

Project supported by the European Commission within Sixth Framework Programme

© Copyright by VIDE Consortium

SPECIFIC TARGETED RESEARCH PROJECT

INFORMATION SOCIETY TECHNOLOGIES

VIsualize all moDel drivEn programming

WP 3

Project name: Visualize al

Start date of the project: 01 July 2006

Duration of the project: 30 months

Project coordinator: Polish

Work package Leader: Fraunhofer

Due date of deliverable: 3

Actual submission date 10 October

Status developed /

Project supported by the European Commission within Sixth Framework Programme

© Copyright by VIDE Consortium

SPECIFIC TARGETED RESEARCH PROJECT

INFORMATION SOCIETY TECHNOLOGIES

FP6-IST-2005-033606

VIsualize all moDel drivEn programming

VIDE

Deliverable number D.3.2
Specification of the AO

Supported by VIDE
(Report + Demonstrator)

Visualize all model driven programming

01 July 2006

30 months

Polish - Japanese Institute of Information Technology

Fraunhofer FIRST

31 August 2007

10 October 2007

developed / draft / final

Project supported by the European Commission within Sixth Framework Programme

SPECIFIC TARGETED RESEARCH PROJECT

INFORMATION SOCIETY TECHNOLOGIES

VIsualize all moDel drivEn programming

Deliverable number D.3.2
AOC to be

Supported by VIDE

(Report + Demonstrator)

Information Technology

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 2 -

Document type: Report + Demonstrator

Document acronym: D3.2

Editor(s) Anis Charfi, Jaroslav Svacina

Reviewer(s) Joachim Hänsel, Piotr Habela

Accepting Kazimierz Subieta

Location www.vide-ist.eu

Version 1.0

Dissemination level PU/PP/RE/CO

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 3 -

Abstract

The purpose of work package 3 is to investigate strategies for the integration of aspect
oriented composition techniques in model driven development and make recommendations to
the design and implementation work packages on the most suitable approach for supporting
aspect-oriented composition in VIDE. In Deliverable 3.1, the state of the art in aspect-
oriented modelling was introduced as well as examples of crosscutting concerns in a typical
SAP business application. Moreover, a demonstrator on aspect-oriented composition at the
PIM level was presented. In the current deliverable, we will evaluate the selected modelling
and composition techniques and present a specification of aspect-oriented composition in
VIDE including the corresponding profiles, textual and visual syntax, and the model
transformations. The main elements of this specification will be illustrated by means of two
aspects: consistency checks and partner determination.

The VIDE consortium:

Polish-Japanese Institute of Information Technology
(PJIIT)

Coordinator

Poland

Rodan Systems S.A. Partner Poland

Institute for Information Systems at the German Research
Center for Artificial Intelligence

Partner Germany

Fraunhofer Partner Germany

Bournemouth University Partner United
Kingdom

SOFTEAM Partner France

TNM Software GmbH Partner Germany

SAP AG Partner Germany

ALTEC Partner Greece

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 4 -

Executive Summary

The VIDE project aims at developing “a fully visual toolset to be used both by IT-specialists
and individuals with little or no IT-experience, such as specific domain experts, users and
testers.”1. Therefore VIDE investigates “visual user interfaces, executable model
programming, action- and query-language-semantics, AOP and quality assurance on the
platform-independent modelling level, service oriented architecture (especially Web services
integration) and business process modelling.”. VIDE is aimed to be embedded in the Model
Driven Architecture of the OMG, thus supporting modelling both on a domain-oriented
computation-independent layer (CIM), a platform-independent layer (PIM), and generating
models on a platform-specific layer (PSM). VIDE is primarily targeting the domain of
business application software.

The goal of Work Package 3 in the VIDE project is to investigate integration strategies for
adding advanced aspect-oriented software composition in the platform-independent modelling
phase of MDD processes. The resulting knowledge allows integrating the aspect-oriented
modelling and composition techniques into the VIDE language and architecture. The benefit
for the VIDE project will be shown by evaluating the developed concepts and by assessing the
used technology.

In this work package we have researched aspect orientation on the PIM level using Customer
Relationship Management business scenarios that are provided by SAP. The lack of support
in object-oriented modelling techniques for modularizing crosscutting concerns in the
provided scenarios raised the need for aspect-oriented techniques while modelling business
processes and business applications.

Our research included the evaluation of different existing approaches in the domain of aspect
oriented programming by applying them to the relevant phases of Model Driven Development
as well as the investigation of existing approaches in the area of aspect-oriented modelling.

Based on the research results a suitable concept for modelling aspect-oriented constructs, such
as aspect, advice, and pointcut was developed. To ensure a straightforward integration of
these constructs into the VIDE metamodel we have selected the UML Profile extension
mechanism.

To allow the VIDE model compiler to deal with the aspect-oriented modelling concepts that
we have developed, we present an aspect composition strategy, which is based on model-to-
model transformations. The feasibility of the developed concepts and strategies was shown by
a proof-of-concept prototype, which consists of UML Profiles for aspect modelling and two
transformations respectively for join point matching and aspect weaving at the model level.

Deliverable 3.1 presented the state of the art in aspect oriented composition at the model level
and provided an analysis of the chances and risks for the investigated modelling and
composition techniques. It also aimed at providing the required knowledge for integrating
aspect orientation into the context of VIDE.

Deliverable 3.2 evaluates the proposed approach and gives a specification of the aspect
oriented composition to be supported by VIDE.

1 From the VIDE project summary in the Technical Annex I

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 5 -

Table of Contents

Abstract .. - 3 -

Executive Summary .. - 4 -

Table of Contents .. - 5 -

1 Introduction and Overview .. - 7 -
1.1 Challenges .. - 8 -
1.2 Tasks .. - 8 -

1.2.1 Task 3.1: Practical evaluation of AO modelling and composition in MDA - 9 -
1.2.2 Task 3.2: Provision of a knowledge base for AO software composition in MDA
processes.. - 9 -
1.2.3 Task 3.3: The specification of the Aspect-Oriented composition mechanisms to be
supported by VIDE .. - 9 -

1.3 VIDE language requirements.. - 9 -
1.3.1 Requirements specified in the course of work package 1 work................................. - 9 -
1.3.2 Further elaboration of the requirements in the course of work package 3 - 15 -

1.4 Document Outline ... - 15 -

2 Evaluation of Selected Composition and Modelling Techniques ... - 16 -
2.1 Review of the Approach .. - 16 -
2.2 Discussion of Variations ... - 17 -

2.2.1 Composition Layer Variations .. - 17 -
2.2.2 AO composition Variations .. - 18 -
2.2.3 Instantiation Variations... - 19 -

2.3 Evaluation ... - 19 -
2.3.1 Understandability ... - 20 -
2.3.2 Maintainability .. - 21 -

3 Business Scenario ... - 22 -
3.1 Review of the Opportunity Scenario ... - 22 -

3.1.1 Opportunity Management .. - 23 -
3.2 Modelling Crosscutting Concerns in the Opportunity Scenario .. - 23 -

3.2.1 Consistency checks ... - 24 -
3.2.2 Partner determination .. - 30 -

3.3 Evaluation ... - 38 -
3.3.1 Understandability ... - 38 -
3.3.2 Maintainability .. - 39 -

3.4 Summary... - 39 -

4 Specification of Aspect Oriented Composition in VIDE ... - 40 -
4.1 Overview ... - 40 -
4.2 AO UML Profiles ... - 41 -

4.2.1 Aspect-Oriented Modelling Profile ... - 41 -
4.2.2 Join Point Shadowing Profile ... - 44 -

4.3 Specification of Model Transformations for AO Composition ... - 45 -
4.3.1 Pointcut Resolving ... - 47 -
4.3.2 Aspect Composition ... - 49 -
4.3.3 Additional AO composition features ... - 55 -
4.3.4 Open issues ... - 57 -

4.4 VIDE Syntax extension for aspect-oriented constructs .. - 57 -
4.4.1 Textual Syntax ... - 58 -
4.4.2 Visual Syntax ... - 59 -
4.4.3 Open issues ... - 60 -

5 Summary and Conclusions ... - 61 -
5.1 Demonstrator .. - 62 -

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 6 -

5.2 Outlook .. - 62 -

Abbreviations ... - 64 -

References ... - 65 -

Disclaimer of SAP AG ... - 66 -

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 7 -

1 Introduction and Overview

The purpose of work package 3 is to research the combination of Aspect-Oriented Software
Development (AOSD) and Model-Driven Software Development (MDSD). In fact, model-
driven development can gain a lot from the modularization concepts that are introduced by
aspect-orientation especially when the application behaviour is modelled. In that case, which
is targeted in VIDE, modelling the behaviour becomes very similar to programming in a
typical object-oriented programming language. As a result of this similarity, the benefits of
AOSD can be very likely brought to behavioural modelling at the PIM level.

More precisely, work package 3 aims at identifying crosscutting concerns in data-intensive
business applications and providing aspect-oriented constructs in VIDE to support a better
modularization of these concerns. Such constructs will provide several benefits such as an
easier understanding and maintenance of the application models, more reuse of the behaviour
models, easier extensibility and customization, etc. In addition, work package 3 investigates
appropriate ways to model and represent aspect-oriented constructs and to integrate them in
the VIDE language. Another major contribution of this work package is to research the
composition of the aspect models with the base VIDE models.

Figure 0: WP3 in the VIDE context

The aim of work package 3 is to define aspect-oriented constructs in VIDE including the
respective abstract and concrete syntax extensions together with the mapping to a model
repository module. The output of this work package is the definition of the aspect-orientation
module in the VIDE architecture, which is highlighted in Figure 0.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 8 -

The current document is the second and last deliverable of work package 3. In D3.1, we
presented the state of the art in aspect-oriented software development and model-driven
development with particular focus on aspect-oriented modelling. In addition, we presented a
few examples of crosscutting concerns in a typical SAP business application and also
explained the benefits that are expected from using aspects in modelling business
applications. The main part of that deliverable was a detailed description of a proposal for
aspect-oriented modelling at the PIM level and the presentation of a proof-of-concept
demonstrator. Both parts serve as foundation for the specification of aspect-oriented
composition in VIDE, which will be presented in the current document.

1.1 Challenges

We identified three main challenges when integrating aspect-oriented constructs in the
executable modelling language VIDE.

First, one has to choose the right application scenarios, which are valuable for VIDE partners
and users. As VIDE targets especially data-intensive business applications, we used the
opportunity management part of a SAP CRM software as business scenario. Although there
are several interesting development aspects such as testing and monitoring, we focused rather
on non-intuitive production aspects such as consistency checks and partner determination
because most development aspects were already addressed in other research works.

The second challenge is the integration of aspect-oriented concepts into an executable
modelling language at the PIM level. This is especially challenging as the VIDE meta model
unifies UML actions and OCL expressions. Consequently, a thorough investigation of such
integration is required. One has to explore ways to define, model and represent aspect-
oriented constructs, such as advice and pointcut. The integration of these constructs has to be
done in a non-invasive way using UML profiles. In addition, one has to define a powerful
pointcut and advice language that can cope with the requirements of business applications
w.r.t. crosscutting concerns and which is also well-adapted to the base language.

Third, an appropriate composition mechanism is required for composing aspects with the
VIDE models. For that purpose, we developed model-to-model transformations to perform
pointcut matching and advice weaving. The proof-of-concept implementation of the
composition mechanism does not only show the feasibility but also allows us to detect
potential technological problems.

1.2 Tasks
These challenges correspond to the following tasks2. Task 3.1 was mostly addressed in D3.1
but it is also covered in the current deliverable, which contains an evaluation of the proposed
aspect-oriented modelling approach. Task 3.2 was part of Deliverable 3.1 and Task 3.3 is the
main focus of the current deliverable.

2 From the VIDE WP3 description of work in the Technical Annex

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 9 -

1.2.1 Task 3.1: Practical evaluation of AO modelling and composition in MDA
A demonstrator (for the sole purpose of the evaluation report) utilizing techniques selected in
task 1.3 will be developed, which will show the suitability of the technique, investigate the
maturity of its AO modelling approach and spawn hidden risks in composing AO models
particularly for data-intense business applications. To this end a metamodel for the assessment
of most suitable AO approaches will be developed, regarding AO model extensions, aspect
weaving level and complexity of MDA transformations. Several parts of a given business
application will be analyzed in order to identify composition scenarios crucial for business
applications. The most important composition scenarios will be designed and executed using
the most reasonable composition technique. The results will be assessed considering the
identified factors that are important to an MDA development process. A report will
summarize the experiment's results, discuss the collected data and in particular recommend an
AO modelling technique and design for integrating AO composition into the VIDE
environment.

1.2.2 Task 3.2: Provision of a knowledge base for AO software composition in MDA
processes

By structuring the empirical data of Task 3.1 a standard body of knowledge for best practices
of AO modelling and composition techniques in MDA development processes with a focus on
the business application domain will be initialized. It addresses the maturity of existing AOP
approaches as well as integration issues. The evaluation of this body will take place by
dissemination of research results and empirical evaluation by the research community,
software companies and tool vendors.

1.2.3 Task 3.3: The specification of the Aspect-Oriented composition mechanisms to be
supported by VIDE

Based on the analysis performed and in cooperation with VIDE language definition activities
of WP2, the aspect-oriented composition mechanisms for VIDE will be specified. The
specification will cover the respective semantics, notation and visual user interface elements.

