I IJ\V < v l.
-~
Tnformation Society u E
Technologies

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

FP6-1 ST-2005-033606

Vlsualize all moDel drivEn programming
VIDE

WP 3 Deliverable number D.3.2

Specification of the AOC to be
Supported by VIDE

(Report + Demonstrator)

Project name: Visualize al model driven programming
Start date of theproject: 01 July 200
Duration of theproject: 30 month
Project coordinator: Polish- Japanese Institute bfformation Technoloc
Work package Leader: FraunhofelFIRST
Duedate of deliverable: 31 August 2007
Actual submission date 10 Octobei2007

Status developed draft /final

Project supported by the European Commission within Sixth Framework Programme
© Copyright by VIDE Consortiul

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Document type: Report + Demonstrator
Document acronym: D3.2
Editor(s) Anis Charfi, Jaroslav Svacina
Reviewer(s) Joachim Hansel, Piotr Habela
Accepting Kazimierz Subieta

Location www.vide-ist.eu

Version 1.0

Dissemination level PU/PP/RE/CO

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Abstract

The purpose of work package 3 is to investigatatefiies for the integration of aspgct

oriented composition techniques in model driverettlgment and make recommendationp to
the design and implementation work packages omib&t suitable approach for supportipg
aspect-oriented composition in VIDE. In Deliveraldel, the state of the art in aspeft-
oriented modelling was introduced as well as exapif crosscutting concerns in a typigal
SAP business application. Moreover, a demonstratoaspect-oriented composition at the
PIM level was presented. In the current deliverakle will evaluate the selected modelling
and composition techniques and present a spedtitaif aspect-oriented composition [in
VIDE including the corresponding profiles, textuahd visual syntax, and the model
transformations. The main elements of this spetita will be illustrated by means of tyo
aspects: consistency checks and partner deternoimati

The VIDE consortium:

Polish-Japanese | nstitute of I nformation Technology Coordinator Poland
(PJIIT)
Rodan Systems S.A. Partner Poland
Institute for Information Systems at the German d’esh Partner Germany
Center for Atrtificial Intelligence
Fraunhofer Partner Germany
Bournemouth University Partner United
Kingdom
SOFTEAM Partner France
TNM Software GmbH Partner Germany
SAP AG Partner Germany
ALTEC Partner Greece
-3-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Executive Summary

The VIDE project aims at developirig fully visual toolset to be used both by IT-spédists
and individuals with little or no IT-experience,cbuas specific domain experts, users and
testers.®. Therefore VIDE investigates'visual user interfaces, executable model
programming, action- and query-language-semant®®P and quality assurance on the
platform-independent modelling level, service aeenarchitecture (especially Web services
integration) and business process modelling/IDE is aimed to be embedded in the Model
Driven Architecture of the OMG, thus supporting rathitag both on a domain-oriented
computation-independent layer (CIM), a platformapdndent layer (PIM), and generating
models on a platform-specific layer (PSM). VIDE psimarily targeting the domain of
business application software.

The goal of Work Package 3 in the VIDE projectasirivestigate integration strategies for
adding advanced aspect-oriented software compositithe platform-independent modelling
phase of MDD processes. The resulting knowledgewallintegrating the aspect-oriented
modelling and composition techniques into the VIRRguage and architecture. The benefit
for the VIDE project will be shown by evaluatingetdeveloped concepts and by assessing the
used technology.

In this work package we have researched aspecttatien on the PIM level using Customer
Relationship Management business scenarios thgiravéded by SAP. The lack of support
in object-oriented modelling techniques for modualag crosscutting concerns in the
provided scenarios raised the need for aspectiedetechniques while modelling business
processes and business applications.

Our research included the evaluation of differeqasteng approaches in the domain of aspect
oriented programming by applying them to the ret¢ydases of Model Driven Development
as well as the investigation of existing approachdke area of aspect-oriented modelling.

Based on the research results a suitable conceptddelling aspect-oriented constructs, such
as aspect, advice, and pointcut was developed.ngare a straightforward integration of
these constructs into the VIDE metamodel we havectssl the UML Profile extension
mechanism.

To allow the VIDE model compiler to deal with thepact-oriented modelling concepts that
we have developed, we present an aspect compositiategy, which is based on model-to-
model transformations. The feasibility of the dexgd concepts and strategies was shown by
a proof-of-concept prototype, which consists of URtofiles for aspect modelling and two
transformations respectively for join point matahand aspect weaving at the model level.

Deliverable 3.1 presented the state of the arsjpeet oriented composition at the model level
and provided an analysis of the chances and risksthfe investigated modelling and
composition techniques. It also aimed at providihg required knowledge for integrating
aspect orientation into the context of VIDE.

Deliverable 3.2 evaluates the proposed approachgares a specification of the aspect
oriented composition to be supported by VIDE.

! From the VIDE project summary in the Technical Arn

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Table of Contents

F Y 0153 1 = Lo PRSP -3-
EXECULIVE SUMIMATY .oiiiiiiiiiiiiiiieiie e e e e e si sttt e e e e e s sttt e e e e e e s s ssttaaeeeaeeasssssseaaeeeaeessaasnsteaeeeaeeeaannnsteneaaaenns -4 -
TADIE OF CONEENTS oot e e sttt e e s ettt e e e snbe e e e e anbb e e e e annbeeeesnneeeeas -5-
1 INtroduction ANd OVEIVIEWeeiiiiiiiiie ettt ettt et e ettt e e e sttt e e e et e e e st e e e s antbeeesaneees -7-
R O o o111 o To =PRI -8-
R = 1] PP OTPPPPPPPR -8-
1.2.1 Task 3.1: Practical evaluation of AO modelling and composition in MDA................. -9-
1.2.2 Task 3.2: Provision of a knowledge base for AO software composition in MDA

O] (01012 PP PP PP PPPPPPPUPPPPPPIRt -9-

1.2.3 Task 3.3: The specification of the Aspect-Oriented composition mechanisms to be
L1 0] oo T 1=To I ¢)Y | PRSP -9-
1.3 VIDE 1anguage FEQUITEMENTS.uuiiiieaeiiiiiiiiieee e e e e ettt e e e e e e e e aaatbeeeeeaeeaaaannbeeeeaeaeaeaannnneeeaaaaeas -9-
1.3.1 Requirements specified in the course of work package 1 work...........cccccceeevvinnnnnnn. -9-
1.3.2 Further elaboration of the requirements in the course of work package 3 -15-
1.4 DOCUMENT OULINEottt e e e e e e ettt e e e e e e e e s santbe e e e e e e e s aannbreeeaaaaeas -15-
2 Evaluation of Selected Composition and Modelling TeChNIQUESccccvevviiieiiiiieieniiieenn, -16 -
2% N VI T=AVIV o 1 g L= A o] o] o T= Lo o TSP -16 -
2.2 DiSCUSSION Of VANALIONScoiiiiiiiiiiiiii et st e e e -17 -
2.2.1 Composition Layer VariatiONS...........coiiuuiiieiiaaeaiiiiiie e e e e e reiieeee e e e e e e -17 -
2.2.2 AO cOmMPOSItIoN VArAtiONSccoiiiiiiiiiiiiiiiee et a e e e reee e e e e e e e nnes -18-
2.2.3 InStantiation VariationS.........cc.ueueeiiea et e e e e e e e e e e e -19-
PG I V= 11 =i o o PSR SR -19-
2.3.1 UNderstandabilitycceoiiiiiiiiie e e e -20 -
2.3.2 MaiNtaiNabilityc.vvviiiiee e e e -21-
3 BUSINESS SCENAIIO .oieiiieiiiieit ettt e sttt e e sttt e e snbe e e e snbe e e e e snbbe e e s snnbeeeeanneeeeas -22-
3.1 Review of the OpPOrtUNIty SCENAIIO ...cccieiiiiiiiiiiiei et e e -22 -
3.1.1 Opportunity ManagemENTtcccuuuiiieeee e icciieir e e e e e s s s ieee e e e e e e st e e e e e e s s nnnraeeeaaeees -23-
3.2 Modelling Crosscutting Concerns in the Opportunity SCeNario.........ccccceevvecvvveeeeeeee s, -23-
3.2.1 CONSISIENCY CRECKS ...ttt e e e e e e e s e eeaa e as -24 -
3.2.2 Partner determiNationoooiieeieiiiii e e e e a e -30 -
T N V= 111 =i o o PSSR -38-
3.3. 1 UNderstandabilityoooiiooii e -38-
3.3.2 MaintaiNaDIlityooiiie e e e a e -39 -
G U 0 0 0= -39-
4 Specification of Aspect Oriented Composition in VIDE........cccccceeiiiiiiiiiiicee i -40 -
R © Y= V1 TR PUPUPRRRPR -40 -
4.2 AO UML PIOFIIES ...eeeeeeeeeeee ettt ettt e e e e e e et e e e e e e e e anbbneeeeaeeeaannes -41 -
4.2.1 Aspect-Oriented Modelling Profileccooociiiiiieei e -41 -
4.2.2 Join Point Shadowing Profileueeiiieiiiie e -44 -
4.3 Specification of Model Transformations for AO COmMPOSItioN...........cccvvveveeeiiiiciiiieeee e -45 -
4.3.1 POINICUL RESOIVING .ottt ettt e e e e e e s nnbaeeaaa e as -47 -
4.3.2 ASPECE COMPOSITIONeieiieiiie ettt ettt e e e e e st e e e e e e e e nnbbeeaaaaaeas -49 -
4.3.3 Additional AO cOMpPOSItION fEAIUMES.......cci it -55-
4,34 OPEN ISSUES ...eteiiiieeeee ittt e e e e ettt et e e e e e e o ha bt e et e e e e e s s abbeeeeeea e e e e aanbbebeaaaeesaannbbeeaaaaaeas -57 -
4.4 VIDE Syntax extension for aspect-oriented CONSIIUCESuevvveeiiiiiiiiiiieee e e e e -57 -
o R =Y (VT | IS Y/] = 0 SR -58 -
A A 1S U T | IR o | = 0 PR -59 -
B © o 1= I [T U= PR - 60 -
5 Summary and CONCIUSIONS ...uuuiiiiiiiiiiiiiiie i e e e s s et e e e e e s e s e e e e e e s snsnareeeaeeeesennrneeees -61 -
L0 R B 1= o o0 1S3 1 = 1o] -62 -
-5-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2

Version 1.0 Date: 10 October 2007

LT © 11 1 [0 1o | -62 -
PN o] o] A4 E= A Lo] 4 =TT - 64 -
LR LY LT =] A (o7 = -65-
DiISCIAIMET OF SAP AG ..oeeiiiiiieeeee ettt e e e e et e e e e e e e e e e ta e eeeee s e e bb e e e eeseeeeabaannes - 66 -

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

1 Introduction and Overview

The purpose of work package 3 is to research the&uowtion of Aspect-Oriented Software
Development (AOSD) and Model-Driven Software Deypehent (MDSD). In fact, model-
driven development can gain a lot from the moda&dion concepts that are introduced by
aspect-orientation especially when the applicatiehaviour is modelled. In that case, which
is targeted in VIDE, modelling the behaviour becenvery similar to programming in a
typical object-oriented programming language. Asult of this similarity, the benefits of
AOSD can be very likely brought to behavioural mbde at the PIM level.

More precisely, work package 3 aims at identifyargsscutting concerns in data-intensive
business applications and providing aspect-oriestatstructs in VIDE to support a better
modularization of these concerns. Such construdtspvovide several benefits such as an
easier understanding and maintenance of the apiphcanodels, more reuse of the behaviour
models, easier extensibility and customization, Etaddition, work package 3 investigates
appropriate ways to model and represent aspeattedeconstructs and to integrate them in
the VIDE language. Another major contribution ofsttwork package is to research the
composition of the aspect models with the base Viiitlels.

VIDE 1ol architecture design and implementation

Design of visual interface for YIDE emvironment

e VIDE GIM language
= VIDE
;ﬁ:g,:‘:i:- = Business process models Biiefiess seebis Business rules *hn
repositery D definitians system
Trarsfommratan inio [3]
wikrkliow procass gefinition = P s ol M ey
:' VIDE PIM language :
[VIDE programiming editor (inifial specification} | IOE
|
b - |
P . | .F: VIDE textual language | VIDE visual language el fu\'-llragﬂpﬁ'rg
; EMP-hased ianguag | UML Acfions, UML Activities and OCL P g emi
4 mndal ram@lmry rmadpif | |
re | Static siructure models (use UML Classes and Companents notions) |
T ———————— pe— ==========
IModed axacution QA module VIDE
referenca
library
i possibly complets Exemplary model compilers]
code genarafion
. v
................. w : ‘\/
et oA, | dava ‘m“ data source | ODRA code, Web

i interfaces, Web Service
inlerfaces i

Figure0: WP3in theVI DE context

process definitians Sarvice interfaces

The aim of work package 3 is to define aspect-tegrconstructs in VIDE including the
respective abstract and concrete syntax extensagether with the mapping to a model
repository module. The output of this work packegthe definition of the aspect-orientation
module in the VIDE architecture, which is highligttin Figure 0.

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

The current document is the second and last delierof work package 3. In D3.1, we
presented the state of the art in aspect-orientétivare development and model-driven
development with particular focus on aspect-oriénteodelling. In addition, we presented a
few examples of crosscutting concerns in a typiBAIP business application and also
explained the benefits that are expected from usasgects in modelling business
applications. The main part of that deliverable \madetailed description of a proposal for
aspect-oriented modelling at the PIM level and ghresentation of a proof-of-concept
demonstrator. Both parts serve as foundation fa& $pecification of aspect-oriented
composition in VIDE, which will be presented in tti@rent document.

1.1 Challenges

We identified three main challenges when integgataspect-oriented constructs in the
executable modelling language VIDE.

First, one has to choose the right application ages, which are valuable for VIDE partners
and users. As VIDE targets especially data-intendiusiness applications, we used the
opportunity management part of a SAP CRM softwardwsiness scenario. Although there
are several interesting development aspects sutgsiiisg and monitoring, we focused rather
on non-intuitive production aspects such as comsist checks and partner determination
because most development aspects were alreadysaddri& other research works.

The second challenge is the integration of aspeeti®d concepts into an executable
modelling language at the PIM level. This is esakgcichallenging as the VIDE meta model
unifies UML actions and OCL expressions. Consedyeatthorough investigation of such
integration is required. One has to explore waydéfine, model and represent aspect-
oriented constructs, such as advice and pointdw.ifitegration of these constructs has to be
done in a non-invasive way using UML profiles. laddion, one has to define a powerful
pointcut and advice language that can cope withrélgeirements of business applications
w.r.t. crosscutting concerns and which is alsoadlpted to the base language.

Third, an appropriate composition mechanism is irequfor composing aspects with the
VIDE models. For that purpose, we developed moalehtdel transformations to perform
pointcut matching and advice weaving. The prootaficept implementation of the
composition mechanism does not only show the fdagilbut also allows us to detect
potential technological problems.

1.2 Tasks

These challenges correspond to the following taskask 3.1 was mostly addressed in D3.1
but it is also covered in the current deliverallbjch contains an evaluation of the proposed
aspect-oriented modelling approach. Task 3.2 wasgbdeliverable 3.1 and Task 3.3 is the
main focus of the current deliverable.

