
Project supported by the European Commission within Sixth Framework Programme

© Copyright by VIDE Consortium

SPECIFIC TARGETED RESEARCH PROJECT

INFORMATION SOCIETY TECHNOLOGIES

FP6-IST-2004-033606

VIsualize all moDel drivEn programming

VIDE

WP 3

MDD Suitable AO Modelling and
Composition Techniques D.3.1

Suitable Aspect-Oriented Modelling and
Composition Techniques in Model-driven

Software Development

Project name: Visualize all model driven programming

Start date of the project: 01 July 2006

Duration of the project: 30 months

Project coordinator: Polish - Japanese Institute of Information Technology

Work package Leader: Fraunhofer FIRST

Due date of deliverable: 30 June 2007

Actual submission date 08 August 2007

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 2 -

Status developed / draft / final

Document type: Report

Document acronym: D3.1

Editor(s) Jaroslav Svacina, Anis Charfi

Reviewer(s) Anis Charfi, Axel Spriestersbach, Joachim Hänsel, Marco

Mosconi

Accepting Kazimierz Subieta

Location www.vide-ist.eu

Version 1.0

Dissemination level PU/PP/RE/CO

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 3 -

Abstract

The purpose of work package 3 is to investigate strategies for the integration of aspect
oriented composition techniques in model driven development and make recommendations to
the other project participants on the most suitable approach for aspect-oriented composition
in VIDE. The research goal of Fraunhofer FIRST is to raise AO techniques to a higher
abstraction level than programming whereas SAP is seeking techniques for a better
modularization and handling of crosscutting concerns in business application models and
consequently less complex models that are easy to understand and maintain. This work
package addresses the limitations of object-oriented modelling at the PIM level with respect
to crosscutting concerns. FIRST presents a proposal for introducing aspect-oriented
concepts to the PIM modelling level. Moreover, the semantics of these concepts will be
defined and possibilities for implementing aspect-oriented composition using AO-specific
model-to-model transformations will be discussed. The work package shows also through
examples how the proposed concepts can be used in modelling business applications.

The VIDE consortium:

Polish-Japanese Institute of Information Technology
(PJIIT)

Coordinator

Poland

Rodan Systems S.A. Partner Poland

Institute for Information Systems at the German Research
Center for Artificial Intelligence

Partner Germany

Fraunhofer Partner Germany

Bournemouth University Partner United
Kingdom

SOFTEAM Partner France

TNM Software GmbH Partner Germany

SAP AG Partner Germany

ALTEC Partner Greece

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 4 -

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 5 -

Executive Summary

The VIDE project aims at developing “a fully visual toolset to be used both by IT-specialists
and individuals with little or no IT-experience, such as specific domain experts, users and
testers.”1. Therefore VIDE investigates “visual user interfaces, executable model
programming, action- and query-language-semantics, AOP and quality assurance on the
platform-independent level, service oriented architecture (especially Web services
integration) and business process modelling.”. VIDE is aimed to be embedded in the Model
Driven Architecture of the OMG, thus supporting modelling both on a domain-oriented
computation-independent layer (CIM), a platform-independent layer (PIM), and generating
models on a platform-specific layer (PSM). VIDE is primarily targeting the domain of
business application software.

The goal of Work Package 3 in the VIDE project is to investigate integration strategies for
adding advanced aspect-oriented software composition in the platform-independent modelling
phase of MDD processes. The resulting knowledge allows integrating the aspect-oriented
modelling and composition techniques into the VIDE language and architecture. The benefit
for the VIDE project will be shown by evaluating the developed concepts and by assessing the
used technology.

In this work package we have researched aspect orientation on the PIM level using Customer
Relationship Management business scenarios that are provided by SAP. The lack of support
in object-oriented modelling techniques for modularizing crosscutting concerns in the
provided scenarios raised the need for aspect-oriented techniques while modelling business
processes and business applications.

Our research included the evaluation of different existing approaches in the domain of aspect
oriented programming by applying them to the relevant phases of Model Driven Development
as well as the investigation of existing approaches in the area of aspect-oriented modelling.

Based on the research results a suitable concept for modelling aspect-oriented constructs, such
as aspect, advice, and pointcut was developed. To ensure a straightforward integration of
these constructs into the VIDE metamodel we have selected the UML Profile extension
mechanism.

To allow the VIDE model compiler to deal with the aspect-oriented modelling concepts that
we have developed, we present an aspect composition strategy, which is based on model-to-
model transformations. The feasibility of the developed concepts and strategies was shown by
a proof-of-concept prototype, which consists of UML Profiles for aspect modelling and two
transformations respectively for join point matching and aspect weaving at the model level.