1.3 VIDE language requirements
This subsection revisits the requirements collected during the state of the art analysis
performed during the WP1 of the project (as described in D1.1 document [22]) and indicates,
what of them are relevant to the scope of work of this WP and how they have been addressed.
Moreover, this subsection describes the further elaboration of those requirements that has
been performed in the course of WP3.

1.3.1 Requirements specified in the course of work package 1 work
We provide here a list of requirements with respect to the VIDE project, collected in the
deliverable document D1.1 (see that document for a detailed description of these
requirements) and indicate those found relevant for the WP3 scope. In the column “comment”
we provide the relation of each requirement to the VIDE language, which is the subject of this
deliverable document. For clarification, we denote which topics are subject of other work
packages. We also sketch how WP3 will cover the relevant goals.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 10 -

Requirement

Number

Name Priority Comment

REQ –
NonFunc 1

Accessibility at the
CIM level

Should Outside WP3 scope. Addressed by D7.1 and the
CIM-to-PIM transition support functionality to be
described in D5.1.

REQ –
NonFunc 2

CIM level collaboration May Outside WP3 scope. Supporting this requirement
will be considered in the course of D9.3
development.

REQ –
NonFunc 3

On-line support for
CIM/PIM users

Should Outside WP3 scope. Addressed in D5.1 (in the area
of CIM-PIM navigation).

REQ –
NonFunc 4

Clear and unambiguous
notation – VIDE should
have clear,
comprehensible and
unambiguous semantic
description suited to the
users of the VIDE tools

Should Mainly addressed by D2.1 and D7.1. The notation
for the AO-specific constructs has been defined in
section 4.4 of this document.

REQ –
NonFunc 5

Model view saliency –
VIDE models views
must be user-oriented.

Should Mostly outside the scope of WP3: addressed by the
CIM and PIM languages design (D7.1 and D2.1) as
well as by the GUI design developed in D5.1.

REQ –
NonFunc 6

Appropriate
textual/graphical
fidelity – VIDE must
provide appropriate
textual and graphical
modalities for its users.

Should Mostly outside the scope of WP3: addressed by the
CIM and PIM languages design (D7.1 and D2.1) as
well as by the GUI design developed in D5.1.

REQ –
NonFunc 7

Timely feedback and
constraints

Should Outside WP3 scope. Supporting the work of multiple
users on a common model will be considered in the
course of D8.1 and D9.1 development.

REQ –
NonFunc 8

Runnable and testable
VIDE prototypes

Should For the specific area of WP3 a Demonstrator for
early experimentation and to provide a proof of
concept has been provided.

REQ –
NonFunc 9

Scalability of proposed
solution – the proposed
solution must at least
conceptually scale to
enterprise level.

Must In meeting these criteria the WP3 depends on the
PIM language design specified in D2.1. None of the
AO constructs introduced seems to affect the
conceptual scalability. Aspect composition is
implemented as a model-to-model transformation,
i.e., just another transformation in the MDA
approach of VIDE.

REQ – User 1 Flexibility and
interoperability of
VIDE language and
tools - The VIDE
language and tools
SHOULD have
flexibility and be
interoperable with some
existing tools.

Should This is assured by compliance of the PIM-level
language to the MDA standards and technologies
including in particular the OMG UML 2.1 and OMG
OCL 2.0 specification and a standard-compliant
framework MDT implementing their metamodels.
The way WP3 provides AO notions into it
(lightweight extension using a UML profile) and
limiting the AO constructs to the PIM level by the
use of the horizontal composition approach (cf.
Section 3.2.1) does not interrupt that compliance.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 11 -

REQ – User 2 Reuse of UML
Standard – end users
are very sensitive to
using standards. A key
aspect is that the VIDE
language reuses as
much as possible the
UML standard.

Should Respected by the D2.1 and the WP3 constructs
dependent on it – as explained above. Moreover, the
WP 3 uses a UML profile to define the aspect-
oriented constructs.

REQ –
Semantics 1

Semantics of VIDE Inte
rnal Communication – a
precise description of
the semantics is needed
sufficient for internal
communication
purposes within
implementation
stakeholders in the
development of the
VIDE tool.

Should Met by making the introduced WP3 notions
compliant with the language definition and standard
metamodels defined in D2.1 and described using
analogous means.

REQ –
Semantics 2

Simple VIDE semantics
– after a first analysis it
seems sufficient that the
semantics of VIDE is
described in natural
language.

Should Met by making the introduced WP3 notions
compliant with the language definition and standard
metamodels defined in D2.1 and described using
analogous means.

REQ – Lang
1

Usage of UML2
Behaviour (“Action
Semantics”) – VIDE
should use the
behavioural model
elements of UML2
(earlier known as
“UML Action
Semantics”), unless
proven insufficient.

Should Addressed by D2.1 and the introduction of the WP3-
specific notions in a way consistent with that
language. The behavioural parts of the aspects are
the advices and the methods. Both of them are
modelled using action semantics.

REQ – Lang
2

Simplified UML meta-
model – If it turns out
that

• the UML meta-
model is
unnecessarily
complex in a way
that it blocks the
creation of a
sensible concrete
syntax (see
remarks on
ConditionalNode),

• not all of the UML
meta-model can be
covered

May The aspect-oriented constructs defined in WP3 have
been introduced into the PIM level language using
minimum number of terms and depending on a
lightweight metamodel extension mechanism.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 12 -

• elements are
missing which are
located in another
needed language
(like OCL)

it may be changed.

REQ – Lang
3

 User Language &
Concepts – the VIDE
language and VIDE
tools presented to a
certain user groups
SHOULD employ the
language that is
understood by the user
group.

Should The WP3 provides the language with a small number
of additional constructs that seem orthogonal to the
syntactic variability for some constructs introduced
by D2.1. The primary group of users dealing with the
WP3 defined constructs are Analysts / VIDE
programmers.

REQ – Lang
4

Compliance with
Standards – VIDE
should not compete
with existing adopted
modelling standards,
especially those
adopted by the OMG,
such as UML or
BPMN.

Should Compliance with UML maintained – as explained
under REQ – User 1.

REQ – Lang
5

Deviation from
Standards – VIDE may
deviate in parts from
existing standards, if a
standard-conformant
way is provided as well
and if there are good
reasons with respect to
the overall user
requirements.

May The very idea of introducing the AO notions into
UML can be considered a deviation from a fully
standard-compliant solution. Note however, that the
impact has been limited to the inside of the PIM
level – particularly, the model compilers are not
affected by that extensions.

REQ – Lang
6

Modularisation and
extensibility – it should
be possible to replace
parts of the language
with different artefacts
and add additional
language constructs for
special business
specific patterns. This
requires the language to
be structured in
modules.

Should The aspect-oriented constructs defined in WP3 are
modularized in an AO Profile (cf. Section 5.2)

REQ – Lang
7

 Language for CIM,
PIM, PSM modelling:

1) VIDE SHOULD
support requirements

Should Ad. 1. Outside WP3 scope. To be addressed in D7.1.

Ad. 2. Outside WP3 scope. Addressed by D2.1.

Ad. 3. Outside WP3 scope. To be addressed in D6.1.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 13 -

definition tasks and
business process

description with BPML

2) VIDE SHOULD
adopt action semantics
for the modelling of
executable PIM models

3) VIDE SHOULD
provide support for
target PSM
environments e.g. Java,
C++, or SmallTalk;
VIDE should provide
platform
implementation
mappings in PIMs or
CIMs.

REQ – Tool 1 Usage of industrially
adopted tools – VIDE
must use industrially
adopted meta-
modelling standards
where applicable.

Must Compliance with UML and a standard-compliant
implementation of its metamodel maintained – as
explained under REQ – User 1.

REQ – Tool 2 Meta-modelling
Framework – VIDE
must use EMF as its
modelling framework.

Must Compliance with UML and a standard-compliant
implementation of its metamodel maintained – as
explained under REQ – User 1.

REQ – Tool 3 Meta-modelling
Concepts – VIDE meta-
models should be
constructed to be
compatible with MOF
concepts.

Should Compliance with UML and a standard-compliant
implementation of its metamodel maintained – as
explained under REQ – User 1.

REQ – Tool 4 M2M Transformation
Technology

Should Outside WP3 scope. To be addressed by D6.1.
However, note that the demonstrator used ATL
transformations for pointcut matching and weaving
(cf. Section 5.3)

REQ – Tool 5 M2T Transformation
Technology

Should Outside WP3 scope. To be addressed by D6.1.

REQ – Tool 6 T2M Transformation
Technology

Should Outside WP3 scope. To be addressed in D9.3.

REQ – Tool 7 Meta-modelling
Framework

Should Outside WP3 scope. To be addressed in D9.1 and
D9.3.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 14 -

REQ – Tool 8 Use of OCL – VIDE
should re-use existing
standards as UML
(REQ – User 1), and in
particular OC;. the goal
is to achieve a seamless
integration with the
concrete syntax of the
action language to be
developed.

Should Satisfied by D2.1 and the WP3 notions dependent on
it.

REQ – Tool 9 CIM modelling
standards.

May Outside WP3 scope. To be addressed in D7.1.

REQ – Tool
10

PIM, PSM modelling
standards – VIDE
SHOULD provide
support for PIM
modelling with UML
and action semantics;

the meta-modelling
standard for VIDE
should be Ecore.

VIDE SHOULD
support well known
PSM modelling
standards (e.g. XMI for
model

and meta-model
interchange, JMI for
Java based PSM).

Should Satisfied by D2.1 and the WP3 notions dependent on
it.

REQ – Tool
11

Framework for CIM,
PIM, PSM modelling

Should Met. The way AO notions have been introduced does
not limit the applicability of the frameworks being
considered.

REQ – Tool
12

VIDE extensibility Should Outside WP3 scope. To be addressed by D9.3.

REQ – Tool
13

 Integration and
metadata interchange –
VIDE should provide
model and meta-data
interchange capability
by adopting the XMI
standard.

Should Met by D2.1 and not affected by WP3 work.

REQ – Tool
14

Model driven approach
The VIDE tool strictly
follows a model driven
approach as stipulated
in figure 9 page 120 of
the D.1.1 deliverable

Must The design of VIDE language depends on the OMG
four level meta-modelling architecture and is
compliant with the approach mentioned. The AO
notions have been encapsulated into the PIM level;
hence their impact onto the overall approach is
limited.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 15 -

Table 1: Summary of the relevant requirements identified during the WP1 work

1.3.2 Further elaboration of the requirements in the course of work package 3
Modularity at the model level is the main requirement behind the work performed in WP3. In
other words, the aim of the work package is to enable modular VIDE models especially with
respect to crosscutting concerns. In fact, modularity at the model level would bring several
benefits with respect to understandability, maintainability, extensibility, etc.

For that purpose, we evaluated aspect-oriented software development techniques with respect
to their suitability for modelling business applications. We did the investigation from two
perspectives: the AO language (i.e., what AO constructs are needed in the VIDE context) and
the composition mechanism (i.e., how to weave aspects with the base models). Thereby, we
used industry-scale examples of crosscutting concerns that are found in a SAP CRM
application such as consistency checks and partner determination.

Then, we developed a proposal for the integration of aspect-oriented modelling constructs in
the VIDE language using UML Profiles. In addition, we compared and evaluated several
composition approaches and finally opted for horizontal composition, which was
implemented in the proof-of-concept demonstrator by two groups of model-to-model
transformations (respectively for pointcut matching and aspect weaving).

To confirm our start assumptions on the benefits of aspect-oriented modelling, we compared
the understandability and maintainability of PIM models with aspects (i.e., using the proposed
AO constructs) and without aspects (using object-oriented PIM modelling).

1.4 Document Outline
After giving an overview of this deliverable in Section 1, we will evaluate in Section 2 the
selected composition and modelling techniques that were presented in D3.1 by discussing
several variations of our aspect-oriented modelling approach. Then, we introduce two
evaluation criteria and some quality factors and metrics in order to use them in the following
section for comparing business application modelling with aspects (as proposed in VIDE)
against the traditional object-oriented modelling.

In Section 3, we present in detail two crosscutting concerns in a typical SAP business
application from the Customer Relationship Management context. Then, we show how the
behaviour belonging to these concerns is modelled once without aspects and once with
aspects. Thereby, we will use the criteria presented in Section 2 and the respective metrics to
compare both alternatives and draw conclusions out of this comparison.

Section 4 presents the main contribution of this deliverable, which is a specification of aspect-
oriented composition in VIDE. This section defines the profiles for aspect-oriented modelling
as well as the specifications of the necessary transformations for aspect composition.
Moreover, it presents proposals for extensions to the textual and visual syntax of the VIDE
language to integrate aspects.

Section 5 gives a summary of this deliverable and discusses open issues and problems.
Moreover, it gives an outlook to the future.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 16 -

2 Evaluation of Selected Composition and Modelling
Techniques

The most pressing problem in software development seems to be complexity. Most target
domains and projects get more and more complex. Tackling this complexity during software
development needs new techniques and methodologies beside the currently used ones. Both
Aspect-Oriented Software Development (AOSD) and Model-Driven-Development (MDD)
provide new ways to confine and reduce complexity in creating solution domains and
developing software. Both approaches try to solve the complexity problem with different but
complementary ideas. So it seems natural to combine these approaches and reap the benefits
of both for overcoming complexity in software development.