% From the VIDE WP3 description of work in the Teidah Annex

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

1.2.1 Task 3.1: Practical evaluation of AO modelling and composition in MDA

A demonstrator (for the sole purpose of the evauoateport) utilizing techniques selected in
task 1.3 will be developed, which will show thetability of the technique, investigate the
maturity of its AO modelling approach and spawndeid risks in composing AO models
particularly for data-intense business applicatidisthis end a metamodel for the assessment
of most suitable AO approaches will be developedarding AO model extensions, aspect
weaving level and complexity of MDA transformatiorf3everal parts of a given business
application will be analyzed in order to identifgroposition scenarios crucial for business
applications. The most important composition sdesawill be designed and executed using
the most reasonable composition technique. Theltsesull be assessed considering the
identified factors that are important to an MDA dmBpment process. A report will
summarize the experiment's results, discuss thectetl data and in particular recommend an
AO modelling technique and design for integrating® Acomposition into the VIDE
environment.

1.2.2 Task 3.2: Provision of a knowledge base for AO software composition in MDA
processes

By structuring the empirical data of Task 3.1 andtad body of knowledge for best practices
of AO modelling and composition techniques in MDévelopment processes with a focus on
the business application domain will be initializétdaddresses the maturity of existing AOP
approaches as well as integration issues. The a&@iuof this body will take place by
dissemination of research results and empiricallueti@n by the research community,
software companies and tool vendors.

1.2.3 Task 3.3: The specification of the Aspect-Oriented composition mechanismsto be
supported by VIDE

Based on the analysis performed and in cooperatitmVIDE language definition activities
of WP2, the aspect-oriented composition mechanigonsVIDE will be specified. The
specification will cover the respective semanticgation and visual user interface elements.

1.3 VIDE language requirements

This subsection revisits the requirements colleadeding the state of the art analysis
performed during the WP1 of the project (as desdriimn D1.1 document [22]) and indicates,
what of them are relevant to the scope of workhidf WP and how they have been addressed.
Moreover, this subsection describes the furthebaktion of those requirements that has
been performed in the course of WP3.

1.3.1 Requirements specified in the course of work package 1 work

We provide here a list of requirements with resgecthe VIDE project, collected in the
deliverable document D1.1 (see that document fordetailed description of these
requirements) and indicate those found relevantif®@WP3 scope. In the column “comment”
we provide the relation of each requirement toMH2E language, which is the subject of this
deliverable document. For clarification, we denateich topics are subject of other work
packages. We also sketch how WP3 will cover theveeit goals.

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Work Package 3 — Deliverable D3.2

e

ne

Version 1.0 Date: 10 October 2007
Requirement | Name Priority Comment
Number
REQ — Accessibility at the Should Outside WP3 scope. Addressed by D7.1 and the
NonFunc 1 CIM level CIM-to-PIM transition support functionality to be
described in D5.1.
REQ — CIM level collaboration| May Outside WP3 scope. Sutipg this requirement
NonFunc 2 will be considered in the course of D9.3
development.
REQ — On-line support for Should Outside WP3 scope. Addressed in D5.1 (iratha
NonFunc 3 CIM/PIM users of CIM-PIM navigation).
REQ — Clear and unambiguous Should Mainly addressed by D2.1 and D7.1. Thetiuota
NonFunc 4 notation — VIDE should for the AO-specific constructs has been defined in
have clear, section 4.4 of this document.
comprehensible and
unambiguous semantic
description suited to the
users of the VIDE tools
REQ — Model view saliency — | Should Mostly outside the scope of WP3: addrebyetie
NonFunc 5 VIDE models views CIM and PIM languages design (D7.1 and D2.1) as
must be user-oriented. well as by the GUI design developed in D5.1.
REQ — Appropriate Should Mostly outside the scope of WP3: addrebyetie
NonFunc 6 textual/graphical CIM and PIM languages design (D7.1 and D2.1) as
fidelity — VIDE must well as by the GUI design developed in D5.1.
provide appropriate
textual and graphical
modalities for its users.
REQ — Timely feedback and | Should Outside WP3 scope. Supporting the work dfipie
NonFunc 7 constraints users on a common model will be considered in tf
course of D8.1 and D9.1 development.
REQ — Runnable and testable | Should For the specific area of WP3 a Demonstifator
NonFunc 8 VIDE prototypes early experimentation and to provide a proof of
concept has been provided.
REQ — Scalability of proposed| Must In meeting these criteria the WP3 dependthen
NonFunc 9 solution — the proposed PIM language design specified in D2.1. None of tf
solution must at least AO constructs introduced seems to affect the
conceptually scale to conceptual scalability. Aspect composition is
enterprise level. implemented as a model-to-model transformation
i.e., just another transformation in the MDA
approach of VIDE.
REQ — User 1| Flexibility and Should This is assured by compliance of the PIMlev

interoperability of
VIDE language and
tools - The VIDE
language and tools
SHOULD have
flexibility and be
interoperable with som¢
existing tools.

D

language to the MDA standards and technologies
including in particular the OMG UML 2.1 and OM(
OCL 2.0 specification and a standard-compliant
framework MDT implementing their metamodels.
The way WP3 provides AO notions into it
(lightweight extension using a UML profile) and
limiting the AO constructs to the PIM level by the
use of théhorizontal compositiompproach (cf.
Section 3.2.1) does not interrupt that compliance

-10-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Work Package 3 — Deliverable D3.2

the

rd

rd

Version 1.0 Date: 10 October 2007
REQ — User 2| Reuse of UML Should Respected by the D2.1 and the WP3 constructs
Standard — end users dependent on it — as explained above. Moreover,
are very sensitive to WP 3 uses a UML profile to define the aspect-
using standards. A key oriented constructs.
aspect is that the VIDE
language reuses as
much as possible the
UML standard.
REQ — Semantics of VIDE Inte Should Met by making the introduced WP3 notions
Semantics 1 | rnal Communication — a compliant with the language definition and standal
precise description of metamodels defined in D2.1 and described using
the semantics is needef analogous means.
sufficient for internal
communication
purposes within
implementation
stakeholders in the
development of the
VIDE tool.
REQ - Simple VIDE semantics Should Met by making the introduced WP3 notions
Semantics 2 | _ after a first analysis it compliant with the language definition and standa
seems sufficient that thie metamodels defined in D2.1 and described using
semantics of VIDE ig analogous means.
described in natural
language
REQ — Lang | Usage of UML2 Should Addressed by D2.1 and the introduction ef\WP 3-
1 Behaviour (“Action specific notions in a way consistent with that
Semantics”) — VIDE language. The behavioural parts of the aspects af
should use the the advices and the methods. Both of them are
behavioural model modelled using action semantics.
elements of UML2
(earlier known as
“UML Action
Semantics”), unless
proven insufficient.
REQ - Lang | Simplified UML meta- | May The aspect-oriented constructs defined in \W&&
2 model — If it turns out been introduced into the PIM level language using

that

e the UML meta-
model is
unnecessarily
complex in a way

that it blocks the
creation of a
sensible concret
syntax (see
remarks on
ConditionalNode),

+ not all of the UML
meta-model can b

11°)

11

covered

minimum number of terms and depending on a
lightweight metamodel extension mechanism.

)

-11-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 3 — Deliverable D3.2
Date: 10 October 2007

e elements are
missing which are
located in anothe
needed languag
(like OCL)

it may be changed.

@D

REQ - Lang

User Language &
Concepts — the VIDE
language and VIDE
tools presented to a
certain user groups
SHOULD employ the
language that is
understood by the user

group.

Should

The WP3 provides the language with a smatiber
of additional constructs that seem orthogonal o tk
syntactic variability for some constructs introddce
by D2.1. The primary group of users dealing witl
WP3 defined constructs are Analysts / VIDE
programmers.

th

REQ - Lang

Compliance with
Standards — VIDE
should not compete
with existing adopted
modelling standards,
especially those
adopted by the OMG,
such as UML or
BPMN.

Should

Compliance with UML maintained — as expdin
under REQ — User 1.

REQ - Lang

Deviation from
Standards — VIDE may
deviate in parts from
existing standards, if a
standard-conformant
way is provided as well
and if there are good
reasons with respect to
the overall user
requirements.

May

The very idea of introducing the AO notiontin
UML can be considered a deviation from a fully
standard-compliant solution. Note however, that t
impact has been limited to the inside of the PIM
level — particularly, the model compilers are not
affected by that extensions.

ne

REQ - Lang

Modularisation and
extensibility — it should
be possible to replace
parts of the language
with different artefacts
and add additional
language constructs fo
special business
specific patterns. This
requires the language
be structured in
modules.

Should

O

The aspect-oriented constructs defined RB8\&re
modularized in an AO Profile (cf. Section 5.2)

REQ - Lang

Language for CIM,
PIM, PSM modelling:

1) VIDE SHOULD

Should

2]

support requirement

Ad. 1. Outside WP3 scope. To be addressBd il.
Ad. 2. Outside WP3 scope. Addressed by D2.1.

Ad. 3. Outside WP3 scope. To be addressed in DB.1.

-12-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 3 — Deliverable D3.2
Date: 10 October 2007

definition tasks
business process

description with BPML

2) VIDE SHOULD
adopt action semantic
for the modelling of
executable PIM models

3) VIDE SHOULD
provide support for
target PSM
environments e.g. Javi
C++, or SmallTalk;
VIDE should provide
platform
implementation
mappings in PIMs o
ClMs.

and

R

REQ - Tool 1

Usage of industrially
adopted tools — VIDE
must use industrially
adopted meta-
modelling standards
where applicable.

Must

Compliance with UML and a standard-compliant
implementation of its metamodel maintained — as
explained under REQ — User 1.

REQ - Tool 2

Meta-modelling
Framework — VIDE
must use EMF as its
modelling framework.

Must

Compliance with UML and a standard-compliant
implementation of its metamodel maintained — as
explained under REQ — User 1.

REQ - Tool 3

Meta-modelling

Concepts — VIDE metat

models should be
constructed to be
compatible with MOF
concepts.

Should

Compliance with UML and a standard-complian
implementation of its metamodel maintained — as
explained under REQ — User 1.

REQ - Tool 4

M2M Transformation
Technology

Should

Outside WP3 scope. To be addressed by D6.1.
However, note that the demonstrator used ATL
transformations for pointcut matching and weavin
(cf. Section 5.3)

REQ - Tool 5

M2T Transformation
Technology

Should

Outside WP3 scope. To be addressed by D6.1.

REQ - Tool 6

T2M Transformation
Technology

Should

Outside WP3 scope. To be addressed in D9.3.

REQ - Tool 7

Meta-modelling
Framework

Should

Outside WP3 scope. To be addressed in D@1 a
D9.3.

-13-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 3 — Deliverable D3.2
Date: 10 October 2007

REQ —Tool 8/ Use of OCL — VIDE | Should
should re-use existing
standards as UML
(REQ — User 1), and in
particular OC;. the goal
is to achieve a seamles
integration with the
concrete syntax of the
action language to be
developed.

7

Satisfied by D2.1 and the WP3 notions déeshon
it.

REQ — Tool 9| CIM modelling May
standards.

Outside WP3 scope. To be addressed in D7.1.

REQ — Tool | PIM, PSM modelling | Should
10 standards — VIDE
SHOULD provide
support for PIM
modelling with UML
and action semantics;

the meta-modelling
standard for VIDE
should be Ecore.

VIDE SHOULD
support well known
PSM modelling
standards (e.g. XMl for
model

and meta-model
interchange, JMI for
Java based PSM).

Satisfied by D2.1 and the WP3 notions depenadn
it.

REQ — Tool | Framework for CIM, Should

Met. The way AO notions have been introdwimes

11 PIM, PSM modelling not limit the applicability of the frameworks being
considered.

REQ — Tool | VIDE extensibility Should Outside WP3 scope. Todaelressed by D9.3.

12

REQ — Tool Integration and Should Met by D2.1 and not affected by WP3 work.

13 metadata interchange +

VIDE should provide
model and meta-data
interchange capability
by adopting the XMl
standard.

REQ — Tool | Model driven approach| Must
14 The VIDE tool strictly
follows a model driven
approach as stipulated
in figure 9 page 120 of
the D.1.1 deliverable

The design of VIDE language depends on theé3ON
four level meta-modelling architecture and is
compliant with the approach mentioned. The AO
notions have been encapsulated into the PIM leve
hence their impact onto the overall approach is
limited.

-14-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Table 1: Summary of the relevant requirementsidentified during the WP1 work

1.3.2 Further elaboration of the requirementsin the course of work package 3

Modularity at the model level is the main requiremieehind the work performed in WP3. In
other words, the aim of the work package is to Enaimdular VIDE models especially with
respect to crosscutting concerns. In fact, modylai the model level would bring several
benefits with respect to understandability, mamdaility, extensibility, etc.

For that purpose, we evaluated aspect-orientedvadtdevelopment techniques with respect
to their suitability for modelling business appticas. We did the investigation from two
perspectives: the AO language (i.e., what AO coesirare needed in the VIDE context) and
the composition mechanism (i.e., how to weave dspeith the base models). Thereby, we
used industry-scale examples of crosscutting cosceénat are found in a SAP CRM
application such as consistency checks and padtztermination.

Then, we developed a proposal for the integratioaspect-oriented modelling constructs in
the VIDE language using UML Profiles. In additionge compared and evaluated several
composition approaches and finally opted for hariab composition, which was
implemented in the proof-of-concept demonstrator tp groups of model-to-model
transformations (respectively for pointcut matchamgl aspect weaving).

To confirm our start assumptions on the benefitasgfect-oriented modelling, we compared
the understandability and maintainability of PIM aets with aspects (i.e., using the proposed
AO constructs) and without aspects (using objeended PIM modelling).

1.4 Document Outline

After giving an overview of this deliverable Bection 1 we will evaluate inSection 2the
selected composition and modelling techniques wWere presented in D3.1 by discussing
several variations of our aspect-oriented modellagproach. Then, we introduce two
evaluation criteria and some quality factors andriceein order to use them in the following
section for comparing business application modglkvith aspects (as proposed in VIDE)
against the traditional object-oriented modelling.

In Section 3 we present in detail two crosscutting concernsaitiypical SAP business
application from the Customer Relationship Managgnmentext. Then, we show how the
behaviour belonging to these concerns is modelleck ovithout aspects and once with
aspects. Thereby, we will use the criteria presemteSection 2 and the respective metrics to
compare both alternatives and draw conclusiongbiltis comparison.

Section 4presents the main contribution of this deliverahblrich is a specification of aspect-
oriented composition in VIDE. This section defiries profiles for aspect-oriented modelling
as well as the specifications of the necessarystoamations for aspect composition.
Moreover, it presents proposals for extensionéotéxtual and visual syntax of the VIDE
language to integrate aspects.

Section 5gives a summary of this deliverable and discusgs=n issues and problems.
Moreover, it gives an outlook to the future.

-15-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

2 Evaluation of Selected Composition and Modelling
Techniques

The most pressing problem in software developmerims to be complexity. Most target
domains and projects get more and more complexXlihgcthis complexity during software
development needs new techniques and methodolbgide the currently used ones. Both
Aspect-Oriented Software Development (AOSD) and &tdariven-Development (MDD)
provide new ways to confine and reduce complexitycreating solution domains and
developing software. Both approaches try to sdiedomplexity problem with different but
complementary ideas. So it seems natural to conthiese approaches and reap the benefits
of both for overcoming complexity in software dey@inent.