Deliverable 3.1 presents the state of the art in aspect oriented composition at the model level
and provides an analysis of the chances and risks for the investigated modelling and
composition techniques. It also aims at providing the required knowledge for integrating
aspect orientation into the context of VIDE.

1 From the VIDE project summary in the Technical Annex I

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 6 -

Table of Contents

Abstract .. - 3 -

Executive Summary .. - 5 -

Table of Contents .. - 6 -

Abbreviations ... - 8 -

1 Introduction and Overview .. - 9 -
1.1 Challenges .. - 9 -

1.1.1 Task 3.1: Practical evaluation of AO modelling and composition in MDA - 10 -
1.1.2 Task 3.2: Provision of a knowledge base for AO software composition in MDA
processes.. - 10 -
1.1.3 Task 3.3: The specification of the Aspect-Oriented composition mechanisms to be
supported by VIDE .. - 10 -

1.2 Document Outline ... - 10 -

2 Background: Aspect-Oriented Software Development and Model Driven Development ... - 12 -
2.1 Aspect Orientation .. - 12 -

2.1.1 Introduction .. - 12 -
2.1.2 Core terms ... - 12 -
2.1.3 Core concepts .. - 16 -

2.2 Aspect Orientation at the Model Level .. - 16 -
2.2.1 Overview .. - 17 -
2.2.2 Aspect-oriented Modelling ... - 18 -
2.2.3 Aspect-Oriented Composition in Model Driven Development - 19 -

2.3 Chances and Risks ... - 21 -
2.3.1 Aspect-oriented concepts at model level ... - 21 -
2.3.2 Aspect-oriented Modelling ... - 22 -
2.3.3 Aspect-oriented composition ... - 22 -
2.3.4 Refactoring of aspect and base models .. - 23 -

3 Crosscutting Concerns in SAP Business Applications ... - 25 -
3.1 Example of business application .. - 25 -

3.1.1 Customer Relationship Management .. - 25 -
3.1.2 Lead and Opportunity Management .. - 26 -

3.2 Crosscutting Concerns in the CRM application .. - 28 -
3.2.1 Consistency checks ... - 28 -
3.2.2 Partner determination .. - 31 -

3.3 Benefits of VIDE Aspects in modelling Business Applications ... - 33 -
3.4 Summary... - 35 -

4 Realizing Aspect Oriented Composition in VIDE .. - 36 -
4.1 Overview ... - 36 -
4.2 Technological overview .. - 37 -

4.2.1 Base Technology ... - 38 -
4.2.2 Aspect Extensions ... - 38 -
Aspect Modelling .. - 38 -
Pointcut matching ... - 38 -
Aspect composition (weaving) .. - 39 -
4.2.3 Requirements ... - 39 -
4.2.4 Model Transformations .. - 39 -

4.3 AOC Architecture .. - 40 -
4.4 Models and Metamodels ... - 41 -

4.4.1 Base Models .. - 41 -
4.4.2 Aspect models ... - 41 -
4.4.3 AO UML Profile .. - 42 -

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 7 -

4.4.4 Intermediate model: Join Point Shadow UML Profile .. - 46 -
4.4.5 Result model .. - 47 -

4.5 Model Transformations ... - 47 -
4.5.1 Pointcut Resolving ... - 47 -
4.5.2 Aspect composition .. - 48 -

5 Summary and Conclusions ... - 56 -
5.1 Open issues .. - 57 -
5.2 Outlook .. - 57 -

References ... - 58 -

DISCLAIMER OF SAP AG ... - 62 -

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 8 -

 Abbreviations

CIM Computation Independent Model

PIM Platform Independent Model

PSM Platform Specific Model

MDA Model Driven Architecture

AO Aspect Orientation

AOP Aspect-Oriented Programming

AOM Aspect-Oriented Modelling

AOC Aspect-Oriented Composition

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 9 -

1 Introduction and Overview

The object-oriented methodology is the most used methodology in software development in
general and in model driven development in particular. However, object-oriented
decomposition is too limited to efficiently decompose different domains. To address this
limitation, aspect orientation provides advanced modularisation and adaptation concepts,
especially behaviour adaptation, i.e., inserting and executing encapsulated behaviour at
declared interaction points, as well as structural adaptation, i.e., extending already existing
structural elements. These additional concepts allow a modularized definition of crosscutting
behaviour, non-invasive adaptation of software (components), decapsulation of structure and
behaviour, integration of "unprepared" binary components and parameterized specification of
behavioural composition.