This section provides an evaluation of the selected AO modelling and AO composition
approaches, which were described in D3.1. The latter will be reviewed in the following and
different variations of aspect-oriented composition will be discussed and compared on
different levels. The last subsection introduces several evaluation criteria and corresponding
metrics for the empirical evaluation of the proposed AO modelling approach. The results of
that evaluation are presented and discussed in Section 3.

2.1 Review of the Approach
After analyzing the provided business scenarios, the goal was the provision of a suitable
approach for modelling crosscutting concerns and also for the composition of the modelled
artefacts to a woven model.

In the first version of the aspect-oriented modelling approach, which was presented in D3.2, it
was not possible to model the complete consistency check, but that version has shown the
suitability for the domain. Due to the flexible design, the AO Profiles were extended to
provide the required constructs for a suitable modelling of the identified consistency checks.
The resulting Profiles are described in Section 4.

The chosen aspect composition supports the required binding kind (around) and the weaving
concept is applicable to the selected scenarios. Moreover, the approach supports different
instantiation strategies. To allow the realisation of different instantiation and weaving
strategies, we decided to encapsulate the aspect behaviour in separate classes in the woven
model. This gives us the flexibility to allow adding additional features with minimal effort.
On the other side, this approach produces a lot of required infrastructure model elements and
especially a lot of additional object creations and operation calls. This has two relevant
effects. The readability and understandability of the woven model is decreased. This effect is
not critical, because the woven model is not intended to be read by a human, but rather to be
processed by a model compiler. On the other hand, the additional object creations and
operation calls can have a negative impact on the performance of the generated software. An
analysis of the impact on the performance of the woven model should be done in the future,
but this goes beyond the scope of WP3 and is not considered.

The Demonstrator was intended to spawn risks of the chosen technology for the aspect-
oriented composition. After the implementation of several model-to-model transformations
using ATL [18], this technology seems to be suitable for the realisation of the aspect-oriented
composition in VIDE. Nevertheless, the unstable version of ATL hinders the implementation
of the demonstrator and causes a high effort.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 17 -

2.2 Discussion of Variations
Aspect-oriented composition approaches can be realized by using different concepts on
different levels. To give an overview of possible concepts and to show, where the developed
approach is settled, the following sections describe and compare different variations of aspect-
oriented composition.

2.2.1 Composition Layer Variations
The different variations of the aspect composition have already been particularly described in
D3.1. Therefore, this section shortly summarizes the main results.

Figure 1: Different kinds of model composition

The different variations of aspect oriented composition are depicted in Figure 1. Horizontal
Composition, which was chosen for the developed approach, processes the aspect weaving on
the same abstraction level. The input and output models are (in the depicted case) models at
the PIM level. The output model does conform to the metamodel of the base model, which
leads to the fact, that the output model can be processed using common tools without support
for aspects (e.g. using Objecteering [19] to produce Java code). Because the aspect weaving is
done at the PIM level, no support of aspect-oriented concepts at PSM and Code level is
required. The horizontal composition can be realized by adapting additional model-to-model
transformations. The existing model compiler, which transforms the PIM level model to PSM
level model or to code does not have to be adapted.

The Vertical Composition processes the aspect weaving during the transformations between
different model levels (in Figure 1 PIM to PSM). The existing model compiler (respectively
the model transformations) has to be adapted to support the aspect composition during the
transformation between the abstraction levels. Therefore the extension of existing MDA
processes by using the vertical composition cases needs more effort than the usage of vertical
composition. Nevertheless, the support of aspect-oriented concepts at code level is not
required in this case, too.

If No Model Composition is processed during the model transformation between different
abstraction levels, the base and the aspect model are only transformed into the corresponding
representation on the next level. No aspect weaving is done. The extension of this MDA

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 18 -

process requires no adaptation of the transformations for the base models, but only the
provision of additional transformations for the aspect models. This variant requires aspect
oriented support at code level, because the aspect weaving is not processed during the MDA
process, but rather has to be realized on code level (static/source code weaving, dynamic
weaving, load time weaving, runtime weaving, etc.)

2.2.2 AO composition Variations
In the domain of the aspect oriented programming, different weaving approaches and
strategies at different levels are developed. Aspect weaving can be processed at different
points in time, e.g. static weaving, load time weaving, runtime weaving, etc. One of the
challenges was, to investigate known weaving strategies and to decide, which strategy should
be used for the developed aspect-oriented composition.

Since horizontal composition on PIM level was chosen, the weaving is done in a static way.
The composition is done without runtime information.

There are two general possibilities to process the aspect weaving. First, the advice model can
be inlined at the captured joinpoints (as shown in [15]). After the advice model is inlined, the
aspect module does not exist explicitly in the woven model. Therefore the realisation of
different instantiation strategies is hindered, since there is no explicit class, which could have
different instantiation mechanisms. On the other hand, there are no additional infrastructural
model artefacts.

The second approach is the encapsulation of the aspect and advice in a separate class (in the
woven model), which can be instantiated as a singleton (see subsection 2.2.3). Different
instantiation strategies can be realized during this aspect composition with less effort.

Additional strategies can be applied, for instance to increase the weaving performance. The
approach in [20] extracts all potential joinpoint shadows to so called envelopes (Getter/Setter
for fields and proxies for methods). The field and method accesses are replaced by calls to the
corresponding envelopes. This “pre-processing” has the effect, that the search scope for the
potential joinpoints is reduced, which is an optimisation for the pointcut matching phase. The
number of points, where the aspect weaving takes place is reduced and the weaving process
can be simplified.

Another problem in this domain is the handling of runtime properties of joinpoints, which are
used in the pointcut declaration to define the set of selected joinpoints. During the pointcut
resolving phase the dynamic properties of potential joinpoints can be approximated to decide,
if a point in the execution is a joinpoint. This variant possibly requires a complex and time
consuming static analysis, which can only approximate the runtime properties of potential
joinpoints. The approach, which is used in AspectJ [21], checks the static properties during
the pointcut resolving. The result is a set of potential joinpoints. During the aspect weaving
phase, corresponding behaviour for checking the runtime properties is woven before the
advice call. Only if the woven condition is true at runtime, the advice is executed.

This approach can also be applied for aspect composition on PIM level. The developed
approach focuses on static approximation of runtime properties. For instance the type of the
defined context exposure pointcut expressions is checked in a static way (see also subsection
4.3.3.2).

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 19 -

2.2.3 Instantiation Variations
Not only the weaving strategies but also the aspect instantiation strategy plays an essential
role in the aspect composition. If the aspect stores context information, it is often useful to
decide, if the called advice should have always access to the same context information
(independently of the triggering object or of the object, on which the joinpoint is triggered).

In other words, the instantiation strategy decides, if an advice is always called on one aspect
instance, or if each object has its own aspect instance (with separate context information) on
which the advice is called, etc.

The realisation of a certain instantiation strategy partially depends on the chosen weaving
strategy. If the aspect is encapsulated in a separate aspect class, the support of different
instantiation strategies can be achieved by the provision of certain mechanisms for aspect
class creation (singleton, hash table for associating several objects with corresponding
instances of an aspect class, etc.).

If the content of an aspect (fields, advices, operations) is inlined at the corresponding
joinpoints during the aspect composition, each object, which is adapted by the aspect, has its
own context. The single aspect instance strategy cannot be realized, without the provision of
additional model infrastructure.

Since the developed approach encapsulates the aspect in a separate class, the instantiation
strategies “singleton” and “perThis” are supported.

2.3 Evaluation

In this section, we will use the software properties understandability and maintainability as
evaluation criteria to compare the aspect-oriented modelling approach proposed in work
package 3 with the traditional object-oriented modelling approach at the PIM level. For each
evaluation criterion, we discuss some factors that affect that criterion and introduce a few
metrics to measure those factors. Table 2 gives an overview of the different factors and
metrics that we will use to evaluate the properties understandability and maintainability.

Property Factor Metric

Understandability

Size

Number of Actions

Number of Model Elements

Complexity Cyclomatic Method Complexity

Separation of
Concerns

Concern Diffusion over Actions

Maintainability

Concern Diffusion over Modules

Concern Diffusion over Operations

Ease of Change

Number of Impacted Components

Number of Impacted Members

Table 2: Overview of Evaluation criteria and the selected metrics

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 20 -

These evaluation criteria and the respective factors and metrics will be used in the next
section together with two examples of crosscutting concerns to assess the proposed aspect-
oriented modelling approach. The list of evaluation criteria and respective factors and metrics
is by no way complete. Our evaluation is a first effort towards assessing the benefits of
aspect-oriented modelling at the PIM level. A complete and extensive evaluation of aspect-
oriented modelling is beyond the scope of WP3 and the VIDE project.

2.3.1 Understandability

This software property reflects how difficult understanding the application models is. It also
includes understanding the way a crosscutting concern (i.e., the respective structure and
behaviour) is modelled and its relation to the core business logic of the application. We
selected size, complexity, and separation of concerns as some of the factors that affect
understandability. Next, we present metrics for measuring these factors.

a) Size Metrics:

• Number of Actions (NoA): the total number of UML actions in a method body. For a
class this metric is the sum of the number of actions of its methods and constructors.
Inherited methods are not included.

• Number of Model Elements (NoME): In addition to measuring the number of actions
this metrics includes also the number of control flows and object flows in the
behaviour model of a method. For a class, this metric can be calculated as the sum of
the NoME values of its methods and constructors.

b) Complexity Metrics:

Cyclomatic Method Complexity (CC): this metric was introduced by McCabe to measure the
flow complexity of a method [1]. It is the number of linearly independent paths and
consequently gives information on the minimum number of paths that have to be tested. It
basically counts the number of places in the method body where the flow changes from a
linear flow (e.g., in if then statement, loops, etc). To measure this complexity, we will proceed
as described in [2], which proposes a simple way to count this metric: one starts with a count
of one for the method and adds one for each of the flow-related elements that are found in the
method body such as selection (such as if then else and switch), loops (such as for and while),
and logical operators (such as the operators and and or).

c) Separation of Concerns Metrics:

In [4], Sant’ Anna et al. introduced three metrics for measuring the separation of concerns.
One of these metrics is called Concern Diffusion over Lines of Code (CDLOC) and it is
especially relevant in the context of understandability. The two other metrics are more
important with regard to maintainability.

Concern Diffusion over Actions (CDA) is an adapted metric for VIDE that is based on the
separation of concerns metric Concern Diffusion over Lines of Code (CDLoC) [4]. It counts
the number of transition points for each concern through the actions of the behaviour models.
Transition points are points in the behaviour of a method or a constructor where there is a
“concern switch” for instance from business logic to security.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 21 -

2.3.2 Maintainability

This software property reflects how easy/hard and time-consuming the process of maintaining
the software is. For the software to be maintainable it should be easy to understand, to
enhance, to extend or to correct. Several factors have an impact on maintainability such as
ease of change, separation of concerns, complexity and size. Maintainability and
understandability are also related to a large extent as it is quite hard to maintain an application
that is not understandable. As a result, the complexity and size metrics that were introduced in
the last subsection can be used also for measuring the maintainability of the application
models.

In the following, we will focus mainly on maintainability with respect to crosscutting
concerns. That is, we will measure how difficult it is to perform changes to the behaviour
models corresponding to crosscutting concerns. Thereby, we will concentrate on two
maintainability factors that were defined in [5]:

a) Ease of Change Metrics:

These metrics measure the difficulty level in changing the modelling elements that belong to a
crosscutting concern, e.g., to customize or extend the application. The following two metrics
give an idea on the scope of the change. In addition to that, it is also important to consider the
time aspect, i.e., how long does it take to perform a certain change.

• Number of Impacted Components (NIC): this metric counts the number of classes
and aspects that are affected by a certain change [5].

• Number of Impacted Members (NIM): this metric counts the number of operations
and attributes that are affected by a certain change [5].

b) Separation of Concerns Metrics:

In addition to Concern Diffusion over Lines of Code (CDLOC), Sant’ Anna et al. introduced
two other metrics for measuring the separation of concerns. These metrics are important with
respect to understandability and maintainability.

• Concern Diffusion over Modules (CDM): This metric counts the number of classes
and aspects that contribute to the implementation of a concern as well as the number
of other classes and aspects that access them [4]. In this document, we focus only on
the number of classes and aspects that contribute to the implementation of a concern.

• Concern Diffusion over Operations (CDO) counts the number of methods and
advices that contribute to the implementation of a concern and the number of other
methods and advices that access them [4]. In this document, we focus only on the
number of methods and advices that contribute to the implementation of a concern.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 22 -

3 Business Scenario

This section starts by a short review of opportunity management, which is part of the
Customer Relationship Management (CRM) business application that was presented in D3.1.
After that, the crosscutting concerns consistency checks and partner determination will be
modelled once with and once without aspects and evaluation data will be collected using the
evaluation factors and metrics that were defined in Section 2.3. A discussion of gathered
evaluation data will then follow.