This section provides an evaluation of the sele&€d modelling and AO composition
approaches, which were described in D3.1. Therlatié be reviewed in the following and
different variations of aspect-oriented compositioill be discussed and compared on
different levels. The last subsection introducesesd evaluation criteria and corresponding
metrics for the empirical evaluation of the promb#e€ modelling approach. The results of
that evaluation are presented and discussed imo8ett

2.1 Review of the Approach

After analyzing the provided business scenarios, gbal was the provision of a suitable
approach for modelling crosscutting concerns asd &r the composition of the modelled
artefacts to a woven model.

In the first version of the aspect-oriented modellapproach, which was presented in D3.2, it
was not possible to model the complete consistehegk, but that version has shown the
suitability for the domain. Due to the flexible dgs the AO Profiles were extended to
provide the required constructs for a suitable Mimdeof the identified consistency checks.
The resulting Profiles are described in Section 4.

The chosen aspect composition supports the reghireting kind (around) and the weaving
concept is applicable to the selected scenarioge®der, the approach supports different
instantiation strategies. To allow the realisatioh different instantiation and weaving
strategies, we decided to encapsulate the aspbaviber in separate classes in the woven
model. This gives us the flexibility to allow addimdditional features with minimal effort.
On the other side, this approach produces a loeéapdired infrastructure model elements and
especially a lot of additional object creations agkration calls. This has two relevant
effects. The readability and understandabilityhef twvoven model is decreased. This effect is
not critical, because the woven model is not inéehtb be read by a human, but rather to be
processed by a model compiler. On the other hamel, additional object creations and
operation calls can have a negative impact on énfopnance of the generated software. An
analysis of the impact on the performance of theemomodel should be done in the future,
but this goes beyond the scope of WP3 and is nwidered.

The Demonstrator was intended to spawn risks ofcti@sen technology for the aspect-
oriented composition. After the implementation everal model-to-model transformations
using ATL [18], this technology seems to be suidlr the realisation of the aspect-oriented
composition in VIDE. Nevertheless, the unstablesigr of ATL hinders the implementation

of the demonstrator and causes a high effort.

-16-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

2.2 Discussion of Variations

Aspect-oriented composition approaches can bezeghlby using different concepts on
different levels. To give an overview of possibtncepts and to show, where the developed
approach is settled, the following sections descaibd compare different variations of aspect-
oriented composition.

221 Composition Layer Variations

The different variations of the aspect compositiane already been particularly described in
D3.1. Therefore, this section shortly summarizesntfain results.

Horizontal composition Vertical composition No model composition
(aspect resolution within the (aspect semantics at PIM level, (aspect weaving deferred to an
abstract syntax of PIM) PSM without aspects) existing AOP platform)

CimMm

-m»- =) =)

weavlng

weaving ‘ plaﬂorm
plaﬂorm
PSM platfarm platlorm ao-| platform
Code ao—code

Figure 1: Different kinds of model composition

The different variations of aspect oriented comjasiare depicted in Figure Horizontal
Composition which was chosen for the developed approach egeas the aspect weaving on
the same abstraction level. The input and outpudaisoare (in the depicted case) models at
the PIM level. The output model does conform to rttetamodel of the base model, which
leads to the fact, that the output model can begaed using common tools without support
for aspects (e.g. using Objecteering [19] to predimva code). Because the aspect weaving is
done at the PIM level, no support of aspect-origrtencepts at PSM and Code level is
required. The horizontal composition can be redliag adapting additional model-to-model
transformations. The existing model compiler, whi@nsforms the PIM level model to PSM
level model or to code does not have to be adapted.

The Vertical Compositiorprocesses the aspect weaving during the transtamsabetween
different model levels (in Figure 1 PIM to PSM).€eTbxisting model compiler (respectively
the model transformations) has to be adapted tpastphe aspect composition during the
transformation between the abstraction levels. dfioee the extension of existing MDA
processes by using the vertical composition casedsimore effort than the usage of vertical
composition. Nevertheless, the support of aspeetitmd concepts at code level is not
required in this case, too.

If No Model Compositions processed during the model transformation betwifferent
abstraction levels, the base and the aspect moeleindy transformed into the corresponding
representation on the next level. No aspect weaisngone. The extension of this MDA

-17-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

process requires no adaptation of the transformstior the base models, but only the
provision of additional transformations for the esjppmodels. This variant requires aspect
oriented support at code level, because the asysoting is not processed during the MDA
process, but rather has to be realized on codd (stetic/source code weaving, dynamic
weaving, load time weaving, runtime weaving, etc.)

2.2.2 AO composition Variations

In the domain of the aspect oriented programminfferént weaving approaches and
strategies at different levels are developed. Aspexaving can be processed at different
points in time, e.g. static weaving, load time wegy runtime weaving, etc. One of the
challenges was, to investigate known weaving siraseand to decide, which strategy should
be used for the developed aspect-oriented compositi

Since horizontal composition on PIM level was cilmpdbe weaving is done in a static way.
The composition is done without runtime information

There are two general possibilities to processagpect weaving. First, the advice model can
be inlined at the captured joinpoints (as show[l5]). After the advice model is inlined, the
aspect module does not exist explicitly in the woweodel. Therefore the realisation of
different instantiation strategies is hinderedg¢sithere is no explicit class, which could have
different instantiation mechanisms. On the otherdhdahere are no additional infrastructural
model artefacts.

The second approach is the encapsulation of thecagpd advice in a separate class (in the
woven model), which can be instantiated as a dioglésee subsection 2.2.3). Different
instantiation strategies can be realized during dlspect composition with less effort.

Additional strategies can be applied, for instatcéncrease the weaving performance. The
approach in [20] extracts all potential joinpoihadows to so called envelopes (Getter/Setter
for fields and proxies for methods). The field andthod accesses are replaced by calls to the
corresponding envelopes. This “pre-processing” thaseffect, that the search scope for the
potential joinpoints is reduced, which is an opsation for the pointcut matching phase. The
number of points, where the aspect weaving takasepls reduced and the weaving process
can be simplified.

Another problem in this domain is the handling wfittme properties of joinpoints, which are
used in the pointcut declaration to define thedadedelected joinpoints. During the pointcut
resolving phase the dynamic properties of potepdiapoints can be approximated to decide,
if a point in the execution is a joinpoint. Thisrigat possibly requires a complex and time
consuming static analysis, which can only approxémthe runtime properties of potential
joinpoints. The approach, which is used in Asp¢2l], checks the static properties during
the pointcut resolving. The result is a sefpotential joinpoints. During the aspect weaving
phase, corresponding behaviour for checking theimen properties is woven before the
advice call. Only if the woven condition is truerahtime, the advice is executed.

This approach can also be applied for aspect cotgroson PIM level. The developed
approach focuses on static approximation of rungimoperties. For instance the type of the
defined context exposure pointcut expressions eéslad in a static way (see also subsection
4.3.3.2).

-18-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

2.2.3 Instantiation Variations

Not only the weaving strategies but also the aspetantiation strategy plays an essential
role in the aspect composition. If the aspect stam@ntext information, it is often useful to

decide, if the called advice should have alwayses€do the same context information
(independently of the triggering object or of thgext, on which the joinpoint is triggered).

In other words, the instantiation strategy decidfean advice is always called on one aspect
instance, or if each object has its own aspecaint& (with separate context information) on
which the advice is called, etc.

The realisation of a certain instantiation strat@gytially depends on the chosen weaving
strategy. If the aspect is encapsulated in a sepaspect class, the support of different
instantiation strategies can be achieved by theigiom of certain mechanisms for aspect
class creation (singleton, hash table for assogaseveral objects with corresponding
instances of an aspect class, etc.).

If the content of an aspect (fields, advices, ojpama) is inlined at the corresponding
joinpoints during the aspect composition, each abjghich is adapted by the aspect, has its
own context. The single aspect instance strateggatebe realized, without the provision of
additional model infrastructure.

Since the developed approach encapsulates thetaspacseparate class, the instantiation
strategies “singleton” and “perThis” are supported.

2.3 Evaluation

In this section, we will use the software propertiaderstandabilityand maintainability as
evaluation criteria to compare the aspect-orientextielling approach proposed in work
package 3 with the traditional object-oriented mlralg approach at the PIM level. For each
evaluation criterion, we discuss some factors #ffegct that criterion and introduce a few
metrics to measure those factors. Table 2 giveswanview of the different factors and
metrics that we will use to evaluate the propentiederstandability and maintainability.

Property Factor Metric
Number of Actions
Understandability | Size Number of Model Elements
Complexity Cyclomatic Method Complexity

Concern Diffusion over Actions

Separation of Concern Diffusion over Modules
Concerns

Maintainability Concern Diffusion over Operations

Number of Impacted Components

Ease of Change | Number of Impacted Members

Table 2: Overview of Evaluation criteria and the selected metrics

-19-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

These evaluation criteria and the respective factord metrics will be used in the next
section together with two examples of crosscuttingcerns to assess the proposed aspect-
oriented modelling approach. The list of evaluatoiteria and respective factors and metrics
is by no way complete. Our evaluation is a firdoeftowards assessing the benefits of
aspect-oriented modelling at the PIM level. A coetpland extensive evaluation of aspect-
oriented modelling is beyond the scope of WP3 &ed\iDE project.

2.3.1 Understandability

This software property reflects how difficult ungemding the application models is. It also
includes understanding the way a crosscutting agonéee., the respective structure and
behaviour) is modelled and its relation to the cbusiness logic of the application. We
selectedsize complexity,and separation of concernas some of the factors that affect
understandability. Next, we present metrics for sneiag these factors.

a) Size Metrics:

* Number of Actions (NoA): the total number of UML actions in a method bodyr &
class this metric is the sum of the number of astiof its methods and constructors.
Inherited methods are not included.

* Number of Model Elements (NOME): In addition to measuring the number of actions
this metrics includes also the number of controw8 and object flows in the
behaviour model of a method. For a class, thisime&n be calculated as the sum of
the NOME values of its methods and constructors.

b) Complexity Metrics:

Cyclomatic Method Complexity (CC): this metric was introduced by McCabe to measure the
flow complexity of a method [1]. It is the numbef bnearly independent paths and
consequently gives information on the minimum numifepaths that have to be tested. It
basically counts the number of places in the methady where the flow changes from a
linear flow (e.qg., in if then statement, loops,)efico measure this complexity, we will proceed
as described in [2], which proposes a simple wagotmt this metric: one starts with a count
of one for the method and adds one for each ofldlnerelated elements that are found in the
method body such as selection (suclf #%n elseandswitch, loops (such akr andwhile),

and logical operators (such as the operaadsandor).

c) Separation of Concerns Metrics

In [4], Sant’ Anna et al. introduced three metrios measuring the separation of concerns.
One of these metrics is call&ioncern Diffusion over Lines of Cod€DLOC) and it is
especially relevant in the context of understandgbiThe two other metrics are more
important with regard to maintainability.

Concern Diffusion over Actions (CDA) is an adapted metric for VIDE that is based on the
separation of concerns met@oncern Diffusion over Lines of Cog€DLoC) [4]. It counts
the number of transition points for each concerouph the actions of the behaviour models.
Transition points are points in the behaviour ahethod or a constructor where there is a
“concern switch” for instance from business logicsecurity.

-20-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

2.3.2 Maintainability

This software property reflects how easy/hard ameé-consuming the process of maintaining
the software is. For the software to be maintamablshould be easy to understand, to
enhance, to extend or to correct. Several factave lan impact on maintainability such as
ease of change, separation of concerns, compleaity size. Maintainability and
understandability are also related to a large éxsiit is quite hard to maintain an application
that is not understandable. As a result, the coxitgland size metrics that were introduced in
the last subsection can be used also for measthmgnaintainability of the application
models.

In the following, we will focus mainly on maintaibidity with respect to crosscutting
concerns. That is, we will measure how difficuligtto perform changes to the behaviour
models corresponding to crosscutting concerns. ellyer we will concentrate on two
maintainability factors that were defined in [5]:

a) Ease of Change Metrics:

These metrics measure the difficulty level in chagghe modelling elements that belong to a
crosscutting concern, e.g., to customize or extbadapplication. The following two metrics
give an idea on the scope of the change. In additidhat, it is also important to consider the
time aspect, i.e., how long does it take to perfaroertain change.

* Number of Impacted Components (NIC): this metric counts the number of classes
and aspects that are affected by a certain ch&ijge [

* Number of Impacted Members (NIM): this metric counts the number of operations
and attributes that are affected by a certain ch§by

b) Separation of Concerns Metrics:

In addition toConcern Diffusion over Lines of Cof€DLOC), Sant’ Anna et al. introduced
two other metrics for measuring the separationooicerns. These metrics are important with
respect to understandability and maintainability.

» Concern Diffusion over Modules (CDM): This metric counts the number of classes
and aspects that contribute to the implementatfam @oncern as well as the number
of other classes and aspects that access thenin4his document, we focus only on
the number of classes and aspects that contributetimplementation of a concern.

e Concern Diffusion over Operations (CDO) counts the number of methods and
advices that contribute to the implementation afoacern and the number of other
methods and advices that access them [4]. In thisirdent, we focus only on the
number of methods and advices that contributedarttplementation of a concern.

-21-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

3 Business Scenario

This section starts by a short review of opporfunitanagement, which is part of the
Customer Relationship Management (CRM) businesBcapipn that was presented in D3.1.
After that, the crosscutting concerns consisterfogcks and partner determination will be
modelled once with and once without aspects antuatian data will be collected using the
evaluation factors and metrics that were define®attion 2.3. A discussion of gathered
evaluation data will then follow.

3.1 Review of the Opportunity Scenario

Customer Relationship Management [6] is a managengencept, which intends to

systematize and improve the relationships betwesnpenies and their customers. It is a
customer-oriented corporate strategy that utilisexlern information and communication
technologies to establish long-term, profitabletooeer relationships by providing a central
tool that integrates marketing, sales and serviseruments [6]. SAP offers several CRM
products such as SAP CRM [8,9], which covers theehfundamental CRM processes
marketing, sales, and service.

Figure 2 shows some typical pre-sales and saleegses in an enterprise that sells one or
more products. These processes involve differegppsssuch as opportunity management,
guotations to customers, sales orders and invoioeepsing. This figure shows also the

different user roles that are involved in each psscstep.

Opportunity

Legend
g process
v

=T

Field Service 0. Idemify_ 4, Create ol o Sales
Representative Opportunlty Sales Order Processing
¢ —

Check

—

1. Create __>‘ Account 5. ot F-> Payment
Sales Manager opportumty Mgmt. ¢
; S—
Avail. to
ﬁ (Evaluate 6./7. Promise | > Stock
Opportunity @
Office ¢
Sales Assistant Process ©
% 2.4 8 payment | > Payment
Financial Create - tati
Assistant Quotation Quotation 9.
* 3 Create o . Return
Warehouse Quotation PrlCIng Order

Assistant

O

l

Customer

10.
<
Approve o
Return

Figure 2: Sales Scenario

d
0

-22-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

3.1.1 Opportunity Management

Opportunity management is a pre-sales procesgthaides a structured approach to turning
an initial recognition of a selling opportunity ain sales contract. In that process, which is
shown in Figure 2, the SAP CRM software guidessidles representative through a process
and generates next steps and activity suggestiotisedoasis of best-practice sales strategies.