As a result, MDD can gain a lot from the advanced modularisation concepts provided by
aspect orientation. Decreasing the model complexity and favouring an easier reuse and
extensibility are among the most important benefits, which allow the modeller to focus on a
certain domain and realize functionality without tangling and scattering.

1.1 Challenges
To integrate aspect orientation into model driven development in the VIDE context and show
the resulting benefit, three challenges were identified.

The first is choosing the right application scenarios, which are valuable for VIDE partners and
users. There are several suitable scenarios for development and production aspects. Examples
of development aspects include debugging, testing, performance tuning and monitoring.
Additionally production aspects enable the software developer to add functionality without
adding more visibility of model element internals, which eases model comprehension,
maintenance, and extension.

The second challenge is the integration of aspect oriented concepts into the model driven
development process, which makes an exploration of required techniques indispensable. First
it is necessary to find out the most suitable way to describe, respectively to model the
additional aspect oriented constructs, such as aspect, advice, pointcut, etc. Especially while
modelling pointcuts, there are many different variations, which have a significant impact on
the resulting power and expressiveness of the mechanism for selecting interaction points in
the modelled control flow. After defining a way to model aspect oriented constructs, the
composition of the base model and the aspect model has to be investigated. Different
approaches from the aspect oriented software development domain are compared and checked
for suitability, whereas the main focus is on aspect weaving and instantiation strategies.

At last, the third challenge concerns the development and realisation of aspect composition on
the model level in the VIDE context. The non-invasive extension of the VIDE Metamodel
using UML Profiles allows the modelling of aspect oriented constructs in VIDE context. The
developed concept for aspect oriented model composition is implemented using a set of
model-to-model transformations, which perform pointcut matching as well as aspect weaving
on the PIM level using different weaving strategies. The realisation shows the feasibility of
the developed aspect oriented composition strategy and helps to detect potential technological
problems.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 10 -

These challenges correspond to the following tasks2.

1.1.1 Task 3.1: Practical evaluation of AO modelling and composition in MDA
A demonstrator (for the sole purpose of the evaluation report) utilizing techniques selected in
task 1.3 will be developed, which will show the suitability of the technique, investigate the
maturity of its AO modelling approach and spawn hidden risks in composing AO models
particularly for data-intense business applications. To this end a metamodel for assessment of
most suitable AO approaches will be developed, regarding AO model extensions, aspect
weaving level and complexity of MDA transformations. Several parts of a given business
application will be analyzed in order to identify composition scenarios crucial for business
applications. The most important composition scenarios will be designed and executed using
the most reasonable composition technique. The results will be assessed considering the
identified factors important to an MDA development process. A report will summarize the
experiment's results, discuss the collected data and in particular recommend an AO modelling
technique and design for integrating AO composition into the VIDE environment.

1.1.2 Task 3.2: Provision of a knowledge base for AO software composition in MDA
processes

By structuring the empirical data of Task 3.1 a standard body of knowledge for best practices
of AO modelling and composition techniques in MDA development processes with a focus on
the business application domain will be initialized. It addresses the maturity of existing AOP
approaches as well as integration issues. The evaluation of this body will take place by
dissemination of research results and empirical evaluation by the research community,
software companies and tool vendors.

1.1.3 Task 3.3: The specification of the Aspect-Oriented composition mechanisms to be
supported by VIDE

Based on the analysis performed and in the cooperation with VIDE language definition
activities of WP2, the aspect-oriented composition mechanisms for VIDE will be specified.
The specification will cover respective semantics, notation and visual user interface elements.

1.2 Document Outline
After having given an overview of this deliverable in Chapter 1, we introduce the core
concepts and terms in the domains of Aspect Orientation (AO) and Model Driven
Development (MDD) in Chapter 2. This part is split into two sections: Aspect-Oriented
Modelling and Aspect-Oriented Composition in Model Driven Development. Then, we present
the state of the art in AO and MDD. After that, we provide an analysis of chances and risks in
the described approaches.

In Chapter 3, some crosscutting concerns in a typical SAP business application are identified
and explained. Moreover, the need for aspect-oriented modelling capabilities is motivated and
the expected benefits for modelling business applications are discussed.