3.1 Review of the Opportunity Scenario
Customer Relationship Management [6] is a management concept, which intends to
systematize and improve the relationships between companies and their customers. It is a
customer-oriented corporate strategy that utilises modern information and communication
technologies to establish long-term, profitable customer relationships by providing a central
tool that integrates marketing, sales and service instruments [6]. SAP offers several CRM
products such as SAP CRM [8,9], which covers the three fundamental CRM processes
marketing, sales, and service.

Figure 2 shows some typical pre-sales and sales processes in an enterprise that sells one or
more products. These processes involve different steps such as opportunity management,
quotations to customers, sales orders and invoice processing. This figure shows also the
different user roles that are involved in each process step.

Figure 2: Sales Scenario

Legend
Begin

Identify
Opportunity

Create
Opportunity

Account
Mgmt.

0.

1.

Evaluate
Opportunity

2. No goGo

Field Service
Representative

Office
Sales Assistant

Sales Manager

Create
Quotation Quotation

Create
Quotation

3. Pricing

RejectAccept

Customer

Create
Sales Order

4. Sales
Processing

Check
Creditworth. Payment

Avail. to
Promise Stock

5.

6./7.

Process
Payment Payment8.

Complete
Order

9.

Return
Order

10.
Approve
Return Payment

Financial
Assistant

Warehouse
Assistant

Reject

Reject

Opportunity
process

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 23 -

3.1.1 Opportunity Management

Opportunity management is a pre-sales process that provides a structured approach to turning
an initial recognition of a selling opportunity into a sales contract. In that process, which is
shown in Figure 2, the SAP CRM software guides the sales representative through a process
and generates next steps and activity suggestions on the basis of best-practice sales strategies.

The SAP CRM business application is implemented as an object-oriented application. Figure
3 shows an extract of a class diagram with the main business objects that are involved in
opportunity management. More details on some of these objects can be found in D3.1.

Figure 3: Main Classes in Opportunity Management

3.2 Modelling Crosscutting Concerns in the Opportunity Scenario

In D3.1, consistency checks and partner determination were introduced as examples of
crosscutting concerns in opportunity management. In this section, we model each of these
concerns once without aspects and once with aspects and thereby use the evaluation factors
and metrics defined in Section 2.3 to evaluate and compare both approaches with respect to
understandability and maintainability.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 24 -

3.2.1 Consistency checks

Several consistency checks are performed when the state of the opportunity business object or
some of the associated objects changes. The code that enforces consistency checks cuts across
different classes.

In D3.1, consistency constraints were classified into simple constraints and complex
constraints based on the degree of crosscutting. The enforcement of the complex consistency
constraints involves more than one business object class, e.g., the constraint C3 is a complex
constraint that should be fulfilled by each Opportunity object to be in a consistent state.

Appropriate logic is needed to check consistency constraints such as C3 and hinder their
violation. This logic should be triggered when the fields corresponding to the constraint are
modified and/or when the respective setter methods are called. Consequently, it is scattered
across several classes. For instance, to enforce the constraint C3, appropriate logic is required
in the method setProcessStatusValidSinceDate of the class Opportunity to check that the date
is smaller than expectedProcessingDatePeriod.StartDate in the associated SalesForecast
object as shown below in Java.

 //defined in class Opportunity
 public void setProcessStatusValidSince(Date nd)
 {
 if(this.salesForecast.expectedProcessingDatePeriod.startDate > nd)
 this.processStateValidSinceDate = nd;
 }

Similar logic is also needed in the method setExpectedProcessingDatePeriod to verify that
the StartDate of the new period is smaller than the value of the attribute
processStatusValidSince of the associated Opportunity object as shown below in Java.

//defined in class SalesForecast
public void setExpectedProcessingStartDate (Date nd)
{

 if(nd > this.opportunity.processStatusValideSinceDate)
 this.expectedProcessingStartDatePeriod.startDate = nd;
 }

3.2.1.1 Modelling consistency checks without aspects

In the following, we model the constraint C3 using UML actions but without using aspects at
the PIM level.

A) The models

Figures 4 and 5 show the behaviour models that correspond to the method bodies of
setExpectedProcessingStartDate, which is defined in the class SalesForecast and

(C3): Opportunity.processStatusValidSinceDate <
 SalesForecast.expectedProcessingDatePeriod.StartDate

FP6-IST-2004-033606, VIsualize all moDel drivEn programming
Version 1.0

setProcessStatusValidSince, which is defined in the class
models were drawn using the tool TopCased [

B) Measurement Data

Next, we use the metrics presented in Section
understandability and maintainability of this model.

• Size

o Number of Actions:

� 5 in method

� 5 in method

o Number of Model Elements:

Figure 4: Method setExpectedProcessingStartDate

VIsualize all moDel drivEn programming Work Package 3
Date: 10 October 2007

© Copyright by VIDE Consortium

, which is defined in the class Opportunity respectively
models were drawn using the tool TopCased [10].

trics presented in Section 2.3 to collect quantitative data on the
understandability and maintainability of this model.

Number of Actions:

in method setExpectedProcessingStartDate

in method setProcessStatusValidSince

Number of Model Elements:

: Method setExpectedProcessingStartDate

Figure 5: Method setProcessStatusValidSince

Work Package 3 – Deliverable D3.2
10 October 2007

- 25 -

respectively. These

to collect quantitative data on the

: Method setProcessStatusValidSince

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 26 -

� 18 in method setExpectedProcessingStartDate (8 control flows, 5
object flows, 5 actions)

� 19 in method setProcessStatusValidSince (8 control flow, 6 object
flows, 5 actions)

• Complexity

o Cyclomatic Complexity

� 2 for method setExpectedProcessingStartDate

� 2 for method setProcessStatusValidSince

• Separation of Concerns

o Values of Concern Diffusion over Actions for the concern consistency checks

� 2 in the method setExpectedProcessingStartDate

� 2 in method setProcessStatusValidSince

o Concern Diffusion over Operations value of 2 for the specific consistency
check C3 (much more for consistency checks as one concern in the opportunity
application)

o Concern Diffusion over Modules value of 2 for the specific consistency check
C3, which spans the classes Opportunity and SalesForecast (a much higher
CDC value if consistency checks in general are considered as one concern in
the opportunity application)

• Ease of Change

We assume that the consistency check C3 and its implementation have to be changed. For
example, the constraint may be relaxed to not longer require processStatusValidSinceDate
to be strictly less than the start date of expectedProcessingDatePeriod as said before but
only less or equal. The values for the metrics related to this change are as follows.

o Number of Impacted Components: 2 (namely the classes Opportunity and
SalesForecast)

o Number of Impacted Members: 2 (namely the two setter methods that are
covered by this constraint)

3.2.1.2 Modelling consistency checks with aspects

Next, we model the constraint C3 using an aspect. This aspect consists of a pointcut that
selects two join points (i.e., the execution of the two setter methods) and two advices that
define the logic for enforcing the consistency constraint.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 27 -

A) The Models

Figure 6 shows an aspect that modularizes the consistency check C3. This figure also shows
the pointcut of this aspect, which selects two join points in the base. More precisely, this
pointcut selects all write accesses (kind = set) to properties that have the type Date
(pce1.type.namePattern = “Date”) and which belong to objects of type “Opportunity”
(pce1.declaringType.namePattern = “Opportunity”) as well as write accesses to properties that
have the type Date and which belong to objects of the type “SaleForecast”.

 Figure 6. Aspect for constraint C3

Figures 7 and 8 show the two advices of this aspects. These advices are bound “around” the
selected join points in order to control the original behaviour (that sets the attributes related to
C3) and execute it only when the constraint C3 is fulfilled.

Figures 9 and 10 show the behaviour models of setExpectedProcessingStartDate and
setProcessStatusValidSince. These models do not contain any logic for enforcing consistency
checks because this logic is now externalized in a separate aspect. That is these two methods
just set the appropriate attribute to the new date that is passed as a parameter.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming
Version 1.0

Figure 7: Advice for Enforcing C3 in Opportunity

Figure 9: Method setExpectedProcessing

VIsualize all moDel drivEn programming Work Package 3
Date: 10 October 2007

© Copyright by VIDE Consortium

Advice for Enforcing C3 in Opportunity Figure 8: Advice for Enforcing C3 in SalesForecast

: Method setExpectedProcessingStartDate Figure 10: Method setProcessStatusValidSince

Work Package 3 – Deliverable D3.2
10 October 2007

- 28 -

Advice for Enforcing C3 in SalesForecast

: Method setProcessStatusValidSince

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 29 -

B) Measurement Data

Next, we provide quantitative values to measure the understandability and maintainability of
the aspect-oriented design using the metrics presented in Section 2.3.

• Size

o Number of Actions:

� 2 in method setExpectedProcessingStartDate

� 2 in method setProcessStatusValidSince

� 4 in advice for enforcing C3 on Opportunity objects

� 3 in advice for enforcing C3 on SalesForecast objects

o Number of Model Elements:

� 7 in method setExpectedProcessingStartDate (3 control flows, 2 object
flows, 2 actions)

� 6 in method setProcessStatusValidSince (2 control flow, 2 object flows,
2 actions)

� 16 in advice for enforcing C3 on Opportunity objects (7 control flow, 5
object flows, 4 actions)

� 13 in advice for enforcing C3 on SalesForecast objects (6 control flow,
4 object flows, 3 actions)

• Complexity

o Cyclomatic Complexity

� 1 for method setExpectedProcessingStartDate

� 1 for method setProcessStatusValidSince

� 2 in advice for enforcing C3 on Opportunity objects

� 2 in advice for enforcing C3 on SalesForecast objects

• Separation of Concerns

o Concern Diffusion over Actions for the concern consistency checking

� 0 for the method setExpectedProcessingStartDate

� 0 for method setProcessStatusValidSince

o Concern Diffusion over Operations value of 2 for the specific consistency
check C3, which is now implemented using two advices that are modularized
in one aspect

o Concern Diffusion over Modules value of 1 for the specific consistency checks
C3, which is modularized now in one aspect.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 30 -

• Ease of Change

Changing the consistency check C3 and the respective implementation then

o Number of Impacted Components: 1 (namely the aspect)

o Number of Impacted Members: 2 (namely the two advice)

3.2.2 Partner determination

Partner determination [11,12] is part of the partner processing function of many SAP
business applications. It refers to the system ability to automatically find and enter partner
information such as addresses in certain transactions and documents. That is, the user enters
manually one or more partners and the system determines and completes other partners and
information by using several sources of information such as the business partner master data,
the company organizational data, documents related to the current document such as the last
document or the parent document, etc.

Figure 11 shows an example that illustrates how partner determination works. The user
creates an opportunity and enters the name of the sales prospect whereas the system enters the
name of the contact person (by checking the partner master data), the address of the sales
prospect, and the name of the responsible employee for this opportunity (using the company
organizational data).

Figure 11: Partner Determination in Opportunity Management

The way partner determination is done can be very different depending on the business
process, the business transaction, the partner functions in the transaction, and the companies
that run the CRM software. Customers can configure the way partner determination is run for
a certain transaction by defining partner determination procedures. The latter define which
partner functions are mandatory or optional for a given transaction. For each partner function

Relationships for
Sales Area 1000 Business partner

master data

for

PC4YOU
Electronics

PC4YOU Shops
Sales
Prospect

Opportunity
1. A user creates an
opportunity and enters
the sales-prospect.

2. The system:

Looks in BP
master data

Finds the needed
contact person

Enters him in the
opportunity

3. The system:

Looks in the
organizational data of
the company

Finds the employee
responsible

Enters him in the
opportunity

Organizational
data

for

the company

Jean Khan Contact
Person

Anton May Employee responsible

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 31 -

(e.g., contact person, sold-to-party, ship-to-party, etc.) the users can specify the sources of
information that should be used to determine the partner function values and in what order
these sources are searched (so-called access sequences). They can also configure when
partner determination is performed, e.g., when data is entered by the user or when it is saved.

Partner determination is a crosscutting concern as the respective code is scattered across
several classes of the user interface and the business objects of the CRM application. Partner
determination may be triggered in the UI classes, e.g., when the user enters the sales prospect
for a new opportunity and can be also triggered in the business object, e.g., when an
opportunity object is saved (i.e., the update method of the CRUD interface is called). Partner
determination functionality logic is scattered over other business object classes in the CRM
application such as Opportunity and SalesOrder.

When a new opportunity is created and the user sets the prospect, partner determination will
automatically add the contact person at the partner and the responsible employee within the
partner organization. There is some logic in the method setProspect, which triggers automatic
partner determination. Later, if these partner functions are changed by the user no automatic
update will be executed. However, there are some other partner determination procedures that
may be triggered automatically when an opportunity is updated (the method update of the
CRUD interface).

When a new SalesOrder is created and the user enters the Sold-to-party (method setSoldTo),
partner determination is triggered and some partner functions are completed automatically
such as Ship-to-party, Bill-to-party, Payer, Contact Person, and Responsible Employee.
Similarly to the update method of the opportunity class, some partner determination logic is
executed when a sales order is updated (method update).

3.2.2.1 Modelling Partner determination without aspects

In the following, we model the partner determination logic in the methods setProspect,
setSoldTo, and update without using aspects.