The SAP CRM business application is implementedrasbject-oriented application. Figure
3 shows an extract of a class diagram with the rbasiness objects that are involved in
opportunity management. More details on some cfelobjects can be found in D3.1.

< Sintarface>> <<i_=l’°=>> =4 WSC.E>> < <inierface> > < <enumerslion> >
Ll Comsisteny e i LifeCylceState
- - ; N e P — —-
~createn checkConsistency 0 Commit £ pa) Proaessstate s pr——
~update o [- Rallback o —_lodEses ConsistencyState
i, ! onTrack stopped 2
~read g = & : consistent
=delete 0 b | inFrocress inCaonsistent
— 1 - stalled
T \ | =wWong open |
K ~losto) +consistency
. 4 ! Lot . T hrprogressstaty +lifeCycleState
| y | =re0pen 0
] N \ | ~stopped 0
~startD ate : === . y | ~progress O Ty +1 g4+
=endDate : === M . y II e T - |
N 4 - description : Sting
B ' ; = quantity : 5
5 L - hetfmount - T -opportunityState
5 i ! <<enmeration>>
- - \ \ [j BesultReazonCode SalesCyde
i N ' 1] 1. ' T - startDiate : se=
~updateB 0 (e : S0%=ct, chamgelist : St \\ 4 | +iterns Funique 1 |Telephanelnguiry -endDate : zm ;
=getCurrentTransactionT ype 0 ==t \ i ! ExternalPartner 1.# |[-phaseProcessingD atePeriod - fwied
- A ' ! esultReaso e
Trarssction Types \ Y) 1 +salesCyc ique | 1 +
~OpportunitpMew - o 5 | |
—Dpportun?tythange s Hnt 1| 4halesCyckCods
=OpportunitySave : & S]]
=SalesOrdeiMew : am= -zalesTeam : paty ¢ <ermeralionk >
=SalesOrdeiChange : 2= ~extemalParty Pty G : 55|ESE}'C|EE. e
~SalesOrderSave = ~responsibleEmplopes - fety trsourcd |- CaLCULATE_FROM_ITEMS : sSode Generald pportunit
~prospect . Pty ————=*|-daysSlow - == MewCustomer
Paste o = priority +oustomizeData (- dapsStalled - ==
- Prospect : = -processStatusValidSincelDate - St= 14 +salesPhaseCode
- ContactPerson : &m -checkConsistency 0 1 1 +customizeD ata
i fnd : EDeke) 44mnumerations >
<SoldTo : = —setProcessStatutsVaIldSln.ce {nd : EDei=) \ vealesForscast 1| +source SalesPhaseCode
=setProspect (pee=t - 2=ty Identif0 ppartunity
Test T seige SelesTonnst Gualifyd pportunity
B A Evaluatel ppartunity
~maing - expectedRevenuefmount : SSighecima (S |

-weightedForecast : Sose

= ExpectedProcessingDatePeriod : Peicd
-calcWeightedForecast (retum : Currmncy, propetiity : nl, vabue © Currency)
- getweightedForecast o

- sefExpectedProcessingStartDate (nd : 2Date)

Securetgreement
Close0pportunity

+ AULOCOMP... (ran=Type : S, tran=Oiject : EDiject, partnerFunction : S, S0k
- autocomplete (rawTyes : S, tram0tject : 501

Figure 3: Main Classesin Opportunity Management
3.2 Moddling Crosscutting Concernsin the Opportunity Scenario

In D3.1, consistency checkand partner determinationwere introduced as examples of
crosscutting concerns in opportunity managementthis section, we model each of these
concerns once without aspects and once with aspadighereby use the evaluation factors
and metrics defined in Section 2.3 to evaluate @rdpare both approaches with respect to
understandability and maintainability.

-23-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

3.2.1 Consistency checks

Several consistency checks are performed whertdke &f the opportunity business object or
some of the associated objects changes. The catlertforces consistency checks cuts across
different classes.

In D3.1, consistency constraints were classifietb isimple constraints and complex
constraints based on the degree of crosscutting.efforcement of the complex consistency
constraints involves more than one business objass, e.g., the constraint C3 is a complex
constraint that should be fulfilled by each Oppoitiyiobject to be in a consistent state.

(C3): Omortunity.processStatusValidSinceDate
SalesForecaexpectedProcessingDatePeriod.StartDate

Appropriate logic is needed to check consistenaystraints such as C3 and hinder their
violation. This logic should be triggered when fiedds corresponding to the constraint are
modified and/or when the respective setter mettawdscalled. Consequently, it is scattered
across several classes. For instance, to enfoeceotiistraint C3, appropriate logic is required
in the methodsetProcessStatusValidSinceDafethe clasOpportunityto check that the date
is smaller thanexpectedProcessingDatePeriod.StartDate the associate®alesForecast
object as shown below in Java.

/Idefined in class Opportunity
public void setProcessStatusValidSince(Date nd)

{

if(this.salesForecast.expectedProcessingDatePeriod.startDate > nd)
this.processStateValidSinceDate = nd;

}

Similar logic is also needed in the metheetExpectedProcessingDatePeritmlverify that
the StartDate of the new period is smaller than the value of théribute
processStatusValidSinoé the associate@pportunityobject as shown below in Java.

//defined in class SalesForecast
public void setExpectedProcessingStartDate (Date nd)

{

if(nd > this.opportunity.processStatusValideSinceDate)
this.expectedProcessingStartDatePeriod.startDate = nd;

}

3.2.1.1 Modedlling consistency checkswithout aspects

In the following, we model the constraint C3 usliiIL actions but without using aspects at
the PIM level.

A) The models
Figures 4 and 5 show the behaviour models thatespand to the method bodies of
setExpectedProcessingStartDatavhich is defined in the classSalesForecastand
-24-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606/Isualize all moDel drivEn programmi

Version 1.0

Date:10 October 20C

Work Package i~ Deliverable D3.2

setProcessStatusValidSinoghich is defined in the clasOpportunity respectivel. These
models were drawn using the tool TopCas10].

ZH

go to opportunity

@Stﬁnu svalidsinceDate
e
\cm

new date » dE;y \Eie
FeadSelf

®

oOF2

<<dataStore»>
date

niewy date

Figure 4: Method setExpectedProcessingStartDate

CF

read self ‘

.
o)

[Read salesForecast

=

&

=

OF3 CF3

[read expectedFrocessingDateFeariod
[T

|

new date

set new date

CFg

Figure5: Method setProcessStatusValidSince

B) Measurement Data

Next, we use the nt@cs presented in Sectio2.3 to collect quantitative data on t

understandability and maintainability of this mac

* Size
o Number of Actions

*= 5in methodsetExpectedProcessingStartDate

= 5in methodsetProcessStatusValidSince

o0 Number of Model Element:

- 25-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

= 18 in method setExpectedProcessingStartDaf8 control flows, 5
object flows, 5 actions)

= 19 in methodsetProcessStatusValidSin¢8 control flow, 6 object
flows, 5 actions)

» Complexity
o Cyclomatic Complexity
= 2 for methodsetExpectedProcessingStartDate
= 2 for methodsetProcessStatusValidSince

* Separation of Concerns

o Values of Concern Diffusion over Actions for thencern consistency checks
= 2in the methodetExpectedProcessingStartDate
» 2in methodsetProcessStatusValidSince

o Concern Diffusion over Operations value »ffor the specific consistency
check C3 (much more for consistency checks as omeetn in the opportunity
application)

o Concern Diffusion over Modules value ®ffor the specific consistency check
C3, which spans the classes Opportunity and Sales&st (a much higher
CDC value if consistency checks in general are idensd as one concern in
the opportunity application)

 Ease of Change

We assume that the consistency check C3 and itemngmtation have to be changed. For
example, the constraint may be relaxed to not lorgguireprocessStatusValidSinceDate
to be strictly less than the start dateempectedProcessingDatePeriad said before but
only less or equal. The values for the metricsteel#o this change are as follows.

o Number of Impacted Component8: (hamely the classes Opportunity and
SalesForecast)

o0 Number of Impacted Members2 (namely the two setter methods that are
covered by this constraint)

3.2.1.2 Modeling consistency checkswith aspects

Next, we model the constraint C3 using an aspdgis &spect consists of a pointcut that
selects two join points (i.e., the execution of th® setter methods) and two advices that
define the logic for enforcing the consistency c¢oaist.

-26-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

A) TheModels

Figure 6 shows an aspect that modularizes the stensiy check C3. This figure also shows
the pointcut of this aspect, which selects two jpoints in the base. More precisely, this
pointcut selects all write accesses (kind = set)ptoperties that have the type Date
(pcel.type.namePattern = “Date”) and which beloogobjects of type “Opportunity”
(pcel.declaringType.namePattern = “Opportunity”jvedl as write accesses to properties that
have the type Date and which belong to objectb@type “SaleForecast”.

==bspect==
ConsistencyCheck

{instantiationkKind = singletan,

binding = b1, b2,

pointcut = dateSetterCpportunity, dateSetterPeriod}
==Advices=+checkDateOpportunityl newDate : date, opportunity : Opportunity Hissround
==ddvice==+checkDateSalesForecasti newDate © date, salesForecast | SalesForecast MisAround}

b1 : Binding — 1 [b2 : Binding |
advice = checkDateOpporunity | advice = checkDateSalesFaorecast
bindingkind = around hindingkind = around
pointcut = dateSetterOpportunity pointcut = dateSetterPeriod
e R [-
dateSetterQ Drtun Pmntcut dateSetterPerlod Pmn‘tcut
signature = newDate, opportunity signature = newDate, salesForecast
expression = ARND1 expression = AND2
AHDA : IntersectionPCE AHD2 : IntersectionPCE
expressions = peel, a1, 11 eXpressions = pee2, '[2 az
e,
e — O - ,
pced : Prugemf_PCE al: ArgsPCE | |:_u:eZ Progem | | az2: ArgsPCE |
declaringType =tp2 declaringType = tpd

isStatic = false isStatic = false

|
type = tp1 ‘ parametars = newDate | type = tp3 | parameters = newDate

Kind = set ti:TargetPCE 1| kind=set 2: ThisPCE '
| parameters = oppc.rtunlty ‘ parameters = salesForecast |
[tp1: Tm:_nePattern | | tp3: TypePattern |

namePattern = "Date”
includeSubtypes = false

includeSubtypes = false |
namePattern = "Data"

1p2 : TypePattern j | tpa : TypePattern i
namePattern = "Opportunity” | includeSubtypes = false
includeSubtypes = false namePattern = "Period"

Figure 6. Aspect for constraint C3

Figures 7 and 8 show the two advices of this aspdttese advices are bound “around” the
selected join points in order to control the oradibehaviour (that sets the attributes related to
C3) and execute it only when the constraint C3lliglied.

Figures 9 and 10 show the behaviour modelssetfExpectedProcessingStartDassnd
setProcessStatusValidSindehese models do not contain any logic for enfgya@onsistency
checks because this logic is now externalizedseparate aspect. That is these two methods
just set the appropriate attribute to the new tlaeis passed as a parameter.

-27-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606/Isualize all moDel drivEn programmi

Work Package i~ Deliverable D3.2
Date:10 October 20C

Version 1.0
. salesForecast .
opportunity
read opportunity
read expectedProcessingDatePeriod] I,
read processStatusvalidSince
read startDate <<dataStores>
processStatushalidSince
; [newDate > processStatus’alidSince else]
<<dataStore=>
statDate
newlate
[startDate » newDate [pls5
newDate
y Proceed:>>
call IPS

Figure7: Advicefor Enforcing C3in Opportunity

Figure 8: Advicefor Enforcing C3 in SalesForecast

CF1

new date

AN

eadEPStartDatePeriod

[z |
\\ JOF2

CF2
——
write StantDate

OF1

CF3

@®

Figure 9: Method setExpectedProcessingStartDate

new date

Figure 10: Method setProcessStatusvalidSince

-28-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

B) M easurement Data

Next, we provide quantitative values to measureutigerstandability and maintainability of
the aspect-oriented design using the metrics ptedem Section 2.3.

Size
o Number of Actions:
= 2in method setExpectedProcessingStartDate
= 2in method setProcessStatusValidSince
= 4in advice for enforcing C3 on Opportunity objects
= 3in advice for enforcing C3 on SalesForecast objects
o0 Number of Model Elements:

= 7 in methodsetExpectedProcessingStartDgBcontrol flows, 2 object
flows, 2 actions)

»= 6in methodsetProcessStatusValidSin@control flow, 2 object flows,
2 actions)

= 16in advice for enforcing C3 on Opportunity obje¢tscontrol flow, 5
object flows, 4 actions)

= 13in advice for enforcing C3 on SalesForecast objgtsontrol flow,
4 object flows, 3 actions)

Complexity
o Cyclomatic Complexity
= 1 for methodsetExpectedProcessingStartDate
= 1 for methodsetProcessStatusValidSince
= 2inadvice for enforcing C3 on Opportunity objects
= 2in advice for enforcing C3 on SalesForecast object

Separation of Concerns

o Concern Diffusion over Actions for the concern detency checking
= Ofor the methodetExpectedProcessingStartDate
= O for methodsetProcessStatusValidSince

o Concern Diffusion over Operations value »ffor the specific consistency
check C3, which is now implemented using two advitteat are modularized
in one aspect

o Concern Diffusion over Modules value bfor the specific consistency checks
C3, which is modularized now in one aspect.

-29.
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

 Ease of Change

Changing the consistency check C3 and the resgeaatiplementation then
o Number of Impacted Componenis{namely the aspect)
0 Number of Impacted Member2:(namely the two advice)

3.2.2 Partner determination

Partner determination[11,12] is part of the partner processing functimin many SAP
business applications. It refers to the systemtaliv automatically find and enter partner
information such as addresses in certain transectod documents. That is, the user enters
manually one or more partners and the system detesnand completes other partners and
information by using several sources of informatsaich as the business partner master data,
the company organizational data, documents relatéde current document such as the last
document or the parent document, etc.

Figure 11 shows an example that illustrates howtnpardetermination works. The user
creates an opportunity and enters the name ofalles prospect whereas the system enters the
name of the contact person (by checking the pammaster data), the address of the sales
prospect, and the name of the responsible empliwyethis opportunity (using the company
organizational data).

1. A usercreates an o —
opportunity and enters e L
the sales-prospect.
prosp Sales
—p Prospect PC4YOU Shops
. » Contact Jean Khan
2. The system: Person
Looks in BP
master data
Finds the needed
contact person
Enters him in the Employee responsible Anton Mav < .
opportunity 3. The system:
Looks in the
organizational data of
/\ the company
w Finds the employee
) responsible
Business partner Organizationa| Enters him in the
master data data opportunity
» for for -
PC4YOU the company

Figure 11: Partner Determination in Opportunity M anagement

The way partner determination is done can be véifgrdnt depending on the business
process, the business transaction, the partnetidmscin the transaction, and the companies
that run the CRM software. Customers can configiseeway partner determination is run for
a certain transaction by definimgartner determination procedure$he latter define which
partner functionsare mandatory or optional for a given transacti@r. eactpartner function

-30-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

(e.g., contact person, sold-to-party, ship-to-paetg.) the users can specify the sources of
information that should be used to determine th#npa function values and in what order
these sources are searched (so-caflecess sequengesThey can also configure when
partner determination is performed, e.g., when ta¢atered by the user or when it is saved.