2 From the VIDE WP3 description of work in the Technical Annex

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 11 -

Chapter 4 provides a detailed description of the realized aspect-oriented modelling concepts
and presents a proof-of-concept demonstrator. Moreover, it introduces the proposed
composition strategy, the respective model-to-model transformations, and the chosen
technology to implement these. Chapter 4 also gives examples that illustrate the usage of the
realized concepts for modelling the crosscutting concerns identified in Chapter 3.

Chapter 5 gives a summary of the proposed approach to aspect-oriented modelling at the PIM
level and explains its benefits. Moreover, this chapter discusses open issues and gives an
outlook to the future, especially with respect to Deliverable 3.2.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 12 -

2 Background: Aspect-Oriented Software Development
and Model Driven Development

The most pressing problem in software development seems to be complexity. Most target
domains and projects get more and more complex. Tackling this complexity during software
development needs new techniques and methodologies beside the currently used ones. Both
Aspect-Oriented Software Development (AOSD) and Model-Driven-Development (MDD)
provide new ways to confine and reduce complexity in creating solution domains and
developing software. Both approaches try to solve the complexity problem with different but
complementary ideas. So it seems natural to combine these approaches and reap the benefits
of both for overcoming complexity in software development.

2.1 Aspect Orientation
This section starts with giving a short motivation for the use of aspect oriented software
development in general. After that some frequently used terms of the aspect oriented software
development domain will be introduced. This will be followed by a description of weaving
techniques employed for compilers of aspect oriented programming languages.

2.1.1 Introduction
The currently mainly used paradigm in software development is object-orientation (OO).
After years of object-oriented development, experience has shown that OO is not sufficient
enough to modularize certain concerns into the solution domain. Aspect-Oriented
Programming emerged as a paradigm which wants to enable a better modularization and
encapsulation of crosscutting concerns in software development While OO uses classes as
modularization units, AO adds aspects as additional modularization units for crosscutting
concerns.

Modularized concerns are composed with association and class-based inheritance in object-
orientation. AO extends those with structural composition mechanisms like instance-based
inheritance mixins or behavioural composition mechanisms. The behavioural composition
mechanism is enabled by well-defined interaction points of aspects and classes (join points),
declarative specification of interaction points (pointcuts), and the interception of the execution
to insert behaviour that is defined by an advice. Therefore AO programming (AOP) advances
the modularization of program behaviour.

In Aspect Oriented Programming (AOP) a huge variety of techniques and concepts is
employed to achieve aspect-oriented modularization. Often similar terms denote different
concepts. To avoid confusion, the following section introduces the main terms and concepts in
aspect-oriented software development.

2.1.2 Core terms
Most of the following definitions are based on [39], [35], and [36].

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 13 -

Separation of Concerns

• Separation of concerns simplifies system development by allowing the development of
specialized expertise and by producing an overall more comprehensible arrangement
of elements [36].

• Separation of Concerns is an in depth study and realisation of concerns in isolation for
the sake of their own consistency (adapted from “On the Role of Scientific Thought”
by Dijkstra, [38]).

• Separation of concerns addresses the issue of providing sufficient abstraction for each
concern as a modular artefact.

Tyranny of Dominant Decomposition

• The Tyranny of the Dominant Decomposition refers to restrictions (or tyranny)
imposed by the selected decomposition technique (i.e. the dominant decomposition)
on software engineer's ability to modularly represent particular concerns.

• The Tyranny of the Dominant Decomposition refers to restrictions imposed by this
decomposition on the simultaneous use of other decompositions.

Composition

• Composition is bringing together separately created software elements [36].

• Composition is the integration of multiple modular artefacts into a coherent whole.

Weaving

• Weaving is the process of composing core functionality modules with aspects, thereby
yielding a working system ([36]).

• Historically this term is used to refer to the composition of aspects with other concerns
in the system. (See composition)

• Weaving is the composition of aspects with modules that represent other concerns in
the system.

Decomposition

• Decomposition is the breaking down of a larger problem into a set of smaller problems
which may be tackled individually.

Modularisation

• Modularization is putting together (or partitioning) artefacts into entities called
modules (usually aiming at low coupling and high cohesion).

Module

• A module is an abstraction in the adopted language.

Concern

• A concern is a thing in an engineering process about which one cares [36].

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 14 -

• A concern is a specific requirement or consideration that must be addressed in order to
satisfy the overall system goal. [37]

• A concern is an interest which pertains to the system's development, its operation or
any other matters that are critical or otherwise important to one or more stakeholders.