A) The Models

Figures 12 and 13 show the behaviour models of the methods setProspect and update in the
class Opportunity. Below is the equivalent behaviour of these two methods in Java.

public void setProspect (Party pros) //defined in the class Opportunity
{
 this.prospect = pros;
 //run partner determination procedure for business function sales prospect
 if(getCurrentTransactionType()==TransactionType.OpportunityNew)

PartnerDetermination.autocomplete(TransactionTypes.OpportunityNew,this,
PartnerFunctions.Prospect, prospect);

}
public void update(List changelist) //defined in the class Opportunity
{
 //call update on the parent
 BusinessObject.updateBO(this, changelist);

 //run partner determination procedure
 PartnerDetermination.autocomplete(TransactionTypes.OpportunityChange, this);
}

FP6-IST-2004-033606, VIsualize all moDel drivEn programming
Version 1.0

Figures 14 and 15 show the behaviour models of the methods
class SalesOrder. Below is the equivalent

//defined in the class SalesOrder
public void setSoldTo(Party soldTo)
{
 this.soldTo = soldTo;
 //run partner determination procedure
 if(getCurrentTransactionType()==TransactionType.SalesOrderNew)
 {
 PartnerDetermination.autocomplete(TransactionTypes.SalesOrderNew,this,
 PartnerFunctions.SoldTo, soldTo);
 }
}

//defined in the class SalesOrder
public void update(List changelist)
{
 //call update on the parent
 BusinessObject.updateBO(this, changelist);

 //run partner determination procedure
 PartnerDetermination.autocomplete(TransactionTypes.SalesOrderChange, this);
}

Figure 12: Method setProspect

VIsualize all moDel drivEn programming Work Package 3
Date: 10 October 2007

© Copyright by VIDE Consortium

show the behaviour models of the methods setSoldTo
Below is the equivalent behaviour of these two methods in Java.

//defined in the class SalesOrder
public void setSoldTo(Party soldTo)

//run partner determination procedure
if(getCurrentTransactionType()==TransactionType.SalesOrderNew)

PartnerDetermination.autocomplete(TransactionTypes.SalesOrderNew,this,
PartnerFunctions.SoldTo, soldTo);

//defined in the class SalesOrder
public void update(List changelist)

ssObject.updateBO(this, changelist);

//run partner determination procedure
PartnerDetermination.autocomplete(TransactionTypes.SalesOrderChange, this);

Figure 13: Method

Work Package 3 – Deliverable D3.2
10 October 2007

- 32 -

setSoldTo and update in the
behaviour of these two methods in Java.

PartnerDetermination.autocomplete(TransactionTypes.SalesOrderNew,this,

PartnerDetermination.autocomplete(TransactionTypes.SalesOrderChange, this);

: Method update

FP6-IST-2004-033606, VIsualize all moDel drivEn programming
Version 1.0

B) Measurement Data

Next, we provide some quanti
design using the metrics that were presented in Section 2.3.

• Size

o Number of Actions:

� 6 in method setProspect (class Opportunity)

� 4 in method update (class Opportunity)

� 6 in method setSoldT

� 4 in method update (class SalesOrder)

o Number of Model Elements:

� 24 in method setProspect of the class Opportunity (9 control flows, 9
object flows, 6 actions)

� 11 in method update of the class Opportunity (5 control flow, 4 object
flows, 4 actions)

Figure 14: Method setSoldTo

VIsualize all moDel drivEn programming Work Package 3
Date: 10 October 2007

© Copyright by VIDE Consortium

Next, we provide some quantitative data on the understandability and maintainability of this
design using the metrics that were presented in Section 2.3.

Number of Actions:

in method setProspect (class Opportunity)

in method update (class Opportunity)

in method setSoldTo (class SalesOrder)

in method update (class SalesOrder)

Number of Model Elements:

in method setProspect of the class Opportunity (9 control flows, 9
object flows, 6 actions)

in method update of the class Opportunity (5 control flow, 4 object
ws, 4 actions)

Figure 15: Method update

Work Package 3 – Deliverable D3.2
10 October 2007

- 33 -

on the understandability and maintainability of this

in method setProspect of the class Opportunity (9 control flows, 9

in method update of the class Opportunity (5 control flow, 4 object

update

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 34 -

� 24 in method setSoldTo of the class SalesOrder (9 control flows, 9
object flows, 6 actions)

� 13 in method update of the class SalesOrder (5 control flow, 4 object
flows, 4 actions)

• Complexity

o Cyclomatic Complexity

� 2 for method setProspect

� 1 for method update of class Opportunity

� 2 for method setSoldTo

� 1 for method update of class SalesOrder

• Separation of Concerns

o CDA for the concern partner determination

� 2 in the method setProspect

� 2 in the method update of class Opportunity

� 2 for method setSoldTo

� 2 for method update of class SalesOrder

o CDO value of 4 at least for the considered extract of the opportunity scenario
models as behaviour relating to partner determination is found in four methods.

o CDM value of 2 at least as partner determination behaviour is scattered over
the classes Opportunity and SalesOrder.

• Ease of Change

We assume that the partner determination logic should be extended in some way to e.g.,
fire an event after the automatic completion. The impact of this change is as follows:

o Number of Impacted Components: 2 (the classes Opportunity and SalesOrder)

o Number of Impacted Members: 4 (as 4 operations are involved)

3.2.2.2 Modelling Partner determination with aspects

Next, we model partner determination using an aspect.

A) The Models

Figure 16 shows the aspect model for partner determination. This aspect defines two bindings:
The binding b1 connects the pointcut updateBO, which selects the calls to the operation
updateBO, to the advice updateChange that is shown in Figure 17; the binding b2 connects
the pointcut partySetter, which selects calls to the operations setSoldTo (class SalesOrder) and
setProspect (class Opportunity), to the advice udpateNew that is shown in Figure 18. Both
advices are executed after the selected join points.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 35 -

Figure 16: Partner Determination Aspect

Figure 17: Advice updateChange

Figure 18: Advice updateNew

FP6-IST-2004-033606, VIsualize all moDel drivEn programming
Version 1.0

Figures 19 and 20 show the behaviour models of the methods
class Opportunity. Figures 21 and 22
and update of the class SalesOrder
determination as this logic is now externalized in

Figure 19: Method setProspect

Figure 21: Method setSoldTo

VIsualize all moDel drivEn programming Work Package 3
Date: 10 October 2007

© Copyright by VIDE Consortium

show the behaviour models of the methods setProspect,
Figures 21 and 22 show the behaviour models of the methods of

SalesOrder. These four models do not contain any logic for partner
determination as this logic is now externalized in the aspect.

Figure 20: Method update

Figure 22: Method update

Work Package 3 – Deliverable D3.2
10 October 2007

- 36 -

setProspect, and update of the
show the behaviour models of the methods of setSoldTo

models do not contain any logic for partner

update

update

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 37 -

B) Measurement Data

In the following, we measure the values of the different metrics that were presented earlier to
evaluate the understandability and maintainability of this aspect-oriented design.

• Size

o Number of Actions:

� 2 in method setProspect (class Opportunity)

� 2 in method update (class Opportunity)

� 2 in method setSoldTo (class SalesOrder)

� 2 in method update (class SalesOrder)

� 2 in advice updateChange

� 4 in advice updateNew

o Number of Model Elements:

� 7 in method setProspect of the class Opportunity (3 control flows, 2
object flows, 2 actions)

� 7 in method update of the class Opportunity (3 control flows, 2 object
flows, 2 actions)

� 7 in method setSoldTo of the class SalesOrder (3 control flows, 2 object
flows, 2 actions)

� 7 in method update of the class SalesOrder (3 control flows, 2 object
flows, 2 actions)

� 7 for advice updateChange (3 control flows, 2 object flows, 2 actions)

� 17 for advice updateNew (7 control flows, 6 object flows, 4 actions)

• Complexity

o Cyclomatic Complexity

� 1 for method setProspect

� 1 for method update of class Opportunity

� 1 for method setSoldTo

� 1 for method update of class SalesOrder

� 1 for advice updateChange

� 2 for advice updateNew

• Separation of Concerns

o Concern Diffusion over Actions for the concern partner determination

� 0 in the method setProspect

� 0 in the method update of class Opportunity

� 0 for method setSoldTo

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 38 -

� 0 for method update of class SalesOrder

o Concern Diffusion over Operations (CDO) value of 2 for this scenario as the
partner determination logic is implemented in two advice, which are part of
one aspect.

o Concern Diffusion over Modules value of 1 as the partner determination
behaviour is now modularized in one aspect.

• Ease of Change

We assume that the partner determination logic should be extended in some way to e.g.,
fire an event after the automatic completion. The impact of this change is as follows:

o Number of Impacted Components: 1 (the partner determination aspect)

o Number of Impacted Members: 2 (the advice updateChange and updateNew)

3.3 Evaluation
In the previous sections we modelled the crosscutting concerns consistency checks and
partner determination respectively once with object-oriented PIM models and once with
aspect-oriented models as proposed in VIDE. We will next discuss the measured evaluation
data to compare both designs with respect to understandability and maintainability.

3.3.1 Understandability

We observe that the size of the methods setExpectedProcessingStartDate and
setProcessStatusValidSince has been reduced drastically when the logic for enforcing the
constraint C3 is externalized into an aspect. In fact, the number of actions decreased from 5 to
2 actions as well as the number of model elements which went down from 18 and 19 to 7 and
6 respectively. Moreover, the cyclomatic complexity of these two methods decreased as the
logic for enforcing C3 is no longer part of them. The value of concern diffusion over actions
is also reduced from 2 to 0 when C3 is modularized as an aspect because there is no concern
switch in the two method bodies. All these metrics show that the understandability of the
models is improved when aspects are used.

Similar observations are made in the case of partner determination. The size of the methods
update, setProspect, and setSoldTo went down when the aspect is used to modularize partner
determination. For instance, the number of model elements in the method bodies of setSoldTo
and setProspect went down from 23 to 7 for each of them. The advice updateNew, which is
called after the party setting in both methods, has a number of model elements value of 17.
Moreover, the values of cyclomatic complexity for these methods also decreased when
partner determination is modelled as an aspect. In addition, the value concern diffusion over
actions went down from 2 to 0.

On the other hand, the usage of aspects adds additional complexity as the user has to
understand the pointcut and what joint points in the behaviour models it matches. However,
tools can be developed for that purpose. Such tools already exist for AspectJ [13,14].

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 39 -

3.3.2 Maintainability

The evaluation data shows that the maintainability of the application models is improved,
which is as expected because of the better separation of concerns. For instance, the concern
diffusion over modules went down from 2 to 1 for the specific consistency check C3. If other
consistency checks are also considered the CDM value will even go down from higher values
(i.e., the number of classes where logic for enforcing consistency checks is contained) to 1.
Similarly, the concern diffusion over operation (CDO) for partner determination went down
from CDM value 4 to 2 whereas the value of concern diffusion over modules went down from
2 to 1 when an aspect is used.

As a result of the improved separation of concerns the cost in effort and time for finding the
model elements that implement the logic belonging to consistency checks is reduced. This is
also reflected by the metric number of impact modules, which went down to 1 in both the
consistency check and partner determination examples as only the aspect has to be changed.
The number of impacted members also went down from 4 to 2 in the case of partner
determination

3.4 Summary
In this section, we introduced opportunity management as a business scenario from SAP
CRM applications. We presented two examples of crosscutting concerns there: consistency
checks and partner determination. After that, we modelled each of these two concerns once
without aspects and once with aspects and compared the two design options with respect to
understandability and maintainability.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 40 -

4 Specification of Aspect Oriented Composition in VIDE

This section describes the proposed integration of aspect-oriented concepts into MDD in the
VIDE context. The integration can be split into several parts, which are outlined in the next
section. The specification, described in this section, is based on the results and experiences
collected during the research work, the Demonstrator development and the discussion with
project partners.

4.1 Overview
To support aspect-oriented concepts in VIDE, contributions in different areas are necessary.
Figure 23 depicts the relevant VIDE components, which have to be considered during the
integration.

Figure 23: Contributions by WP3

The main part, we focus on, is the VIDE PIM language, which was specified in Work package
2 (VIDE/UML Metamodel). The corresponding model is stored in the EMF model repository.
To integrate the aspect oriented composition in the VIDE PIM language, it is necessary to
allow the modelling of aspect oriented constructs (aspect, advice, pointcut, etc.) in the model
repository. For this purpose the VIDE/UML metamodel was extended by using the UML
Profile technology. The UML Profiles (AO Profile, JPS Profile), which are required to allow
modelling the AO constructs, are described in subsection 4.2.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 41 -

Moreover, the horizontal model composition was chosen to process the aspect weaving. The
model-to-model transformations, which are required to merge the base and aspect model and
to produce the woven object oriented output model, are described in section 4.3.

In the VIDE context, the model at PIM level is not intended to be created manually, but rather
to be produced by several editors, which support the VIDE PIM language. Two kinds of
editors for the support of a textual and a visual syntax are planned in the VIDE project.
Section 4.4 presents a proposal for extending the textual and visual syntax to integrate aspect-
oriented constructs. Furthermore, to produce VIDE PIM language model from a concrete
syntax, several mappings are required. This topic is discussed as an open issue at the end of
this section.

4.2 AO UML Profiles
The provided UML Profiles for extending the VIDE PIM language were already partially
described in D3.1. This section gives a structured overview of the completed UML Profiles,
the contained elements and the possibility for modelling aspect-oriented constructs.