Partner determination is a crosscutting concerrthasrespective code is scattered across
several classes of the user interface and the éasiobjects of the CRM application. Partner
determination may be triggered in the Ul classas, hen the user enters the sales prospect
for a new opportunity and can be also triggeredthe business object, e.g., when an
opportunity object is saved (i.e., the update methiothe CRUD interface is called). Partner
determination functionality logic is scattered owther business object classes in the CRM
application such a®pportunityandSalesOrder

When a new opportunity is created and the usertBetprospect, partner determination will
automatically add the contact person at the padndrthe responsible employee within the
partner organization. There is some logic in théhoasetProspecgtwhich triggers automatic
partner determination. Later, if these partner fioms are changed by the user no automatic
update will be executed. However, there are saitmer partner determination procedures that
may be triggered automatically when an opporturstypdated (the methogpdate of the
CRUD interface).

When a new SalesOrder is created and the usesdahteiSold-to-party (methasktSoldTh
partner determination is triggered and some parfinections are completed automatically
such as Ship-to-party, Bill-to-party, Payer, Conht&erson, and Responsible Employee.
Similarly to the update method of the opportunityss, some partner determination logic is
executed when a sales order is updated (methddtg.

3.2.2.1 Moddling Partner deter mination without aspects

In the following, we model the partner determinatilmgic in the methodsetProspect
setSoldTpandupdatewithout using aspects.

A) The Models

Figures 12 and 13 show the behaviour models ofrtehodssetProspecandupdatein the
class Opportunity. Below is the equivalent behavifithese two methods in Java.

public void setProspect (Party pros) //defined in the class Opportunity
{

this.prospect = pros;

/Irun partner determination procedure for business function sales prospect

if(getCurrentTransactionType()==TransactionType.OpportunityNew)
PartnerDetermination.autocomplete(TransactionTypes.OpportunityNew,this,
PartnerFunctions.Prospect, prospect);

public void update(List changelist) //defined in the class Opportunity

/[call update on the parent
BusinessObject.updateBO(this, changelist);

[/Irun partner determination procedure
PartnerDetermination.autocomplete(TransactionTypes.OpportunityChange, this);

}

-31-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606/Isualize all moDel drivEn programmi Work Package i~ Deliverable D3.2
Date:10 October 20C

Version 1.0
prospect
CF1
[Feadzelf]
changeLlist LA
CF2
OFS
afTrane Ty
ype
cunTrans Type==TransactionTypes.OpportunityMNs CF3 OF3
OF4 Jr
call autocomplete
CF4
autocomplete
Figure 12: Method setProspect Figure 13: Method update

Figures 14 and 1Show the behaviour models of the methsetSoldT andupdatein the
class SalesOrdeBelow is the equivale behaviour of these two methods in J

/ldefined in the class SalesOrder
public void setSoldTo(Party soldTo)

this.soldTo = soldTo;
/lrun partner determination procedure
if(getCurrentTransactionType()==TransactionType.SalesOrderNew)

{

PartnerDetermination.autocomplete(TransactionTypes.SalesOrderNew,this,
PartnerFunctions.SoldTo, soldTo);

}
}

/ldefined in the class SalesOrder
public void update(List changelist)

/[call update on the parent
BusinessObject.updateBO(this, changelist);

/lrun partner determination procedure
PartnerDetermination.autocomplete(TransactionTypes.SalesOrderChange, this);

}

-32-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606/Isualize all moDel drivEn programmi
Version 1.0

Work Package i~ Deliverable D3.2
Date:10 October 20C

FeadSelf

QF3 k
soldTo ¥ oFz

OF&

Il getC
call getCurrentTrans Type
NP

CF3 4, OF4

<<dataStore>»
curtTrans Type

curntTransTwpe =
TransactionTypes SalesOrderMNew

transtype value

autocomplete

CF4

Figure 14: Method setSoldTo

changelist

OF4

call updatgBO

LCH OF3
e

call autocomplete

CF4

Figure 15: Method update

B) Measurement Data

Next, we provide some quatative dataon the understandability and maintainability ofsi
design using the metrics that were presented itide2.3

+ Size
o Number of Actions

= 6in method setProspect (class Opportui

*= 4 in method update (class Opportun

= 6in method setSolco (class SalesOrder)

= 4in method update (class SalesOr

o0 Number of Model Element:

= 24 in method setProspect of the class Opportunityof@rol flows, 9

object flows, 6 action

= 11 in method update of the class Opportunity (5 cdritoov, 4 object

flows, 4 actions

-33-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

= 24 in method setSoldTo of the class SalesOrder (rabofiows, 9
object flows, 6 actions)

= 13 in method update of the class SalesOrder (5 cofitnw, 4 object
flows, 4 actions)

» Complexity
o Cyclomatic Complexity
= 2 for method setProspect
= 1 for method update of class Opportunity
= 2 for method setSoldTo
= 1 for method update of class SalesOrder

* Separation of Concerns

o CDA for the concern partner determination
= 2in the method setProspect
= 2inthe method update of class Opportunity
= 2 for method setSoldTo
= 2 for method update of class SalesOrder

o0 CDO value of4 at least for the considered extract of the oppattuscenario
models as behaviour relating to partner deternonas found in four methods.

o CDM value of2 at least as partner determination behaviour itesea over
the classes Opportunity and SalesOrder.

e Ease of Change

We assume that the partner determination logic lshioe extended in some way to e.g.,
fire an event after the automatic completion. Thpact of this change is as follows:

0 Number of Impacted Componeng(the classes Opportunity and SalesOrder)
o Number of Impacted Memberé:(as 4 operations are involved)

3.2.2.2 Modédling Partner deter mination with aspects

Next, we model partner determination using an aspec
A) The Models

Figure 16 shows the aspect model for partner détetion. This aspect defines two bindings:
The bindingbl connects the pointcut updateBO, which selectscHils to the operation
updateBQ to the advicaupdateChangehat is shown in Figure 17; the bindibg connects
the pointcut partySetter, which selects calls todperationsetSoldTdclass SalesOrder) and
setProspec{class Opportunity), to the advicelpateNewthat is shown in Figure 18. Both
advices are executed after the selected join points

-34-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 3 — Deliverable D3.2
Date: 10 October 2007

2=fapectss
PartnerDetermination

{instantiationKind = singleton}

==Advices=+updateChangsl businezsObject © Object)
==&dvice==+updateMew(party : Party, businessOhiject : Ohject)

b2 : Binding
advice = updateMeaw
hindingKind = after
pointeut = partySettar

b1 ; Binding
advice = updateChanae
bindingkind = after
pointeut= updateBO

partySetter : Pointcut

signature = party, businessObject
expression=AND2, pcel, pced

| [
1
AHDA : IntersectionPCE AHD? : IntersectionPCE pce? : OperationP CE pced : OperationP CE

expressions = al, pcel expressions = a2 t kind = call kind = call
| | namePattern = "setSoldTo" namePattern = "setProspact’

declaringType = tp3 declaringType = tp4
al: ArqsPCE a2 : ArqsPCE
parameters = businessOhject parameaters = party

updateB0 : Pointeut

signature = husinessObject
expression = AND1

pced : OperationPCE

t1: TargetPCE

tp3 : TypePattern

tp4 : TypePattern

includeSubtypes = false
namePattern =" SalesOrder”

includeSubtypes = false
namePattern =" Opportunity "

isStatic = true

kind = call

namePattern = "updateBO"
declaringType

tp1 : TypePattern |

namePattern = "BusinessObject’
includeSubtypes = false

parameters = husinessOhject

Figure 16: Partner Deter mination Aspect

businessObject CF1
CF OF1

e
; call getCurrentTransactionTy)
transactionType N
] OF2

<<dataStares>
curtTransType

BussinessOhject

CF2

CF2

- call autocomplete Ay [elee]
0F5

feunTrans Type == TransactionTypes. Sales Orderbew || curTransType == TransactionTypes. Opportunity Neu

OF1

OFB transactionType

Figure 17: Advice updateChange

Figure 18: Advice updateNew

- 35-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606/Isualize all moDel drivEn programmi
Version 1.0

Work Package *

Deliverable D3.2

Date:10 October 20C

Figures 19 and 26how the behaviour models of the methsetProspectandupdateof the
class Opportunity-igures 21 and : show the behaviour models of the methodsetSoldTo
andupdateof the classSalesOrde. These foumodels do not contain any logic for part
determination as this logic is now externalizethe aspect.

ZH1

eadself

CFZ

prospect

setPrusped]

CF3

@

Figure 19: Method setProspect

changelist

Figure 20: Method update

iZF1
Readself
CF?

call updateBO

ZF1

FeadSelf

soldTo

CF3

Figure 21: Method setSoldTo

changelist

Figure 22: Method update

ZF1

FeadSelf

call updateBO

CF3

© Copyright by VIDE Consortium

- 36-

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

B) Measurement Data

In the following, we measure the values of theaidht metrics that were presented earlier to
evaluate the understandability and maintainabdfthis aspect-oriented design.

« Size

o Number of Actions:
= 2in methodsetProspecf{class Opportunity)
= 2 in methodupdate(class Opportunity)
= 2in methodsetSoldTdclass SalesOrder)
= 2in methodupdate(class SalesOrder)
= 2in adviceupdateChange
*= 4in adviceupdateNew

o0 Number of Model Elements:

»= 7 in methodsetProspecbf the class Opportunity (3 control flows, 2
object flows, 2 actions)

= 7 in methodupdateof the class Opportunity (3 control flows, 2 ohjec
flows, 2 actions)

= 7in methodsetSoldTaf the class SalesOrder (3 control flows, 2 object
flows, 2 actions)

= 7 in methodupdateof the class SalesOrder (3 control flows, 2 object
flows, 2 actions)

= 7 for adviceupdateChangé3 control flows, 2 object flows, 2 actions)
= 17 for adviceupdateNew(7 control flows, 6 object flows, 4 actions)

» Complexity

o Cyclomatic Complexity

= 1 for methodsetProspect
= 1 for methodupdateof class Opportunity
= 1 for methodsetSoldTo
= 1 for methodupdateof class SalesOrder
= 1 for adviceupdateChange
= 2 for adviceupdateNew

+ Separation of Concerns

o Concern Diffusion over Actions for the concern partdetermination
= 0in the methodetProspect
= 0inthe methodipdateof class Opportunity
= O for methodsetSoldTo

-37-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

= (O for method update of clasalesOrder

o Concern Diffusion over Operations (CDO) value2dfor this scenario as the
partner determination logic is implemented in twiviae, which are part of
one aspect.

o Concern Diffusion over Modules value df as the partner determination
behaviour is now modularized in one aspect.

 Ease of Change

We assume that the partner determination logic lshio& extended in some way to e.g.,
fire an event after the automatic completion. Thpact of this change is as follows:

o Number of Impacted Components(the partner determination aspect)
o0 Number of Impacted Member2;(the advicaipdateChangandupdateNew

3.3 Evaluation

In the previous sections we modelled the crossmuttoncerns consistency checks and
partner determination respectively once with obgatnted PIM models and once with

aspect-oriented models as proposed in VIDE. Weneikt discuss the measured evaluation
data to compare both designs with respect to utatetability and maintainability.

3.3.1 Understandability

We observe that the size of the methodgtExpectedProcessingStartDatand
setProcessStatusValidSinbas been reduced drastically when the logic fdoremg the
constraint C3 is externalized into an aspect. ¢, ilae number of actions decreased from 5 to
2 actions as well as the number of model elemehtshavent down from 18 and 19 to 7 and

6 respectively. Moreover, the cyclomatic complgxit these two methods decreased as the
logic for enforcing C3 is no longer part of thenhelvalue of concern diffusion over actions
is also reduced from 2 to 0 when C3 is modularag@n aspect because there is no concern
switch in the two method bodies. All these metst®w that the understandability of the
models is improved when aspects are used.

Similar observations are made in the case of padetrmination. The size of the methods
update, setProspect, and setSoldTo went down wieeadpect is used to modularize partner
determination. For instance, the number of mod&hehts in the method bodiesseftSoldTo
andsetProspectvent down from 23 to 7 for each of them. The aedvipdateNewwhich is
called after the party setting in both methods, damimber of model elements value of 17.
Moreover, the values of cyclomatic complexity férese methods also decreased when
partner determination is modelled as an aspeacddition, the value concern diffusion over
actions went down from 2 to 0.

On the other hand, the usage of aspects adds additcomplexity as the user has to
understand the pointcut and what joint points m lehaviour models it matches. However,
tools can be developed for that purpose. Such t@ady exist for AspectJ [13,14].

- 38-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

3.3.2 Maintainability

The evaluation data shows that the maintainabdityhe application models is improved,
which is as expected because of the better separaticoncerns. For instance, the concern
diffusion over modules went down from 2 to 1 foe specific consistency check C3. If other
consistency checks are also considered the CDMewail even go down from higher values
(i.e., the number of classes where logic for enfigrconsistency checks is contained) to 1.
Similarly, the concern diffusion over operation (GPfor partner determination went down
from CDM value 4 to 2 whereas the value of conebffusion over modules went down from
2 to 1 when an aspect is used.

As a result of the improved separation of concénescost in effort and time for finding the
model elements that implement the logic belongmgdnsistency checks is reduced. This is
also reflected by the metric number of impact meduwhich went down to 1 in both the
consistency check and partner determination exarggeonly the aspect has to be changed.
The number of impacted members also went down fdorto 2 in the case of partner
determination

3.4 Summary

In this section, we introduced opportunity managetmes a business scenario from SAP
CRM applications. We presented two examples ofsoutsing concerns there: consistency
checks and partner determination. After that, weleied each of these two concerns once
without aspects and once with aspects and comphestivo design options with respect to
understandability and maintainability.

- 39-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

4 Specification of Aspect Oriented Composition in VIDE

This section describes the proposed integratioaspect-oriented concepts into MDD in the
VIDE context. The integration can be split into el parts, which are outlined in the next
section. The specification, described in this sectis based on the results and experiences
collected during the research work, the Demonstrdévelopment and the discussion with
project partners.

41 Overview

To support aspect-oriented concepts in VIDE, cbatrons in different areas are necessary.
Figure 23 depicts the relevant VIDE components,civthave to be considered during the
integration.

General VIDE Components Contributions by WP3

VIDE Editor

Visual syntax of VIDE Language - (WP2)
H>{ Extension for AO constructs ‘

Textual syntax of VIDE Language - (WP2) &

| Mapping for AO constructs ‘

AO UML Profile ‘

Model Repository

JPS Profile |
Pointcut Resolving
. 4—'-""‘_'-'—/
Model Transformations /
Model Compiler
] Aspect Weaving

Figure 23: Contributions by WP3

The main part, we focus on, is the VIDE PIM langeiaghich was specified in Work package
2 (VIDE/UML Metamodel). The corresponding modektered in the EMF model repository.