Crosscutting Concern

• A crosscutting concern is a concern for which the implementation is scattered
throughout the rest of an implementation. [36]

• A crosscutting concern is a concern which cannot be modularly represented within the
selected decomposition. Consequently the elements of crosscutting concerns are
scattered and tangled within elements of other concerns.

• A crosscutting concern is a concern, which is not modularly represented within the
selected decomposition into modules, with as a result the occurrence of crosscutting.

Crosscutting

• Crosscutting is a property of a concern for which the implementation is scattered
throughout the rest of an implementation [36].

• Crosscutting is the scattering and/or tangling of concerns arising from the inability of
the selected decomposition to modularise them effectively.

• Crosscutting is a structural relationship between representations of concerns.
(Crosscutting is a different concept from scattering and tangling.)

• Crosscutting is the occurrence of scattering and tangling of concerns involving a
common module.

Scattering

• Scattering is the occurrence of elements that belong to one concern in modules
encapsulating other concerns.

• Scattered concern is a concern which cannot be expressed as a single abstraction
within the adopted language (Here the term language may refer to requirement
specification, analysis, architecture specification, implementation languages, etc.)

• Scattering is the occurrence of the representation of one concern in multiple modules.

Tangling

• Tangling occurs when the code for the implementation of concerns is intermixed [36].

• Tangling is the occurrence of multiple concerns mixed together in one module.

• Tangled concern is a concern which cannot be expressed as a distinctive abstraction
within the adopted language; its definition is not separable from the definition of other
concern(s).

• Tangling is the occurrence of the coexistence of representations of multiple concerns
in one module.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 15 -

Aspect
An aspect is a unit for modularizing an otherwise crosscutting concern [39]. It defines
structural or behavioural enhancements that are attached to another unit. Most often, an aspect
module provides new features, such as pointcut and advice, to define those enhancements.

The aspect module may influence the AO composition in three different ways [20]. An aspect:

• may act as base code to be adapted by other aspects themselves,
• might be specialized into several sub-aspects, and
• may introduce adaptations that cause conflicts.

Join Point
In AOP join points are considered as well-defined "points in the execution of the program"
where aspects can interact with other parts of the program. The execution of models requires
an adequate definition and considers model elements rather than program elements. Similar to
executable program elements, such as statements or expressions, every structural and
behaviour model element that appears in the execution of the model can act as a join point.
Elements of a structural diagram may represent a join point shadow, specifying where an
aspect adaptation can be introduced. A no further restricted join point shadow acts as a join
point in every model execution. Model elements of behavioural diagrams directly represent
specifiable join points. They depict the execution of model elements within a certain scenario.
Both kinds of elements are used to formulate an AO adaptation.

A join point model defines all elements that can act as join points during model execution.

Pointcut
A pointcut is a predicate that matches join points [39]. Since join points are points in the
execution they comprise static (structure related) and dynamic (execution related) properties.
Two kinds of pointcuts can be distinguished: (i) pointcut that select join points by specifying
their static properties, i.e., properties of their join point shadows, and (ii) pointcuts that refer
to dynamic (runtime) properties, i.e., properties of a specific join point shadow execution. A
pointcut is often a member of aspect modules.

Advice
An advice is an artefact that augments or constraints concerns at join points [39]. An advice is
the actual behaviour to execute before, after or around a join point [36].

An advice is similar to a method. It defines a list of parameters and contains a block of
statements that are executed when the advice is invoked. However, in several AOP languages
advices do not have a name and also no return values. An advice is often a member of aspect
modules.

Join Point Model

• A Join Point Model (the kind of join points allowed) provides the common frame of
reference to enable the definition of the structure of aspects [36].

• A Join Point Model defines the kinds of join points available and how they are
accessed and used.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 16 -

2.1.3 Core concepts
Aspect-oriented composition is generally achieved by combining two model elements. The
resulting model element comprises the structure and behaviour of all the elements that were
composed. The way in which the structure or behaviour of a particular model element is
adapted, i.e., augmented, modified or replaced, is specified by the composition. In general,
two specific model compositions can be distinguished: merge of different module structures
and the adaptation of a module's behaviour.

Structural Composition
The structure of the resulting elements is produced by merging the structures of two
(equivalent) model elements, e.g. two classes or two packages. This symmetric composition
allows the introduction of new members and declaration of new module relationships. In
contrast to the programming level, also relationships between model elements can be merged
as first-class entities.

Behavioural Adaptation
An aspect adapts the behaviour of a model element at a specified join point. This asymmetric
composition is specified by a pointcut and binds an advice to a set of join points. The pointcut
specifies at which join points the aspect modifies the existing behaviour, and the advice
defines the additional behaviour that is executed before, after or around the join point.
Behavioural adaptations are in general only navigable from the aspect's side.