4.2.1 Aspect-Oriented Modelling Profile
The AO Profile is depicted in Figure 24 and contains elements, which allow modelling of
aspect-oriented constructs at PIM level.

Aspect
The stereotype Aspect is applicable to classes and represents an aspect module, which serves
as a container for additional aspect-oriented (advices, bindings, pointcuts) and object-oriented
(methods, etc.) constructs. The attribute instantiationKind defines the instantiation strategy of
the aspect. The two kinds of instantiation singleton (one aspect instance) and instance (one
aspect instance per class instance) are supported and covered in the enumeration
instantiationKind.

Advice
The stereotype Advice is applicable to operations defined in an aspect module. This stereotype
marks an operation as an advice, which contains the advice behaviour. The advice parameters
are used to pass context information to the advice. The usage together with the pointcut
parameters is explained in the following sections.

Proceed
The stereotype Proceed is applicable to CallOperationActions within an advice. This special
action calls the bound joinpoint. Advices, which use the Proceed action, can only be bound
using the binding kind “around”. All parameter has to be passed to the Proceed action.
Naturally, the target pin of the CallOperationAction must not be set.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 42 -

Figure 24: AO Profile

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 43 -

Pointcut
The metaclass Pointcut allows modelling pointcuts, which are used to describe a set of
joinpoints in the behaviour model. The pointcut does not contain a string representation of this
description, but rather uses fine granular instances of pointcut expressions (see PCE) to
express the pointcut definition. The resulting set of joinpoints is the union of the results of
each contained pointcut expression. Furthermore the pointcut contains a signature, which is
used to pass the context information to an advice. The signature of the bound advice has to be
equal to the pointcut signature. The parameters, which are associated to the signature have
also to be referenced by the corresponding pointcut expressions (see ContextExposurePCE).
This mechanism allows the explicit assignment of context information to the parameters of
the poincut.

Binding
The Binding class is used to associate a pointcut with an advice. The bound advice adapts the
joinpoints, which are referenced by the connected pointcut. The binding also defines the
binding kind (before, after, around), which is defined in the enumeration BindingKind. The
advice is not directly associated with the pointcut, because the explicit definition allows to
create n:m associations with a separate binding kind for each association.

PCE
PCE is an abstract class, which allows the modelling of pointcut expressions. Subclasses of
the PCE class are used to specify the concrete properties and the kind of joinpoints, which
should be captured by the corresponding pointcut.

FeaturePCE
FeaturePCE defines a feature of a class. Operations and class properties are supported.
FeaturePCE provides different attributes and associations for specifying detailed properties of
the features to be captured (namePattern, visibility, isStatic, declaringType and type). The
association type defines the return type if operation is specified. Otherwise the association
type defines the type of the specified field.

OperationPCE / PropertyPCE
OperationPCE defines joinpoints, which relate to an operation. To distinguish between the
two different joinpoint kinds (call of an operation (CallOperationAction) and the execution of
an operation (Operation)) the attribute kind has to be set. Possible values are defined in the
enumeration OperationJPKind. In an analogous way, the PropertyPCE defines joinpoints,
which corresponds to a property of a class. The values, defined in the enumeration
PropertyJPKind can be set to the property kind.

ContextExposurePCE
The ContextExposurePCEs are responsible for selecting joinpoints with the specified context
and also for passing the context information to the bound advice. Context informations are for
instance arguments of an operation call and value, which is set to a property.

For this purpose, the ContextExposurePCEs contains a list of parameters. If the captured
context of the current pointcut expression should be passed to the advice, the corresponding
instance of the Parameter defined in the pointcut signature has to be referenced by the

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 44 -

parameter list of the pointcut expression. The ContextExposurePCEs can also be used to filter
the resulting set of joinpoints without passing the context information to the advice. In this
case, the parameter referenced by the pointcut expression must not be referenced by the
pointcut signature.

ThisPCE
The ThisPCE captures a joinpoint, if the object, where the joinpoint is triggered, is an instance
of the type (or subtype of the type) of the first parameter defined in the parameter list.

TargetPCE
The TargetPCE captures a joinpoint, if the target object, on which the joinpoint is triggered, is
an instance of the type (or subtype of the type) of the first parameter defined in the parameter
list.

ArgsPCE
The ArgsPCE captures a joinpoint, if the arguments (call/execution joinpoints) or the value to
be get/set from/to a property match to the parameter list associated by the ArgsPCE.

IntersectionPCE
The IntersectionPCE allows combining pointcut expressions to limit the resulting set of
joinpoints.

TypePattern / PackagePattern
Instances of these metaclasses are used to express types and packages. Within the
namePattern, wildcards can be used to select related elements. Additionally the TypePattern
can be enabled for covering subtypes by setting the property includeSubtypes.

4.2.2 Join Point Shadowing Profile
The JPS Profile depicted in Figure 25 provides additional stereotypes to annotate resolved
joinpoints in the base model. Supported joinpoints are:

• Call (stereotype CallJPShadow)

• Execution (stereotype ExecutionJPShadow)

• PropertySet (stereotype PropertySetJPShadow)

• PropertyGet (stereotype PropertyGetJPShadow)

These additional stereotypes are defined in a separate JPS Profile to facilitate an
uncomplicated extension. If we want to consider the OCL expressions, which are mainly used
in the VIDE PIM language for evaluating properties (e.g. PropertyCallExp), it is only
necessary to change the stereotype PropertyGetJPShadow to be applicable to instances of the
metaclass PropertyCallExp.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 45 -

Figure 25: JPS Profile

4.3 Specification of Model Transformations for AO Composition
As already described in D3.1 and also shown in Figure 26, the proposed aspect composition
process is separated in two phases (pointcut resolving and aspect composition) and requires
two input models (base model and aspect model). Nevertheless, each of the mentioned phases
can consist of more than one transformation iteration with several intermediate models. The
section 4.3.1 (Pointcut Resolving) and section 4.3.2 (Aspect Composition) give a detailed
description of the core transformations, which are required to realize our approach. The
structure of the description is similar to the template for the description of ATL
transformations (which can be found at the ATL website [18]), where the usage of semi
formal as well as textual description (pseudo code) of transformation rules is allowed.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 46 -

Figure 26: Aspect Oriented Composition

The transformation description is structured as follows:

• Transformation

o Description

� Textual description of the transformation

o Inputmodel(s)

o Outputmodel(s)

o Rules

� Rules, which are required to process the transformation

� Not exhaustive (similar rules are not fully described, open issues, etc.)

o Operations

� Helper operations, to reduce complexity of rules

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 47 -

The rules are structured as follows:

• Rule

o Description

� Textual description

o FromElement

� Element in the input model, on which the rule is triggered

o Precondition

� Precondition for the execution of the current rule

o Actions

� Actions, which are part of the rule and have to be processed.

� To clarify the intent of the described rule, pseudo code similar to ATL
code [18] as well as textual phrases are used in the description.

Elements, which serve not as a starting point for a described rule or where the precondition is
not fulfilled, are copied from the source model(s) to the target model(s)

After the core transformations are described, this section gives an overview of the additional
features, e.g. the handling of OCL expressions and of dynamic joinpoint properties during
static weaving at PIM level.

4.3.1 Pointcut Resolving

Transformation: Pointcut Resolving

Description: Searches for and annotates model elements, which are selected by a pointcut

Inputmodel: Aspect Model (VIDE/UML2 + AO Profile), Base Model (VIDE/UML2)

Outputmodel: Intermediate Model (VIDE/UML2 + JPS Profile)

Rule: ExecJPS

Description: Assigns a corresponding ExecutionJPshadow stereotype to an Operation, which
is matched by a pointcut.

FromElem: op: uml::Operation

Precondition: isJoinpoint(op)

Actions:

1. Create opTarget: uml::Operation
2. Copy all properties of op to opTarget
3. Create execJPS: JPSProfile::ExecutionJPshadow with following property

assignment
a. base_Operation <- op
b. binding <- getBindings(op)

4. Assign execJPS to opTarget

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 48 -

Rule: CallJPS

Description: Assigns a corresponding CallJPshadow stereotype to a CallOperationAction,
which is matched by a pointcut.

FromElem: callOp: uml::CallOperationAction

Precondition: isJoinpoint(callOp)

Actions:

1. Create callOpTarget: uml::CallOperationAction
2. Copy all properties of callOp to callOpTarget
3. Create callJPS: JPSProfile::CallJPshadow with following property

assignment
a. base_Operation <- op
b. binding <- getBindings(op)

4. Assign callJPS to callOpTarget

Rules for the remaining joinpoint shadow kinds can be structured in an analogous way.

Operation: isJoinpointShadow

Description: Detects if a model element is matched by any pointcut.

Parameter: Potential joinpoint shadow

Return: Boolean

isJoinpointShadow(potJPShadow)

1. return getBindings(potJPShadow).notEmpty()

Operation: getBindings

Description: Detects all bindings, whose associated pointcut matches the potential joinpoint
shadow.

Parameter: Potential joinpoint shadow

Return: Sequence of bindings

getBindings(potJPShadow)

1. return all bindings b, where b.pointcut matches potJPShadow

Operation: match

Description: Detects, if an element is matched by a pointcut

Parameter: Potential Joinpoint shadow, Pointcut

Return: boolean

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 49 -

match(potJPShadow, pointcut)

1. return true, if at least one of the associated pointcut expressions
(pointcut.expression) matches potJPShadow

a. pce: JPSProfile::OperationPCE matches potJPShadow if:

i. kindOf(potJPShadow) = = pce.kind and

ii. name(potJPShadow) is covered by pce.namePattern and

iii. visibility(potJPShadow) = = pce.visibility and

iv. isStatic(potJPShadow) = = pce.isStatic and

v. analogous for the remaining attributes and associations of pce

b. pce: JPSProfile::PropertyPCE matches potJPShadow if:

i. analogous to OperationPCE

c. pce: JPSProfile::IntersectionPCE matches potJPShadow if:

i. all associated pointcut expressions (pce.expressions) match
potJPShadow

d. pce: JPSProfile::ThisPCE matches potJPShadow if:

i. the instance , where potJPShadow is triggered is instance of
pce.parameters[0].type

e. pce: JPSProfile::TargetPCE matches potJPShadow if:

i. the instance, on which potJPShadow is triggered is instance of
pce.parameters[0].type

f. pce: JPSProfile::ArgsPCE matches potJPShadow if:

i. the arguments (or value to get or to set) of potJPShadow are instances
of the types of parameters defined in pce

4.3.2 Aspect Composition
The aspect composition transformations are more complex, thus this section focuses on some
core transformations, which can be modified and extended to support special features, as will
be described in later sections.

Transformation: JPS Extraction

Description:

This transformation extracts several joinpoint shadows to a separate activity. The goal of this
transformation is the provision of explicit access to the control flow, which is required by the
weaving transformations. Using UML Action semantics, in some cases it is possible to model
only the object flow, but the proposed aspect composition adapts the behaviour by changing
the control flow. This transformation does not change the observable behaviour, but rather
prepares the behaviour model for processing the aspect composition.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 50 -

Of course, if the behaviour is modelled using explicit control flow, the transformation has not
to be processed. The processing of this transformation is meaningful for the following
joinpoint shadow kinds:

• CallJPshadow

• PropertySetJPshadow

• PropertyGetJPshadow (if OCL expressions are used for reading/evaluating a property,
this transformation cannot be processed, because the joinpoint shadow can be placed
within a nested OCL expression)

For each supported joinpoint shadow a separate rule is required. Because of similarity, only
the rule for extracting call joinpoint shadows is described.

Inputmodel: Intermediate Model (VIDE/UML2 + JPS Profile)

Outputmodel: Intermediate Model (VIDE/UML2 + JPS Profile)

Rule: ExtractCallJPshadow

Description: Extracts call operation joinpoint shadows to a separate activity and connects the
control and object flows. The original join point shadow is replaced by a call of the created
activity. The behaviour is not changed.

FromElement: callOp: uml::CallOperationAction

Precondition: hasJPSStereotype(op)

Actions:

1. Create act: uml::Activity in parent class of callOp
2. Create initNode: uml::ActivityInitialNode in act
3. Create finalNode: uml::ActivityFinalNode in act
4. Create beforeCF: uml::ControlFlow in act
5. Create afterCF: uml::ControlFlow in act
6. Create targetCallOp: uml::CallOperationAction in act

a. Copy all relevant properties of callOp (operation, etc.)
b. Copy stereotype marking targetCallOp as a join point shadow

7. Connect initNode and targetCallOp using beforeCF
8. Connect finalNode and targetCallOp using afterCF
9. For each InputPin curInputPin in callOp do

a. Create inputParam: uml::ActivityParameterNode in act
i. inputParam.Type <- curInputPin.Type

b. Create inPin: uml::InputPin in targetCallOp
i. inPin.Type <- curInputPin.Type

c. Create inOF: uml::ObjectFlow
d. Connect inputParam and inPin using inOF

10. For each OutputPin curOutputPin in callOp do
a. Create outputParam: uml::ActivityParameterNode in act

i. outputParam.Type <- curoutputPin.Type
b. Create outPin: uml::OutputPin in targetCallOp

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 51 -

i. outPin.Type <- curOutputPin.Type
c. Create outOF: uml::ObjectFlow
d. Connect outputParam and outPin using outOF

11. Create callBeh: uml::CallBehaviourAction
a. Copy all input and output pins of callOp
b. Connect control flow

i. callBeh.Incomming <- callOp.Incomming
ii. callBeh.Outcomming <- callOp.Outcomming
iii. callOp.Incoming.target <- callBeh
iv. callOp.Outcomming.source <- callBeh

Transformation: Advice Weaving

Description:

This transformation creates the required model infrastructure (aspect classes, required
interfaces, etc.), adapts the control flow around the joinpoint shadows and connects the
context information with the corresponding advice. A description of transformation rules will
be provided for the CallJPshadow and the binding kind before and around. Other
permutations are handled in an analogous way.