To integrate the aspect oriented composition inMH2E PIM language, it is necessary to

allow the modelling of aspect oriented construespéct, advice, pointcut, etc.) in the model
repository. For this purpose the VIDE/UML metamoslels extended by using the UML

Profile technology. The UML Profiles (AO ProfileRS3 Profile), which are required to allow

modelling the AO constructs, are described in sciime4.2.

-40-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Moreover, the horizontal model composition was emo® process the aspect weaving. The
model-to-model transformations, which are requiednerge the base and aspect model and
to produce the woven object oriented output maatel described in section 4.3.

In the VIDE context, the model at PIM level is muended to be created manually, but rather
to be produced by several editors, which suppat\WDE PIM language. Two kinds of
editors for the support of a textual and a visualtax are planned in the VIDE project.
Section 4.4 presents a proposal for extendingekieial and visual syntax to integrate aspect-
oriented constructs. Furthermore, to produce VIOE Ranguage model from a concrete
syntax, several mappings are required. This tagpaiscussed as an open issue at the end of
this section.

4.2 AO UML Profiles

The provided UML Profiles for extending the VIDENPIllanguage were already partially
described in D3.1. This section gives a structureerview of the completed UML Profiles,
the contained elements and the possibility for mimdeaspect-oriented constructs.

4.2.1 Aspect-Oriented Modelling Profile

The AO Profile is depicted in Figure 24 and cordgagtements, which allow modelling of
aspect-oriented constructs at PIM level.

Aspect

The stereotypdspectis applicable to classes and represents an asuehtile, which serves
as a container for additional aspect-oriented (@byibindings, pointcuts) and object-oriented
(methods, etc.) constructs. The attribugtantiationKinddefines the instantiation strategy of
the aspect. The two kinds of instantiat&ingleton(one aspect instance) ams$tance(one
aspect instance per class instance) are suppomed cavered in the enumeration
instantiationKind

Advice

The stereotyp@dviceis applicable to operations defined in an aspedatute This stereotype
marks an operation as an advice, which containadiee behaviour. The advice parameters
are used to pass context information to the advite usage together with the pointcut
parameters is explained in the following sections.

Proceed

The stereotyp®roceedis applicable to CallOperationActions within arviee. This special
action calls the bound joinpoint. Advices, whicle ubeProceedaction, can only be bound
using the binding kind “around”. All parameter hims be passed to thBroceedaction.
Naturally, the target pin of the CallOperationActimust not be set.

-4]1-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2

Version 1.0 Date: 10 October 2007
==profile==
videAD
==etaclass== ==metaclazs== ==metaclass== ==metaclass==
Class - Operation e ~ Activity CallOperationAction
I
|
|
| LY
==sterectype== ==sterectype== | L ==stereotype==
Aspect Advice ..Jl.dx_r'ice t_:uehav@oyr Proceed
[Class] [Operation] % -defined in Activity, [Calloperationction]
} L e |as for normal |
-instantistionking ; Instantistionkind | -izAround ; Bodlean ‘ |Operati|:|ns —
1 |advice
-pointcLt .
0.* “hinding |7
Pointcut 1. Binding

-=ignature : Parameter [0..%] FointC -bindingkind : Bindingkind

-expression §1.%

PCE |4

-EXpressions

ExceptionPCE FeaturePUE IntersectionPCE ContextExposurePCE
™-namePattern : String [0..%] paratmeters | Parameter [1.%]
-wizibility : Wizibiltykind [0.%]

-izStatic © Boolean [1] = false

- [[1
T thisPCE | targetPCE | |argsPCE

OperationPCE PropertyPPCE
-kind ; CperationdPkind [1] -kind | PropertyJPRind [1]

Hype |-declaringType -type
0.* AR n..*

TypePattern “exception <<E!_I‘|Uﬂ_‘]EfE‘tl_Dl‘|3==* ﬂ:enumer_atmnf}
-includeSubtypes ; Boolean [1] = falze | 0..% Singingkind g st nkingd]
~namePattern : String [0.3]] hefore =ingleton

—parameter after instance
o around
fordered}
package=cope
0.x ==enumetation== ==gnumeration==
Property JPkind OperationJPkind
PackagePattern
oet call
-niamePattern . String [0, *fordered} zet execution

Figure24: AO Profile

-42-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Pointcut

The metaclas$ointcut allows modelling pointcuts, which are used to désca set of
joinpoints in the behaviour model. The pointcutsloet contain a string representation of this
description, but rather uses fine granular instanck pointcut expressions (see PCE) to
express the pointcut definition. The resulting aejoinpoints is the union of the results of
each contained pointcut expression. Furthermoregtietcut contains a signature, which is
used to pass the context information to an advibe. signature of the bound advice has to be
equal to the pointcut signature. The parameterschwéire associated to the signature have
also to be referenced by the corresponding poirggptessions (see ContextExposurePCE).
This mechanism allows the explicit assignment aftert information to the parameters of
the poincut.

Binding

TheBindingclass is used to associate a pointcut with ancadvihe bound advice adapts the
joinpoints, which are referenced by the connectethtput. The binding also defines the
binding kind (before, after, around), which is defi in the enumeratioBindingKind The
advice is not directly associated with the pointhgcause the explicit definition allows to
create n:m associations with a separate binding fkiineach association.

PCE

PCE s an abstract class, which allows the modellingp@htcut expressions. Subclasses of
the PCE class are used to specify the concreteepgrep and the kind of joinpoints, which
should be captured by the corresponding pointcut.

FeaturePCE

FeaturePCEdefines a feature of a class. Operations and gasgerties are supported.
FeaturePCEprovides different attributes and associationsfcifying detailed properties of
the features to be captured (namePattern, visibiiStatic, declaringType and type). The
associationtype defines the return type if operation is specifi@dherwise the association
typedefines the type of the specified field.

OperationPCE / PropertyPCE

OperationPCEdefines joinpoints, which relate to an operatido. distinguish between the
two different joinpoint kinds (call of an operati¢8allOperationAction) and the execution of
an operation (Operation)) the attriblied has to be set. Possible values are defined in the
enumerationOperationJPKind In an analogous way, theropertyPCEdefines joinpoints,
which corresponds to a property of a class. Thaieml defined in the enumeration
PropertyJPKindcan be set to the propeiind.

ContextExposurePCE

The ContextExposurePCEare responsible for selecting joinpoints with tpeafied context
and also for passing the context information toltbend advice. Context informations are for
instance arguments of an operation call and valh&h is set to a property.

For this purpose, th€ontextExposurePCEsontains a list of parameters. If the captured
context of the current pointcut expression showddohassed to the advice, the corresponding
instance of the Parameter defined in the pointogmasure has to be referenced by the

-43-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

parameter list of the pointcut expression. TontextExposurePCHEsan also be used to filter
the resulting set of joinpoints without passing tomtext information to the advice. In this
case, the parameter referenced by the pointcutesgion must not be referenced by the
pointcut signature.

ThisPCE

TheThisPCEcaptures a joinpoint, if the object, where the paiimt is triggered, is an instance
of the type (or subtype of the type) of the firatgmeter defined in the parameter list.

TargetPCE

TheTargetPCEcaptures a joinpoint, if the target object, onehihe joinpoint is triggered, is
an instance of the type (or subtype of the typdheffirst parameter defined in the parameter
list.

ArgsPCE

The ArgsPCEcaptures a joinpoint, if the arguments (call/ex@cujoinpoints) or the value to
be get/set from/to a property match to the parantisteassociated by thergsPCE.

I nter sectionPCE

The IntersectionPCE allows combining pointcut egpi@ns to limit the resulting set of
joinpoints.

TypePattern / PackagePattern

Instances of these metaclasses are used to expmess and packages. Within the
namePatternwildcards can be used to select related elem@uiditionally the TypePattern
can be enabled for covering subtypes by settingtbpertyincludeSubtypes

4.2.2 Join Point Shadowing Profile

The JPS Profile depicted in Figure 25 provides tamtal stereotypes to annotate resolved
joinpoints in the base model. Supported joinpoanes

» Call (stereotype CallJPShadow)

» Execution (stereotype ExecutionJPShadow)

* PropertySet (stereotype PropertySetJPShadow)
* PropertyGet (stereotype PropertyGetJPShadow)

These additional stereotypes are defined in a aepadPS Profile to facilitate an
uncomplicated extension. If we want to consider@@&L expressions, which are mainly used
in the VIDE PIM language for evaluating propertieésg. PropertyCallExp), it is only
necessary to change the stereotype PropertyGetd®\8ha be applicable to instances of the
metaclass PropertyCallExp.

-44-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Work Package 3 — Deliverable D3.2

Version 1.0 Date: 10 October 2007
=zprofile==
videJPS
e [==sterectype==
— JPshadow
references =l
BRCiRG Fror | [l |
[Fspect model {-hinding ; Binding [1..4]
=z=gterectypes== ==gterectypes== ==gterectypes== ==gterectypes==
CallJPshadow | |ExecutionJPshadow [PropertySetJPshadow PropertyGetJPshadow
[[CallCperationdction] | |pviriteStructuralFesturedction] | [[ReadStructuralF estureAction)

[Cperation]

==metaclazs=>-
CallDperationAction

==metaclazs==
Operation

==metaclazs==
WriteStructuralFeatureAction

==tetaclazs=>=
ReadStructuralFeatureAction

[]

==metaclazs==
AddStructuralFeatureValueAction

RemoveStructuralFeatureValueAction

==metaclazz==

Figure 25: JPSProfile

4.3 Specification of Model Transformationsfor AO Composition

As already described in D3.1 and also shown infei@b, the proposed aspect composition
process is separated in two phases (pointcut regoand aspect composition) and requires
two input models (base model and aspect model)eftlesiess, each of the mentioned phases
can consist of more than one transformation itenawith several intermediate models. The
section 4.3.1 (Pointcut Resolving) and section24(@spect Composition) give a detailed
description of the core transformations, which egquired to realize our approach. The
structure of the description is similar to the tésmp for the description of ATL
transformations (which can be found at the ATL wviteb§18]), where the usage of semi
formal as well as textual description (pseudo cadéjansformation rules is allowed.

© Copyright by VIDE Consortium

-45-

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2

Version 1.0 Date: 10 October 2007
UML-MM
AO-MM JP-MM
(UML Profile) (UML Profile)
M2 A ¥
’ .
PC-resolving .
§ A S
i " UML-Model
PC :
Introduction
Aspect-Model

‘
3
AY]

reference

Q Transformation

V instance of / data flow

Figure 26: Aspect Oriented Composition

The transformation description is structured akVad:
* Transformation

o Description
= Textual description of the transformation

o0 Inputmodel(s)

o0 Outputmodel(s)

0 Rules
» Rules, which are required to process the transfiboma
= Not exhaustive (similar rules are not fully desedbopen issues, etc.)

o Operations
= Helper operations, to reduce complexity of rules

-46-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

The rules are structured as follows:
* Rule

o Description
= Textual description

o FromElement
= Element in the input model, on which the rule iggered

o Precondition
= Precondition for the execution of the current rule

o0 Actions
= Actions, which are part of the rule and have tplxxessed.

= To clarify the intent of the described rule, pseedde similar to ATL
code [18] as well as textual phrases are useceideiscription.

Elements, which serve not as a starting point fdescribed rule or where the precondition is
not fulfilled, are copied from the source modet(sjhe target model(s)

After the core transformations are described, sbigtion gives an overview of the additional
features, e.g. the handling of OCL expressions @ndynamic joinpoint properties during
static weaving at PIM level.

4.3.1 Pointcut Resolving

Transformation: Pointcut Resolving

Description: Searches for and annotates model elesnehich are selected by a pointcut
Inputmodel: Aspect Model (VIDE/UML2 + AO ProfileBase Model (VIDE/UML2)
Outputmodel: Intermediate Model (VIDE/UML2 + JPDfe)

Rule: ExecJPS

Description: Assigns a corresponding ExecutionJ&slvastereotype to an Operation, which
is matched by a pointcut.

FromElem:op: uml::Operation
PreconditionisJoinpoint(op)
Actions:

1. CreateopTarget: uml::Operation
2. Copy all properties obp to opTarget
3. CreateexecJPS: JPSProfile::ExecutionJPshadow with following property
assignment
a. base_ Operation <- op
b. binding <- getBindings(op)
4. AssignexecJPS toopTarget

-47-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Rule: CallJPS

Description: Assigns a corresponding CallJPshadterestype to a CallOperationAction,
which is matched by a pointcut.

FromElem:callOp: uml::CallOperationAction
PreconditionisJoinpoint(callOp)
Actions:

1. CreatecallOpTarget: uml::CallOperationAction
2. Copy all properties ofallOp tocallOpTarget
3. CreatecallJPS: JPSProfile::CallJPshadow with following property
assignment
a. base_Operation <- op
b. binding <- getBindings(op)
4. AssigncallJPS tocallOpTarget

Rules for the remaining joinpoint shadow kinds barstructured in an analogous way.

Operation: isJoinpointShadow

Description: Detects if a model element is matdmedny pointcut.
Parameter: Potential joinpoint shadow

Return: Boolean

isJoinpointShadovpptJPShadow)
1. returngetBindings(potJPShadow).notEmpty()

Operation: getBindings

Description: Detects all bindings, whose associg@ititcut matches the potential joinpoint
shadow.

Parameter: Potential joinpoint shadow
Return: Sequence of bindings

getBindingspotJPShadow)

1. return all binding$, whereb.pointcut matchegpotJPShadow

Operation: match
Description: Detects, if an element is matched pypiatcut
Parameter: Potential Joinpoint shadow, Pointcut

Return: boolean
-48-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

matchpotJPShadow, pointcut)

1. return true, if at least one of the associatedtpaoirexpressions
(pointcut.expression) matchegpotJPShadow

a. pce: JPSProfile::OperationPCE matchegotJPShadow if:
i. kindOf(potJPShadow) ==pce.kind and
ii. namepotJPShadow) is covered byce.namePattern and
li. visibility(potJPShadow) = =pce.visibility and
iv. isStaticpotJPShadow) = =pce.isStatic and
v. analogous for the remaining attributes and assonmbf pce
b. pce: JPSProfile::PropertyPCE matchegpotJPShadow if:

i. analogous to OperationPCE

c. pce: JPSProfile::IntersectionPCE matchegpotJPShadow if:
i. all associated pointcut expressiopsd.expressions) match
potJPShadow
d. pce: JPSProfile::ThisPCE matchegpotJPShadow if:

I. theinstance , whemtJPShadow is triggered is instance of
pce.parameters|[0].type

e. pce: JPSProfile::TargetPCE matchegpotJPShadow if:

i. the instance, on whighotJPShadow is triggered is instance of
pce.parameters|[0].type

f. pce: JPSProfile::ArgsPCE matchegpotJPShadow if:

i. the arguments (or value to get or to setpotJPShadow are instances
of the types of parameters definecioe

4.3.2 Aspect Composition

The aspect composition transformations are morept®mthus this section focuses on some
core transformations, which can be modified an@maéd to support special features, as will
be described in later sections.

Transformation: JPS Extraction
Description:

This transformation extracts several joinpoint sivesito a separate activity. The goal of this
transformation is the provision of explicit accésghe control flow, which is required by the
weaving transformations. Using UML Action semantiossome cases it is possible to model
only the object flow, but the proposed aspect caiijpm adapts the behaviour by changing
the control flow. This transformation does not drthe observable behaviour, but rather
prepares the behaviour model for processing thecagpmposition.

