mdfz, Misfeldt, T., Shur, J., et al. (2000}he
Elements of Java Sty(ést Edition): Cambridge University Press.

Veryard, R. (2001). Design pitfalls as negative tqras. Retrieved 1. June, 2007, from
http://www.users.globalnet.co.uk/~rxv/sqm/pitfaitsn

Vide, P. (2007a)Project Deliverable D1.1VIDE Project.

Vide, P. (2007b)Project Deliverable D3.1VIDE Project.

134
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gmamming Work Package 4 — Deliverable D4.1
Version 1.0 Date: 09 August 2007

Visaggio, G. (2001). Ageing of a data-intensivea®g system: symptoms and remedig&surnal of
Software Maintenance and Evolution (383 281-308.

Wake, W. C. (2003)Refactoring WorkbooKLst Edition): Pearson Education Inc.

Waters, R. C. (1994). Cliché-based program edith@M Trans. Program. Lang. Syst.,(1§ 102-
150.

Webster, B. F. (1995Pitfalls of object-oriented developmdfst Edition): M & T Books.

White, A., & Schmidt, K. (2005). Systematic litewes reviews Complementary Therapies in Medi-
cine, 131), 54-60.

Whitmire, S. A. (1997)0Object-oriented Design MeasuremeNew York, NY, USA: John Wiley &
Sons.

Wikipedia. (2007). Coding conventions for languages from
http://en.wikipedia.org/wiki/Programming_style#Codi conventions_for_languages

Wohlin, C., Aurum, A., Petersson, H., Shull, F.,(Bolkowski, M. (2002). Software inspection ben-
chmarking-a qualitative and quantitative compamtpportunity.Proceedings Eighth IEEE
Symposium on Software Metrics, Ottawa, Ont., Candda June 2002 * Los Alamitos, CA,
USA: IEEE Comput. Soc, 2002, p 118 27

Wooldridge, M. J., & Jennings, N. R. (1999). Softevangineering with agents: pitfalls and pratfalls.
IEEE Internet Computing (11C),(3), 20-27.

Younessi, H. (2002)Object-Oriented Defect Management of Softwélst Edition): Prentice Hall
PTR.

Yourdon, E. (1993)Object-Oriented Systems Design: An Integrated Aggn@lst Edition): Prentice
Hall.

135
© Copyright by VIDE Consortium