Inputmodel: Intermediate Model (VIDE/UML2 + JPS Profile)

Outputmodel: Woven Model(VIDE/UML2)

Rule: InfrastructureCreation

Description:

This rule creates the following required model infrastructure:

• aspect class with the defined instantiation strategy

• advice operation (incl. transformation of the Proceed action)

• Interface for closure classes

Note: If an operation/parameter is created/copied/modified, also the associated
activity/activity parameter is created/copied/modified.

FromElement: aspect: AOProfile::Aspect

Precondition: none

Actions:

1. Create new class for the current aspect

2. Copy all operations from aspect to the created class

3. For each advice operation do:

a. Create an interface AroundClosure:

i. Set an individual name, because for each advice an AroundClosure
interface is created

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 52 -

ii. Create a public operation runProceed with the same return type and the
same signature like one of the bound joinpoint shadows

b. Create an operation with the advice signature in the newly created class.

i. Add a parameter with the type of the AroundClosure interface to the
signature

c. Copy the advice behaviour to the created activity.

d. Replace the Proceed action with the call to the runProceed method of the new
parameter, which has the type of the AroundClosure interface.

i. Reconnect the control and object flows

4. Create a static method getAspectOf(Object o) in the aspect class. This method is
later used to get the aspect class instance. Since the approach supports two instantiation
strategies, two mechanisms for creating an instance of the aspect class have to be
supported (see next steps).

5. If aspect.instantiationKind == singleton

a. Create a static field in the aspect class to store the single aspect class instance.

b. Create the behaviour for creation of the singleton instance (see Singleton design
pattern)

6. If aspect.instantiationKind == perThis

a. Create a static field, storing a hash table to store associations between an object
and the corresponding aspect class instance

b. Create the behaviour for creating and managing aspect class instances

Rule: BehaviorAdaptationCallJPSBefore

Description:

This rule inserts additional behaviour before a captured operation call.

FromElement: callJPS: JPSProfile::CallJPShadow

Precondition: callPS.binding [0].bindingKind == before (The approach only
supports weaving of one bound advice per joinpoint shadow, see section 4.3.4)

Actions:

1. Create getAsp: UML::CallOperationAction to call the static method
getAspectOf(Object o) of the aspect class, which contains the bound advice

2. Create callAdvice: UML::CallOperationAction to call the advice method on
the corresponding aspect class instance

3. Connect the output of getAsp with the target input pin of callAdvice

4. Reconnect the control flow to achieve the following calling order: getAsp,
callAdvice, callJPS

5. Assign context information

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 53 -

a. Analyze corresponding pointcut for context exposure pointcut expressions. If a
context exposure pointcut expression references a parameter from the pointcut
signature, assign the corresponding value to the corresponding parameter in the
advice call (note, pointcuts and advices have to have the same signature, otherwise
they cannot be bound)

i. ThisPCE

1. Assign the self object value getting by the ReadSelfAction to the
corresponding advice call parameter by creating a new object flow
between the output pin of the ReadSelfAction and the parameter.

ii. TargetPCE

1. Assign the object, on which the captured joinpoint shadow is called
to the corresponding advice call parameter by creating a new object
flow between the relevant object and the parameter.

iii. ArgsPCE

1. Assign the parameters which are passed to the captured call to the
corresponding parameters of the call to the advice. Use object flow
between the value sources and the targets (corresponding input pins
of the advice call).

Rule: BehaviorAdaptationCallJPSAround

Description:

This rule inserts additional behaviour around a captured operation call.

FromElement: callJPS: JPSProfile::CallJPShadow

Precondition: callPS.binding [0].bindingKind == around (The approach only
supports weaving of one bound advice per joinpoint shadow, see section 4.3.4)

Actions:

1. Extract captured CallOperationAction to a separate public Operation extrOp:
uml::Operation (respective to the assigned activity). This step is necessary to allow
the advice to call also private operations.

a. Create new public Operation

b. Set an unique name

c. Copy the captured CallOperationAction to the created Operation

d. Reconnect required object and control flows.

2. Create an individual Closure class. A concrete instance of this class will later be passed to
the advice, where the interface of the Closure object can be used to call the captured
joinpoint shadow using a standard interface (runProceed method in interface
AroundClosure)

a. Create a new Closure class, which implements the AroundClosure interface, which
was created in the context of the bound advice.

b. The newly created class contains:

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 54 -

i. Field target . The type is the declaring type of extrOp. This field is set
by the constructor

ii. Operation runProceed() which is an implementation of the operation
runProceed() declared in the AroundClosure interface (same signature
and return type) .

1. The operation contains a call to extrOp on target. All
parameters are connected using the object flow.

2. If the runProceed() Operation returns a value, the value of
target.extrOp is returned.

3. Create an Action createClosure: uml::CreateObjectAction to get an
instance of the Closure class.

4. Connect the self object (e.g. available by the ReadSelfAction) to the input pin of
createClosure .

5. Create getAsp: UML::CallOperationAction to call the static method
getAspectOf(Object o) of the aspect class, which contains the bound advice

6. Create callAdvice: UML::CallOperationAction to call the advice method on
the corresponding aspect class instance

7. Replace callJPS with callAdvice and reconnect existing control flow.

8. Connect the output of getAsp with the target input pin of callAdvice

9. Reconnect the control flow to achieve the following calling order: createClosure ,
getAsp, callAdvice

10. Assign context information

a. Analyze corresponding pointcut for context exposure expressions. If a context
exposure pointcut expression references a parameter from the pointcut signature,
assign the corresponding value to the corresponding parameter in the advice call
(note, pointcuts and advices have to have the same signature. Otherwise they
cannot be bound)

i. ThisPCE

1. Assign the self object value with the help of the ReadSelfAction to
the corresponding advice call parameter by creating a new object
flow between the output pin of the ReadSelfAction and the
parameter.

ii. TargetPCE

1. Assign the object, on which the captured joinpoint shadow is called
to the corresponding advice call parameter by creating a new object
flow between the relevant object and the parameter.

iii. ArgsPCE

1. Assign the parameters which are passed to the captured call to the
corresponding parameters of the call to the advice. Use object flow
between the value sources and the targets (corresponding input pins
of the advice call)

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 55 -

11. Connect the output pin of createClosure to the corresponding parameter of
callAdvice using an object flow.

4.3.3 Additional AO composition features
This section describes additional features of the aspect composition which are relevant or
could be useful in the VIDE context.

4.3.3.1 Handling of OCL expressions
In the VIDE PIM language, OCL expressions (e.g. FeatureCallExp) are used to evaluate/read
features instead of actions from UML Action Semantics (e.g. ReadStructuralFeatureAction).

Supported OCL expressions are described in the VIDE metamodel and are stored in the model
repository as metamodel instances and not as one generic instance with a textual description
of the OCL expression. The aspect composition phase “Pointcut Resolving” is not affected by
the usage of OCL expressions, because it is possible to search for metamodel instances with a
specific type. The corresponding transformations can be adapted easily.

As already mentioned, the “Aspect Composition” requires explicit control flow for the
behaviour adaptation. If a single OCL expression is identified and marked as joinpoint
shadow, the aspect composition can take place in the described way. No conceptual changes
are required.

However, the usage of nested OCL expressions (e.g. see figure 27) causes problems, because
no explicit control flow is modelled within the OCL expression. Only the modelled control
flow of the root expression is accessible by the transformations.

Figure 27: Example of a nested OCL expression

If a nested OCL expression was identified as a joinpoint shadow (e.g. the FeatureCallExp in
Figure 27), it is not possible to directly adapt the behaviour, represented by the identified
joinpoint shadow.

Following solutions were researched:

• Additional model-to-model transformations could translate the OCL expressions into
UML action semantics using explicit control flow and process the aspect composition
in the described way. This solution is not applicable, because the metamodel

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 56 -

description of the VIDE/UML language provides a subset of the UML metamodel,
where UML actions are not intended to be used for reading and evaluating properties.

• If we want to weave the additional behaviour directly into the nested OCL
expressions, there is a possibility to call user defined operations from OCL
expressions. Before the execution of the OCL expressions by a special engine, the
expressions can be rewritten for instance to optimize performance, which can cause
inconsistency in the woven behaviour.

• The pragmatic approach for solving this problem is to process the aspect weaving in
the common way on the root OCL expression, which provides access to the control
flow. This strategy could cause the effect of “imprecise” weaving, but the opportunity
scenario has shown that this solution is the most suitable for modelling and composing
all analyzed crosscutting concerns.

4.3.3.2 Handling of dynamic join point properties during static weaving
The described approach processes static pointcut resolving only. After the pointcut resolving,
all joinpoint shadows are determined.

Especially the static type checking during the resolving of the context exposure pointcut
expressions can cause the effect, that some special elements are wrongly not determined as
joinpoint shadows (e.g. because of polymorphism).

During a static analysis the dynamic properties (runtime properties) are not present or had to
be statically approximated using an expensive analysis. One possible solution is to statically
determine only potential joinpoint shadows and to weave dynamic conditions before the
advice execution. Whether a conditional advice will be executed, is decided at runtime.

4.3.3.3 Proceed action without a complete signature
In some cases there is no need to modify values, which are passed to the proceed action in an
advice. The possibility for calling the proceed action without the complete signature can
reduce modelling effort and could provide a more general and flexible advice model. The
described approach can be adapted for providing this feature by buffering the parameters in
the Closure object. In this case, the parameters have not to be passed to the advice and to the
proceed call. Rather they are passed “automatically” to the proceed call.

4.3.3.4 Joinpoint Reflection
Several advices, which model crosscutting concerns such as debugging and profiling, require
the facility, to get information about the joinpoint (operation name, field name, etc.), which
causes the advice call. The AspectJ approach [21] provides a generic class JoinPoint, which
contains several attributes for representing the joinpoint´s context information. During the
aspect weaving, the advice signature is extended by adding a parameter of type JoinPoint.
Before the advice is called, a concrete instance of the class JoinPoint is created and filled with
the context information. This instance is passed to the advice, which can access the context
information.

This mechanism can also be integrated in the developed aspect composition approach.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 57 -

4.3.4 Open issues
The following areas in the domain of aspect orientation are not considered in the described
approach:

• Advice precedence: The described AO Profile is designed to support more than one
advice to be bound to a joinpoint, but there is no possibility to define, in which order
advices should be considered during the aspect composition. The approach of Fuentes
and Sanchez [15] uses a kind of prioritisation of advices by adding an integer value to
each advice. Furthermore there are a lot of approaches described (e.g. [16]), which
show the complexity of the problem.

• Structural introduction: Structural introductions are not considered in the described
approach, which allow focusing on the behaviour adaptation on PIM level.

• Validation of base and aspect models: A suitable validation of the input models can
support the modeller and detect errors already during the modelling phase. A
validation requires a complex analysis, which goes beyond the scope of this
deliverable.

4.4 VIDE Syntax extension for aspect-oriented constructs
If we want to enable the editors, which are intended to be developed in the VIDE project, to
produce VIDE PIM language with the aspect oriented extension, it is also required to support
the definition of aspect oriented constructs.

Two kinds of editors are planed to be developed. The textual editor allows to use the textual
syntax of the VIDE language, whereas the visual editor uses a visual syntax, to describe VIDE
programs.

Figure 28: Relevant elements to be covered by a syntax extension

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 58 -

Not all aspect-oriented constructs, which are defined in the AO Profiles have to be supported
explicitly in the VIDE syntaxes. With respect to the relevant part of the AO Profile (see
Figure 28), the following constructs were identified to be supported by the concrete VIDE
syntaxes:

• Aspects, to provide a new kind of module for encapsulating crosscutting concerns

• Advices, to encapsulate behaviour, which has to be inserted at the identified joinpoints

• Pointcuts, to declare elements on the modelled behaviour to be adapted.

• Bindings, to associate pointcuts with advices to be bound.

The behaviour in an advice can be expressed by using the already defined constructs for
describing behaviour in the textual and visual syntax of the VIDE language.

The following sections give an overview of the proposals for the extensions of textual and
visual syntaxes. This proposals are example-based and do not provide formal extensions such
as an EBNF extension of the VIDE language.

4.4.1 Textual Syntax
The proposal, described in this section, allows describing aspects as superior modules, which
can contains advices, pointcuts, advice operations but also common operations and fields, etc.
Therefore, an aspect should be an extension of a class. An overview of the proposed syntax is
depicted in Listing 1.