-49-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Of course, if the behaviour is modelled using estptontrol flow, the transformation has not
to be processed. The processing of this transfawmas meaningful for the following
joinpoint shadow kinds:

» CallJPshadow
* PropertySetJPshadow

* PropertyGetJPshadow (if OCL expressions are ugeckémling/evaluating a property,
this transformation cannot be processed, becaespitipoint shadow can be placed
within a nested OCL expression)

For each supported joinpoint shadow a separateisulequired. Because of similarity, only
the rule for extracting call joinpoint shadows esdribed.

Inputmodel: Intermediate Model (VIDE/UML2 + JPS Rig)
Outputmodel: Intermediate Model (VIDE/UML2 + JPSfe)

Rule: ExtractCallJPshadow

Description: Extracts call operation joinpoint sbead to a separate activity and connects the
control and object flows. The original join poirttaglow is replaced by a call of the created
activity. The behaviour is not changed.

FromElementcallOp: uml::CallOperationAction

PreconditionhasJPSStereotype(op)

Actions:

1. Createact: uml::Activity in parent class afallOp

2. CreatenitNode: uml::ActivityInitialNode in act

3. CreatefinalNode: uml::ActivityFinalNode in act

4. CreatebeforeCF: uml::ControlFlow in act

5. CreateafterCF: uml::ControlFlow in act

6. CreatetargetCallOp: uml::CallOperationAction in act

a. Copy all relevant properties afallOp (operation, etc.)
b. Copy stereotype markirtgrgetCallOp as a join point shadow
7. ConnectnitNode andtargetCallOp usingbeforeCF
ConnecffinalNode andtargetCallOp usingafterCF
9. For each InputPigurlnputPin incallOp do
a. CreatenputParam: uml::ActivityParameterNode in act
i. inputParam.Type <- curlnputPin.Type
b. CreatenPin: uml::InputPin in targetCallOp
I. inPin.Type <- curlnputPin.Type
c. CreatenOF: uml::ObjectFlow
d. ConnecinputParam andinPin usinginOF
10.For each OutputPiourOutputPin incallOp do
a. CreateoutputParam: uml::ActivityParameterNode in act
i. outputParam.Type <- curoutputPin.Type
b. CreateoutPin: uml::OutputPin in targetCallOp

o

-50-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

I. outPin.Type <- curOutputPin.Type
c. CreateoutOF: uml::ObjectFlow
d. ConnecbutputParam andoutPin usingoutOF
11.CreatecallBeh: uml::CallBehaviourAction
a. Copy all input and output pins afallOp
b. Connect control flow
i. callBeh.Incomming <- callOp.Incomming
ii. callBeh.Outcomming <- callOp.Outcomming
iii. callOp.Incoming.target <- callBeh
iv. callOp.Outcomming.source <- callBeh

Transformation: Advice Weaving
Description:

This transformation creates the required modelasifucture (aspect classes, required
interfaces, etc.), adapts the control flow arouhd joinpoint shadows and connects the
context information with the corresponding adviBedescription of transformation rules will
be provided for the CallJPshadow and the bindingd kbefore and around Other
permutations are handled in an analogous way.

Inputmodel: Intermediate Model (VIDE/UML2 + JPS Rig)
Outputmodel: Woven Model(VIDE/UML?2)

Rule: InfrastructureCreation

Description:

This rule creates the following required modelastructure:
» aspect class with the defined instantiation stsateg
» advice operation (incl. transformation of the Pextaction)
» Interface for closure classes

Note: If an operation/parameter is created/copiedified, also the associated
activity/activity parameter is created/copied/mastit

FromElementaspect: AOProfile::Aspect
Precondition: none
Actions:
1. Create new class for the current aspect
2. Copy all operations from aspect to the createdsclas
3. For each advice operation do:
a. Create an interface AroundClosure:

i. Set an individual name, because for each adviceAmrundClosure
interface is created

-51-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

4.

5.

6.

ii. Create a public operation runProceed with the seshen type and the
same signature like one of the bound joinpoint eiad

b. Create an operation with the advice signatureemiwly created class.

i. Add a parameter with the type of the AroundClosimerface to the
signature

Copy the advice behaviour to the created activity.

d. Replace the Proceed action with the call to thePraceed method of the new
parameter, which has the type of the AroundClosuezface.

i. Reconnect the control and object flows

Create a static methagetAspectOf(Object 0) in the aspect class. This method is
later used to get the aspect class instance. $mgcapproach supports two instantiation
strategies, two mechanisms for creating an instasfcéhe aspect class have to be
supported (see next steps).

If aspect.instantiationKind == singleton
a. Create a static field in the aspect class to stwesingle aspect class instance.

b. Create the behaviour for creation of the singldatstance (see Singleton design
pattern)

If aspect.instantiationKind == perThis

a. Create a static field, storing a hash table toestmsociations between an object
and the corresponding aspect class instance

b. Create the behaviour for creating and managingcasteess instances

Rule: Behavior AdaptationCallJPSBefore
Description:

This rule inserts additional behaviour before aaagunl operation call.
FromElementcallJPS: JPSProfile::CallJPShadow

Precondition:callPS.binding [0].bindingKind == before (The approach only
supports weaving of one bound advice per joinpsliatdow, see section 4.3.4)

Actions:

1. Create getAsp: UML::CallOperationAction to call the static method
getAspectOf(Object 0) of the aspect class, which contains the boundcadv

2. CreatecallAdvice: UML::CallOperationAction to call the advice method on

the corresponding aspect class instance

3. Connect the output ofetAsp with the target input pin otallAdvice

Reconnect the control flow to achieve the followirgglling order: getAsp,
callAdvice, callJPS

Assign context information
-52-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

a. Analyze corresponding pointcut for context expospoitcut expressions. If a
context exposure pointcut expression referencesrangeter from the pointcut
signature, assign the corresponding value to theegponding parameter in the
advice call (note, pointcuts and advices have e lthe same signature, otherwise
they cannot be bound)

i. ThisPCE

1. Assign the self object value getting by the Rea@d®ébn to the
corresponding advice call parameter by creatingva object flow
between the output pin of the ReadSelfAction ardpérameter.

ii. TargetPCE

1. Assign the object, on which the captured joinpsimadow is called
to the corresponding advice call parameter by orga new object
flow between the relevant object and the parameter.

iii. ArgsPCE

1. Assign the parameters which are passed to the regptall to the
corresponding parameters of the call to the adwse. object flow
between the value sources and the targets (comdsmpinput pins
of the advice call).

Rule: Behavior AdaptationCallJPSAround

Description:

This rule inserts additional behaviour around awagal operation call.
FromElementcallJPS: JPSProfile::CallJPShadow

Precondition:callPS.binding [0].bindingKind == around (The approach only
supports weaving of one bound advice per joinpsiidow, see section 4.3.4)

Actions:

1. Extract captured CallOperationAction to a separgtglic Operation extrOp:
uml::Operation (respective to the assigned activity). This seepacessary to allow
the advice to call also private operations.

a. Create new public Operation

b. Set an unique name

c. Copy the captured CallOperationAction to the cré&eeration
d. Reconnect required object and control flows.

2. Create an individual Closure class. A concreteamms of this class will later be passed to
the advice, where the interface of the Closure aitbjan be used to call the captured
joinpoint shadow using a standard interface (ruo®ed method in interface
AroundClosure)

a. Create a new Closure class, which implements tleei#dClosure interface, which
was created in the context of the bound advice.

b. The newly created class contains:
-53-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

i. Fieldtarget . The type is the declaring type@ftrOp. This field is set
by the constructor

ii. OperationrunProceed() which is an implementation of the operation
runProceed() declared in the AroundClosure interface (sameasige
and return type) .

1. The operation contains a call textrOp on target. All
parameters are connected using the object flow.

2. If the runProceed() Operation returns a value, the value of
target.extrOp is returned.

3. Create an ActioncreateClosure: uml::CreateObjectAction to get an
instance of the Closure class.

4. Connect the self object (e.g. available by the Betfédction) to the input pin of
createClosure

5. Create getAsp: UML::CallOperationAction to call the static method
getAspectOf(Object 0) of the aspect class, which contains the boundcadv
6. CreatecallAdvice: UML::CallOperationAction to call the advice method on

the corresponding aspect class instance
7. ReplacecallJPS with callAdvice and reconnect existing control flow.
8. Connect the output ofetAsp with the target input pin otallAdvice

9. Reconnect the control flow to achieve the followicaling order.createClosure
getAsp, callAdvice

10. Assign context information

a. Analyze corresponding pointcut for context exposex@ressions. If a context
exposure pointcut expression references a pararfietarthe pointcut signature,
assign the corresponding value to the correspongamgmeter in the advice call
(note, pointcuts and advices have to have the ssigmature. Otherwise they
cannot be bound)

i. ThisPCE

1. Assign the self object value with the help of theaBSelfAction to
the corresponding advice call parameter by creadingew object
flow between the output pin of the ReadSelfActiond athe
parameter.

ii. TargetPCE

1. Assign the object, on which the captured joinpsimadow is called
to the corresponding advice call parameter by orga new object
flow between the relevant object and the parameter.

iii. ArgsPCE

1. Assign the parameters which are passed to the regptall to the
corresponding parameters of the call to the adwse. object flow
between the value sources and the targets (comdsmpinput pins
of the advice call)

-54-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

11.Connect the output pin otreateClosure to the corresponding parameter of
callAdvice using an object flow.

4.3.3 Additional AO composition features

This section describes additional features of thgeat composition which are relevant or
could be useful in the VIDE context.

4.3.3.1 Handling of OCL expressions

In the VIDE PIM language, OCL expressions (e.g.th@CallExp) are used to evaluate/read
features instead of actions from UML Action Semes{e.g. ReadStructuralFeatureAction).

Supported OCL expressions are described in the \Wi@Eamodel and are stored in the model
repository as metamodel instances and not as amerigenstance with a textual description
of the OCL expression. The aspect composition ptagmtcut Resolving” is not affected by
the usage of OCL expressions, because it is pessitdearch for metamodel instances with a
specific type. The corresponding transformationstzaadapted easily.

As already mentioned, the “Aspect Composition” iieggl explicit control flow for the
behaviour adaptation. If a single OCL expressiondentified and marked as joinpoint
shadow, the aspect composition can take placeeidiscribed way. No conceptual changes
are required.

However, the usage of nested OCL expressionsgegyfigure 27) causes problems, because
no explicit control flow is modelled within the OGéxpression. Only the modelled control
flow of the root expression is accessible by thegformations.

=

OperationCallExp 1000

CF

condlition FeatureCallExp
IfExp i 'ok' refer%erty

lCF elseExpression user.amount

'not ok’

Figure 27: Example of a nested OCL expression

If a nested OCL expression was identified as apjimt shadow (e.g. the FeatureCallExp in
Figure 27), it is not possible to directly adape thehaviour, represented by the identified
joinpoint shadow.

Following solutions were researched:

» Additional model-to-model transformations couldnskate the OCL expressions into
UML action semantics using explicit control flowcdaprocess the aspect composition
in the described way. This solution is not applieakbecause the metamodel

-55-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

description of the VIDE/UML language provides a setbof the UML metamodel,
where UML actions are not intended to be useddading and evaluating properties.

« If we want to weave the additional behaviour disecinto the nested OCL
expressions, there is a possibility to call usefindd operations from OCL
expressions. Before the execution of the OCL exiwas by a special engine, the
expressions can be rewritten for instance to ogenmerformance, which can cause
inconsistency in the woven behaviour.

» The pragmatic approach for solving this problentoiprocess the aspect weaving in
the common way on the root OCL expression, whidvidles access to the control
flow. This strategy could cause the effect of “iegise” weaving, but the opportunity
scenario has shown that this solution is the masdtsle for modelling and composing
all analyzed crosscutting concerns.

4.3.3.2 Handling of dynamic join point propertiesduring static weaving

The described approach processes static pointsalvieg only. After the pointcut resolving,
all joinpoint shadows are determined.

Especially the static type checking during the k@eg of the context exposure pointcut
expressions can cause the effect, that some speraknts are wrongly not determined as
joinpoint shadows (e.g. because of polymorphism).

During a static analysis the dynamic propertiesit{rae properties) are not present or had to
be statically approximated using an expensive amal¥One possible solution is to statically
determine only potential joinpoint shadows and teawe dynamic conditions before the
advice execution. Whether a conditional advice hallexecuted, is decided at runtime.

4.3.3.3 Proceed action without a complete signature

In some cases there is no need to modify valueghwdre passed to thoceedaction in an
advice. The possibility for calling thproceedaction without the complete signature can
reduce modelling effort and could provide a moreegal and flexible advice model. The
described approach can be adapted for providirggféa@ture by buffering the parameters in
the Closure object. In this case, the parameters hat to be passed to the advice and to the
proceed call. Rather they are passed “automatidallthe proceedcall.

4.3.3.4 Joinpoint Reflection

Several advices, which model crosscutting conceuat as debugging and profiling, require
the facility, to get information about the joinpbifoperation name, field name, etc.), which
causes the advice call. The Aspect] approach [2}jges a generic class JoinPoint, which
contains several attributes for representing thepmnt’s context information. During the
aspect weaving, the advice signature is extendeddoyng a parameter of type JoinPoint.
Before the advice is called, a concrete instandaetlass JoinPoint is created and filled with
the context information. This instance is passethéadvice, which can access the context
information.

This mechanism can also be integrated in the dpedlaspect composition approach.

-56-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

4.3.4 Open issues

The following areas in the domain of aspect origoaare not considered in the described
approach:

* Advice precedence: The described AO Profile is designed to suppastarthan one
advice to be bound to a joinpoint, but there ignesibility to define, in which order
advices should be considered during the aspect @asitign. The approach of Fuentes
and Sanchez [15] uses a kind of prioritisationdfiees by adding an integer value to
each advice. Furthermore there are a lot of appesadescribed (e.g. [16]), which
show the complexity of the problem.

e Structural introduction: Structural introductions are not considered indbkscribed
approach, which allow focusing on the behavioumpé&atzon on PIM level.

» Validation of base and aspect models: A suitable validation of the input models can
support the modeller and detect errors alreadynduthe modelling phase. A
validation requires a complex analysis, which gdmsond the scope of this
deliverable.

4.4 VIDE Syntax extension for aspect-oriented constructs

If we want to enable the editors, which are intehttebe developed in the VIDE project, to
produce VIDE PIM language with the aspect oriergetgnsion, it is also required to support
the definition of aspect oriented constructs.

Two kinds of editors are planed to be developea fExtual editor allows to use the textual
syntax of the VIDE language, whereas the visudbedises a visual syntax, to describe VIDE
programs.

==metaclass== ==metaclass== ==metaclass==
Class —— Operation 3 Activity
|
|
==sterectypes== ==sterectypes== |_'_:,!
Aspect Advice Advice behaviour
[Cla==] [Cperation] | = defined in Activity,
S P o L | I Lrer G ol] az for normsal
(-instantiationkind : Instantistionkind |-izAround : Boolean Qperations
1 | -advice
= i *
p‘:""g'::“ _hinding |-
Pointeut | 1. Hinding .
_pointout -bindingkind : Bindinogkind i
¥ |

Figure 28: Relevant elementsto be covered by a syntax extension

-57-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Not all aspect-oriented constructs, which are aefim the AO Profiles have to be supported
explicitly in the VIDE syntaxes. With respect toethelevant part of the AO Profile (see
Figure 28), the following constructs were identifieo be supported by the concrete VIDE
syntaxes:

* Aspects, to provide a new kind of module for encégisg crosscutting concerns

* Advices, to encapsulate behaviour, which has tm$erted at the identified joinpoints
* Pointcuts, to declare elements on the modelledwietnato be adapted.

* Bindings, to associate pointcuts with advices toodend.

The behaviour in an advice can be expressed by ubkim already defined constructs for
describing behaviour in the textual and visual ayrdf the VIDE language.

The following sections give an overview of the prsals for the extensions of textual and
visual syntaxes. This proposals are example-baseédi@a not provide formal extensions such
as an EBNF extension of the VIDE language.

4.4.1 Textual Syntax

The proposal, described in this section, allowsdesig aspects as superior modules, which
can contains advices, pointcuts, advice operatomslso common operations and fields, etc.
Therefore, an aspect should be an extension &ss.cAn overview of the proposed syntax is
depicted in Listing 1.

aspect Foo

{

poi nt cut foo(i nt i, String s)

{
call (*bar(int i, String s)
}
advi ce fixFoo(i nt i, String s): String : ar ound foo(i, s)
{

/l... do something

return proceed();

Listing 1: Syntax overview

A pointcut is similar to a method and contains assignature. However in the pointcut’s
body only declarative parts can be used, no seondslrequired after the pointcut definition.
To specify the pointcut definition, pointcut expiess can be defined within a pointcut body.
The defined pointcut expressions are combined waih implicit OR-relation (). An
example is shown in Listing 2.

-58-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

poi nt cut foo(int i, String s)

{

cal | /* .. %, execution /*. * , get [* . *, set [* .. *

Listing 2. Combined pointcut expressions

The combination of the advice signature and poirgggnature during the binding allows for
passing context information determined during tlmenfgut resolving into the advice. A
Pointcut is bound to an advice using one of theofahg binding specifiers: around, before,
after (See Listing 3). Listing 3 also depicts tisage of the Proceed keyword, which allows
calling the captured joinpoint from an advice.

advi ce fixFoo(int i, String s): String : ar ound foo(i, s)
{

return pr oceed();
}

Listing 3: Advice binding

The proposed syntax does of course not suppdeatlires, which are able to be expressed in
the model repository using the AO Profile extensibhe main goal of a concrete textual
syntax should aim at the specific requirementsiégnused domain.

4.4.2 Visual Syntax

The proposal for the visual syntax, which is préseénn this section, is based on the work of
Han, Kniesel and Cremers [17].

Aspects are visualized similar to classes. Addgilynaspects contain advices, pointcuts and
pointcut expressions (see Figure 29).

=<aspect==
AspectName
private int _someField
plblic void method()
- -::-\::PCE::-::-
==pointcut== call(* * bar(int i))
private pointcutMamelin i)
-::-\::PCE::-::-
call{* * foo(int i))
=<advice==
private around adviceMamelint i)

Figure 29: Proposal for visual syntax of aspeared constructs

-59-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

The binding is realized by an association betwé&enpbintcut and the corresponding advice.
The pointcut is associated to the declaring poinepressions, which contains a textual
description. This variant increases the usabilitghe syntax, because to model all pointcut
expressions by using detailed instances of requigestes would cause more effort.

The mapping between the textual and visual synté&xagsponsible for transforming the
textual pointcut definition into the correspondingetamodel instances of the VIDE PIM
language.

4.4.3 Openissues

To allow a flexible description of pointcuts a piout language is required. For this purpose a
new domain-specific language could be designedpimess and transform the pointcut
language constructs a parser is required. Theréfoorild be more efficient to choose one of
the existing approaches (e.g. the pointcut langoédepectJ).

As already described, both proposals are desigmedsing pointcut declarations in a textual
syntax, so the process for parsing and transforithi@gpointcut definition can be reused.

Furthermore, to transform the visual and textuaitay into the VIDE model repository,
several mapping transformations are required.

-60-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

5 Summary and Conclusions

Both Aspect-Oriented Software Development (AOSDY aviodel Driven Development
(MDD) are approaches to reduce complexity in sofén@evelopment. These approaches use
different but complementary ideas to reduce comyeROSD adds additional modules and
a weaving mechanism to extract tangled and scdttenectionality, so called crosscutting
concerns. MDD reduces complexity by replacing thmging of source code by using abstract
models instead; executable code is generated fnenmbdels. Crosscutting concerns appear
already in the modelling phases of MDD while aspeatnted programs can have a lot of
source code. So it seems natural that a combinatiathe two approaches can have the
advantages of both and thus can help overcome esmpin software development. Task 3.3
was aimed at evaluating the developed aspect-edezamposition approach and at providing
a specification of AOC to be supported by the VipBject.

In Section 2, we reviewed and evaluated our approadich was developed in the first
period of WP3. Some deficiencies were identifiedeRo the flexibility of the selected AO
Modelling approach, the required extension to thistimg AO Profiles has been done. With
the extended AO Profile, a suitable modelling a#ntified crosscutting concerns has been
made possible.

To show, where our approach is settled and compate other approaches, different
variations of aspect-oriented composition were ulised at several levels. This discussion
shows the flexibility of our approach (e.g. suppatdifferent instantiation strategies and the
extensibility of AO Profiles).

In the last part of section 2, the chosen evalnatiateria for the developed AO modelling
approach are presented and associated with suitadtiécs. The metrics help, to show the
impact of the usage of our AO modelling approachhenselected evaluation criteria.

Section 3 presented a review of the business sogndrich was already presented in D3.1.
Furthermore, the models of the crosscutting corsseequired for the empirical evaluation,
were described. This description contains the a¢fgaented models as well as the aspect-
oriented models of the same crosscutting concérhs. allowed us to apply the selected
metrics on both variants and compare them with eeispo understandability and
maintainability. The results have shown that thenta@ability of the crosscutting concern
functionality was improved by using our AO modsdllirmpproach. The complexity of
methods, where the crosscutting concern was egttdobm, was reduced, which leads to an
improved understandability. On the other hand, abpect-oriented modelling approach has
introduced an additional implicit coupling betweeaxvices and joinpoints. This effect
decreases the understandability. However, the us&gruitable tool support (e.g. static
analysis for pointcut resolving during the modej)ican minimize this effect.

In Section 4 the specification of the AO Profilesldhe required core model transformations
for aspect composition were presented. For a campdalisation, additional transformations,
which were not explicitly specified, are requireéthey can be derived from the existing
transformations. Furthermore, a textual descriptibadditional useful features, which can be
integrated as an additional step/rule in certaangformations, was given. The extensions for
the textual and visual syntax were not specifiedhiformal way. Proposals with concrete

-61-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

examples were presented, to show, which constaret;ecessary and should be considered
during the next activities of the VIDE projects.

All open issues, which were outlined in D3.1, weoasidered during the second period of the
Work package 3. The requirements for providingaté aspect models of the crosscutting
concern Consistency Check were analyzed (not destexplicitly in D3.2) and accordingly
to these requirements, the AO Profiles were extémolsuit the needs.

Also the facility for modelling the same behaviaardifferent ways (control flow based,
object flow based) were researched. As a resulintenmediate transformation was added to
the aspect composition. This transformation ex$rdbe joinpoint shadows to a separate
activity, where the explicit control flow can becassed by the following composition
transformations.

Section 4 provided proposals for the syntax exterssof the textual and visual VIDE syntax.

These proposals are not sufficient for the reatisawithin the VIDE prototypes. Only a short

overview of required constructs and possible repregions was given. Formal extensions
e.g. EBNF of the textual syntax extension shoulddbBned before integrating the syntax
extension in the VIDE prototype (see section 5.2).

Moreover, the impact of the usage of OCL expression evaluating/reading features was
analyzed and possible solutions were discusseecios 4.

5.1 Demonstrator

Parts of the developed concepts were realizedDssveonstrator, to show their feasibility and
suitability. This demonstrator is neither a prop#ynor a tool to be used. The demonstrator
consists of the following software artefacts, whane only executable in an eclipse-based
environment (see README in Demonstrator.zip):

* AO Profiles

« ATL Transformations for basic concepts of Pointddesolving and Aspect
Composition at PIM level

* Example models

The Demonstrator is not exhaustive.

The realisation showed the high complexity of teguired transformations for Pointcut
Resolving and Aspect Composition. Furthermore thstable version of the ATL Eclipse

plug-in caused some problems. It was for instarateeasy to decide, if some of the errors,
which have occurred during the development, weused by our ATL transformations or by
a bug in the ATL implementation.

5.2 Outlook

The described concepts for pointcut matching ange@scomposition can be basically
integrated in the PIM visual editor for VIDE thatlvWbe developed in Work package 9. The
transformations presented in this deliverable camuded and extended for that purpose. For
the integration of aspect-oriented constructs m téxtual and visual syntax, our proposal

-62-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

should be used to define a formal specificatiog, By extending the EBNF definition of the
VIDE textual syntax. Also the specification of theapping between the additional syntactical
constructs should be defined. Such a mapping spatwiin was not in the scope of this
deliverable.

The Demonstrator developed in Workpackage 3 ispadt of Work package 9, which deals
with the development of the VIDE prototype. Neveltdss, if similar technology to the one
used in the demonstrator will be chosen for thetgtype, suitable artefacts of our
demonstrator should be reused and/or modified.

-63-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2
Version 1.0 Date: 10 October 2007

Abbreviations

CIM Computation Independent Model
PIM Platform Independent Model
PSM Platform Specific Model

MDA Model Driven Architecture

JPS Join Point Shadow

AO Aspect Orientation

AOP Aspect-Oriented Programming
AOM Aspect-Oriented Modelling

AOC Aspect-Oriented Composition
ATL ATLAS Transformation Language

-64-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.2

Version 1.0 Date: 10 October 2007
References
1. McCabe & AssociatedvicCabe Object-Oriented Tool User’s Instructip994.

2. Java Method Cyclomatic Complexityttp://www.leepoint.net/notes-
java/principles_and_practices/complexity/complexdtya-method.html

3. Rosenberg and Hyatsoftware Quality Metrics for Object-Oriented Enviroents April
1997http://satc.gsfc.nasa.gov/support/ CROSS _APR97/ssdP®F

4. Sant’ Anna et al.On the Reuse and Maintenance of Aspect-Orientad/&af An
Assessment FrameworRroc. of Brazilian Symposium on Software Enginagrin
(SBES'03), Manaus, Brazil, Oct 2003, 19--34.

5. M. L. Lee,Change Impact Analysis of Object-Oriented Softwd?aD Thesis, George
Mason University, Virginia, USA, 2000

6. Hippner, H. and Wilde, K. D. (2002). CRM—Ein Ubed, in S. Helmke, M. Uebel and
W. Dangelmaier (eds), Effektives Customer Relatigm#lanagement: Instrumente—
Einfuhrungskonzepte—Organisation, second editiabl&, Wiesbaden, pp. 3-37.

7. Buck-Emden R., Zencke, P., mySARM: The Official Guidebook to SAP CRM Release

4.0, SAP Press, May 2004

SAP AG,SAP CRMhttp://www.sap.com/solutions/business-suite/crneémepx

SAP AG, SAP Netweaver Developer Studio,

http://help.sap.com/saphelp _nwO04/helpdata/en/cbBd#2f46c33e10000000a11405a/fra

meset.htm

10. TopCasedhttp://www.topcased.org/

11.SAP AG, Partner Determination Procedures, SAP kybra
http://help.sap.com/saphelp_crm40/helpdata/en/8c&2484a11d5980800a0c9306667/co
ntent.htm

12.Khanna, AHow to set up partner determination in mySAP CRIRM Expert
http://www.crmexpertonline.com/archive/Volume 03@2)/Issue_01 (January and_Fe
bruary)/v3ila3.cfm

13. Aspectj homepage, October 2006p://www.eclipse.org/aspectj/

14. AspectJ Development Toolsttp://www.eclipse.org/ajdt/

15. Lidia Fuentes and Pablo Sanchdzesigning and Weaving Aspect-Oriented Executable
UML models” Journal of Object Technology - Special Issue gpekt-Oriented
Modelling.

16.Jing Zhang, Thomas Cottenier, Aswin van den Berd, reff Gray: “Aspect Composition
in the Motorola Aspect-Oriented Modelling Weaver’ Journal of Object Technology,
vol. 6, no. 7,Special Issue. Aspect-Oriented Madg)IAugust 2007, pp 89-108
http://www.jot.fm/issues/issue_2007_08/article4.

17.Yan Han, Ginter Kniesel, Armin Cremers: TowardsudisAspect] by a Meta Model and
Modelling Notation, Proceedings of the 6th Interoaal Workshop on Aspect-Oriented
Modelling, Chicago, USA, March 2005

18.ATLAS Transformation Language (ATLhttp://www.eclipse.org/m2m/atl/

19. Objecteering Software homepage, August 200p,//www.objecteering.com/

20.C. Bockisch, M. Haupt, M. Mezini, and R. Mitschlnvelope-Based Weaving for Faster
Aspect Compilers. IiNet.ObjectDays2005.

21.E. Hilsdale, J. Hugunin, Advice Weaving in Aspediar 2004, AOSDO04

22.VIDE Consortium,Deliverable number D.1.1: Standards, Technologaatl Research-
Base for the VIDE Project, Project Evaluation Crite and User Requirements
Definition, 2007

©

- 65-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 3 — Deliverable D3.2
Date: 10 October 2007

Disclaimer of SAPAG?

Copyright 2007 SAP AG, All Rights Reserved.

No part of this publication may be reproduced or tr
for any purpose without the express permission of S

The information in this document is proprietary to
document may be reproduced, copied, or transmitted
purpose without the express prior written permissio

This document is a preliminary version and not subj
agreement or any other agreement with SAP. This doc
intended strategies, developments, and functionalit

and is not intended to be binding upon SAP to any p
business, product strategy, and/or development. Ple
document is subject to change and may be changed by

notice.

SAP assumes no responsibility for errors or omissio

SAP does not warrant the accuracy or completeness o
graphics, links, or other items contained within th
document is provided without a warranty of any kind

implied, including but not

limited to

the implied w

merchantability, fithess for a particular purpose,

SAP shall have no liability for damages of any kind
limitation direct, special, indirect, or consequent
result from the use of these materials. This limita

cases of intent or gross negligence.

The statutory liability for personal injury and def

affected. SAP has no control over the information t
through the use of hot links contained in these mat
endorse your use of third-party Web pages nor provi
whatsoever relating to third-party Web pages.

% Applies to Section 3

© Copyright by VIDE Consortium

ansmitted in any form or
AP AG.

SAP AG. No part of this
in any form or for any
n of SAP AG.

ect to your license
ument contains only
ies of the SAP® product
articular course of
ase note that this
SAP at any time without

ns in this document.

f the information, text,
is material. This
, either express or
arranties of
or non-infringement.

including without
ial damages that may
tion shall not apply in

ective products is not
hat you may access
erials and does not
de any warranty

- 66-