A pointcut is similar to a method and contains also a signature. However in the pointcut´s
body only declarative parts can be used, no semicolon is required after the pointcut definition.
To specify the pointcut definition, pointcut expressions can be defined within a pointcut body.
The defined pointcut expressions are combined with an implicit OR-relation (","). An
example is shown in Listing 2.

aspect Foo

{

 pointcut foo(int i, String s)

 {

 call (* bar(int i, String s)

 }

 advice fixFoo(int i, String s): String : around foo(i, s)

 {

 //... do something

 return proceed();

 }

}

Listing 1: Syntax overview

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 59 -

Listing 2: Combined pointcut expressions

The combination of the advice signature and pointcut signature during the binding allows for
passing context information determined during the pointcut resolving into the advice. A
Pointcut is bound to an advice using one of the following binding specifiers: around, before,
after (See Listing 3). Listing 3 also depicts the usage of the Proceed keyword, which allows
calling the captured joinpoint from an advice.

Listing 3: Advice binding

The proposed syntax does of course not support all features, which are able to be expressed in
the model repository using the AO Profile extension. The main goal of a concrete textual
syntax should aim at the specific requirements in the used domain.

4.4.2 Visual Syntax
The proposal for the visual syntax, which is presented in this section, is based on the work of
Han, Kniesel and Cremers [17].

Aspects are visualized similar to classes. Additionally aspects contain advices, pointcuts and
pointcut expressions (see Figure 29).

Figure 29: Proposal for visual syntax of aspect oriented constructs

pointcut foo(int i, String s)

{

 call /* .. */, execution /* .. */ , get /* .. */, set /* .. */

}

advice fixFoo(int i, String s): String : around foo(i, s)

{

 return proceed();

}

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 60 -

The binding is realized by an association between the pointcut and the corresponding advice.
The pointcut is associated to the declaring pointcut expressions, which contains a textual
description. This variant increases the usability of the syntax, because to model all pointcut
expressions by using detailed instances of required classes would cause more effort.

The mapping between the textual and visual syntaxes is responsible for transforming the
textual pointcut definition into the corresponding metamodel instances of the VIDE PIM
language.

4.4.3 Open issues
To allow a flexible description of pointcuts a pointcut language is required. For this purpose a
new domain-specific language could be designed. To process and transform the pointcut
language constructs a parser is required. Therefore it could be more efficient to choose one of
the existing approaches (e.g. the pointcut language of AspectJ).

As already described, both proposals are designed for using pointcut declarations in a textual
syntax, so the process for parsing and transforming the pointcut definition can be reused.

Furthermore, to transform the visual and textual syntax into the VIDE model repository,
several mapping transformations are required.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 61 -

5 Summary and Conclusions

Both Aspect-Oriented Software Development (AOSD) and Model Driven Development
(MDD) are approaches to reduce complexity in software development. These approaches use
different but complementary ideas to reduce complexity. AOSD adds additional modules and
a weaving mechanism to extract tangled and scattered functionality, so called crosscutting
concerns. MDD reduces complexity by replacing the writing of source code by using abstract
models instead; executable code is generated from the models. Crosscutting concerns appear
already in the modelling phases of MDD while aspect-oriented programs can have a lot of
source code. So it seems natural that a combination of the two approaches can have the
advantages of both and thus can help overcome complexity in software development. Task 3.3
was aimed at evaluating the developed aspect-oriented composition approach and at providing
a specification of AOC to be supported by the VIDE project.

In Section 2, we reviewed and evaluated our approach, which was developed in the first
period of WP3. Some deficiencies were identified. Due to the flexibility of the selected AO
Modelling approach, the required extension to the existing AO Profiles has been done. With
the extended AO Profile, a suitable modelling of identified crosscutting concerns has been
made possible.

To show, where our approach is settled and compare it to other approaches, different
variations of aspect-oriented composition were discussed at several levels. This discussion
shows the flexibility of our approach (e.g. supporting different instantiation strategies and the
extensibility of AO Profiles).

In the last part of section 2, the chosen evaluation criteria for the developed AO modelling
approach are presented and associated with suitable metrics. The metrics help, to show the
impact of the usage of our AO modelling approach on the selected evaluation criteria.

Section 3 presented a review of the business scenario, which was already presented in D3.1.
Furthermore, the models of the crosscutting concerns, required for the empirical evaluation,
were described. This description contains the object-oriented models as well as the aspect-
oriented models of the same crosscutting concerns. This allowed us to apply the selected
metrics on both variants and compare them with respect to understandability and
maintainability. The results have shown that the maintainability of the crosscutting concern
functionality was improved by using our AO modelling approach. The complexity of
methods, where the crosscutting concern was extracted from, was reduced, which leads to an
improved understandability. On the other hand, the aspect-oriented modelling approach has
introduced an additional implicit coupling between advices and joinpoints. This effect
decreases the understandability. However, the usage of suitable tool support (e.g. static
analysis for pointcut resolving during the modelling) can minimize this effect.

In Section 4 the specification of the AO Profiles and the required core model transformations
for aspect composition were presented. For a complete realisation, additional transformations,
which were not explicitly specified, are required. They can be derived from the existing
transformations. Furthermore, a textual description of additional useful features, which can be
integrated as an additional step/rule in certain transformations, was given. The extensions for
the textual and visual syntax were not specified in a formal way. Proposals with concrete

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 62 -

examples were presented, to show, which constructs are necessary and should be considered
during the next activities of the VIDE projects.

All open issues, which were outlined in D3.1, were considered during the second period of the
Work package 3. The requirements for providing suitable aspect models of the crosscutting
concern Consistency Check were analyzed (not described explicitly in D3.2) and accordingly
to these requirements, the AO Profiles were extended to suit the needs.

Also the facility for modelling the same behaviour in different ways (control flow based,
object flow based) were researched. As a result, an intermediate transformation was added to
the aspect composition. This transformation extracts the joinpoint shadows to a separate
activity, where the explicit control flow can be accessed by the following composition
transformations.

Section 4 provided proposals for the syntax extensions of the textual and visual VIDE syntax.
These proposals are not sufficient for the realisation within the VIDE prototypes. Only a short
overview of required constructs and possible representations was given. Formal extensions
e.g. EBNF of the textual syntax extension should be defined before integrating the syntax
extension in the VIDE prototype (see section 5.2).

Moreover, the impact of the usage of OCL expressions for evaluating/reading features was
analyzed and possible solutions were discussed in section 4.

5.1 Demonstrator

Parts of the developed concepts were realized as a Demonstrator, to show their feasibility and
suitability. This demonstrator is neither a prototype nor a tool to be used. The demonstrator
consists of the following software artefacts, which are only executable in an eclipse-based
environment (see README in Demonstrator.zip):

• AO Profiles
• ATL Transformations for basic concepts of Pointcut Resolving and Aspect

Composition at PIM level
• Example models

The Demonstrator is not exhaustive.

The realisation showed the high complexity of the required transformations for Pointcut
Resolving and Aspect Composition. Furthermore the unstable version of the ATL Eclipse
plug-in caused some problems. It was for instance not easy to decide, if some of the errors,
which have occurred during the development, were caused by our ATL transformations or by
a bug in the ATL implementation.

5.2 Outlook
The described concepts for pointcut matching and aspect composition can be basically
integrated in the PIM visual editor for VIDE that will be developed in Work package 9. The
transformations presented in this deliverable can be used and extended for that purpose. For
the integration of aspect-oriented constructs in the textual and visual syntax, our proposal

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 63 -

should be used to define a formal specification, e.g. by extending the EBNF definition of the
VIDE textual syntax. Also the specification of the mapping between the additional syntactical
constructs should be defined. Such a mapping specification was not in the scope of this
deliverable.

The Demonstrator developed in Workpackage 3 is not part of Work package 9, which deals
with the development of the VIDE prototype. Nevertheless, if similar technology to the one
used in the demonstrator will be chosen for the prototype, suitable artefacts of our
demonstrator should be reused and/or modified.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 64 -

Abbreviations

CIM Computation Independent Model

PIM Platform Independent Model

PSM Platform Specific Model

MDA Model Driven Architecture

JPS Join Point Shadow

AO Aspect Orientation

AOP Aspect-Oriented Programming

AOM Aspect-Oriented Modelling

AOC Aspect-Oriented Composition

ATL ATLAS Transformation Language

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 65 -

References

1. McCabe & Associates, McCabe Object-Oriented Tool User’s Instructions, 1994.
2. Java Method Cyclomatic Complexity, http://www.leepoint.net/notes-

java/principles_and_practices/complexity/complexity-java-method.html
3. Rosenberg and Hyatt, Software Quality Metrics for Object-Oriented Environments, April

1997 http://satc.gsfc.nasa.gov/support/CROSS_APR97/oocross.PDF
4. Sant’ Anna et al., On the Reuse and Maintenance of Aspect-Oriented Software: An

Assessment Framework. Proc. of Brazilian Symposium on Software Engineering
(SBES'03), Manaus, Brazil, Oct 2003, 19--34.

5. M. L. Lee, Change Impact Analysis of Object-Oriented Software, PhD Thesis, George
Mason University, Virginia, USA, 2000

6. Hippner, H. and Wilde, K. D. (2002). CRM—Ein Überblick, in S. Helmke, M. Uebel and
W. Dangelmaier (eds), Effektives Customer Relationship Management: Instrumente—
Einführungskonzepte—Organisation, second edition, Gabler, Wiesbaden, pp. 3–37.

7. Buck-Emden R., Zencke, P., mySAP CRM: The Official Guidebook to SAP CRM Release
4.0, SAP Press, May 2004

8. SAP AG, SAP CRM, http://www.sap.com/solutions/business-suite/crm/index.epx
9. SAP AG, SAP Netweaver Developer Studio,

http://help.sap.com/saphelp_nw04/helpdata/en/cb/f4bc3d42f46c33e10000000a11405a/fra
meset.htm

10. TopCased, http://www.topcased.org/
11. SAP AG, Partner Determination Procedures, SAP Library

http://help.sap.com/saphelp_crm40/helpdata/en/3c/92ecee484a11d5980800a0c9306667/co
ntent.htm

12. Khanna, A. How to set up partner determination in mySAP CRM, CRM Expert
http://www.crmexpertonline.com/archive/Volume_03_(2007)/Issue_01_(January_and_Fe
bruary)/v3i1a3.cfm

13. Aspectj homepage, October 2006. http://www.eclipse.org/aspectj/.
14. AspectJ Development Tools, http://www.eclipse.org/ajdt/
15. Lidia Fuentes and Pablo Sánchez. "Designing and Weaving Aspect-Oriented Executable

UML models". Journal of Object Technology - Special Issue on Aspect-Oriented
Modelling.

16. Jing Zhang, Thomas Cottenier, Aswin van den Berg, and Jeff Gray: “Aspect Composition
in the Motorola Aspect-Oriented Modelling Weaver”, in Journal of Object Technology,
vol. 6, no. 7,Special Issue. Aspect-Oriented Modelling, August 2007, pp 89-108
http://www.jot.fm/issues/issue_2007_08/article4.

17. Yan Han, Günter Kniesel, Armin Cremers: Towards Visual AspectJ by a Meta Model and
Modelling Notation, Proceedings of the 6th International Workshop on Aspect-Oriented
Modelling, Chicago, USA, March 2005

18. ATLAS Transformation Language (ATL), http://www.eclipse.org/m2m/atl/
19. Objecteering Software homepage, August 2007, http://www.objecteering.com/
20. C. Bockisch, M. Haupt, M. Mezini, and R. Mitschke. Envelope-Based Weaving for Faster

Aspect Compilers. In Net.ObjectDays, 2005.
21. E. Hilsdale, J. Hugunin, Advice Weaving in AspectJ, Mar 2004, AOSD04
22. VIDE Consortium, Deliverable number D.1.1: Standards, Technological and Research-

Base for the VIDE Project, Project Evaluation Criteria and User Requirements
Definition, 2007

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.2
Version 1.0 Date: 10 October 2007

© Copyright by VIDE Consortium

- 66 -

Disclaimer of SAP AG3

Copyright 2007 SAP AG, All Rights Reserved.

No part of this publication may be reproduced or tr ansmitted in any form or
for any purpose without the express permission of S AP AG.

The information in this document is proprietary to SAP AG. No part of this
document may be reproduced, copied, or transmitted in any form or for any
purpose without the express prior written permissio n of SAP AG.

This document is a preliminary version and not subj ect to your license
agreement or any other agreement with SAP. This doc ument contains only
intended strategies, developments, and functionalit ies of the SAP® product
and is not intended to be binding upon SAP to any p articular course of
business, product strategy, and/or development. Ple ase note that this
document is subject to change and may be changed by SAP at any time without
notice.

SAP assumes no responsibility for errors or omissio ns in this document.

SAP does not warrant the accuracy or completeness o f the information, text,
graphics, links, or other items contained within th is material. This
document is provided without a warranty of any kind , either express or
implied, including but not limited to the implied w arranties of
merchantability, fitness for a particular purpose, or non-infringement.

SAP shall have no liability for damages of any kind including without
limitation direct, special, indirect, or consequent ial damages that may
result from the use of these materials. This limita tion shall not apply in
cases of intent or gross negligence.

The statutory liability for personal injury and def ective products is not
affected. SAP has no control over the information t hat you may access
through the use of hot links contained in these mat erials and does not
endorse your use of third-party Web pages nor provi de any warranty
whatsoever relating to third-party Web pages.

3 Applies to Section 3