In AOP the actual composition is called weaving, which can either be static (at design time)
or dynamic (at runtime).

2.2 Aspect Orientation at the Model Level

An important task in Model Driven Development is the creation of precise, complete,
platform independent models, which can be transformed into models conforming to different
abstraction levels or into code for different platforms. Mainly due to the adoption of Action
Semantics, UML allows also the definition of executable models.

However, UML and the Action Semantics are based on object-oriented concepts and
consequently certain concerns cannot be adequately realized in a modularized way. There is
no possibility to encapsulate crosscutting concerns in single design modules. The problems of
scattering and tangling arise at the level of UML model constructs. Consequently, the
maintenance and evolution of the software and the reusability of existing modules is hindered.

Aspect-Oriented Software Development (AOSD) has proven in the recent years to be suitable
for providing technology that allows the encapsulation crosscutting concerns in a modular
way. Furthermore, AOSD also provides mechanisms to compose the encapsulated concerns
with the software modules they crosscut.

As a result of the additional modularisation concepts the software maintenance and the
reusability of software modules is enhanced [15]. Therefore the adoption of Aspect-Oriented
concepts has a positive impact on software evolution.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 17 -

To support the adoption of aspect orientation in industry an adequate tool support is required.
The existing tools focus on development environments for aspect-oriented languages, such as
AspectJ [16]. Obviously, other kinds of software development approaches, especially Model
Driven Development can benefit from aspect orientation.

The following sections describe the incorporation of aspect orientation concepts in Model
Driven Development separated into two main parts. The part on aspect-oriented modelling
gives an overview about the techniques for modelling and representing the additional AOSD
constructs (aspect, advice, etc.). The part on aspect-oriented composition in Model Driven
Development provides mechanisms for composing the base and aspect models.

2.2.1 Overview
Some exploratory research in the area of platform independent AOP and the use of AOP in
MDA has been performed ([43], [44], [45], [47]). The domains of the aspect and modelling
communities are partially overlapping ([46], [17]). Initial research is ongoing, but no
conclusions on how to best merge AOP and MDA have been drawn. Some sample tools
implement AOP in an MDA setting ([47]). It is likely that the future will merge AOP and
MDA into a new paradigm, or will extend the MDA paradigm to crosscutting concern
semantics ([48]). Both are powerful methodologies, which solve existing problems in current
mainstream paradigms like OO.

As described in the AOP introduction, AOP provides advanced composition concepts. AOP
enables a modularized behaviour definition and the use of that behaviour in multiple model
elements. With the decapsulation of structure and behaviour, integration of “unprepared”
binary components, “a posterior” integration of additional interface hooks and the
parameterized specification of behavioural composition AOP helps software developers
managing the complexity of software systems.

From the application of AOP to MDA, MDA gains several benefits. The model complexity is
decreased and the models become focused on their primary domain. And with parting the
models into aspects and models, also the complexity of model transformations can be
decreased. All this leads to reduced maintenance expenses. An overview of the exploration is
shown in Figure 1.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 18 -

Figure 1: Aspect Orientation in MDD

2.2.2 Aspect-oriented Modelling
Currently aspects are used mostly at the programming language level. With the advent of
model driven development and the increasing focus on modelling, several research groups
tried to move aspects to the model level. With Aspect-Oriented Modelling (AOM) [49]
aspects are integrated in model driven development methodologies.

2.2.2.1 Kinds of Models
There are several approaches to AOM. The first approach is to model a specific programming
language aspect framework like AspectJ with UML ([17]). This results in AspectJ typical
artefacts and thinking. The second approach is to abstract aspect-oriented development and
move it to a conceptually higher level ([18, 19]). After this, the aspect model, composition
model, advice model, execution semantics and aspect interactions are expressed in a
framework independent way and modelled too ([20]).

2.2.2.2 Notations
Aspects can be modelled with different notations. The most common way is to use a visual
notation. This is achieved by extending and customizing UML with UML meta-models and
profiles [21]. For most people this is the preferred approach because of its easy tool support
and high user acceptance. If UML and the UML extension mechanisms are not flexible
enough, aspects can be modelled visually with a custom notation. Most current approaches
only use class diagrams for AOM ([22]) and therefore only model structural not behavioural
AOP.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 19 -

2.2.2.3 Modelling Level
As mentioned, aspects are currently used on the programming language level. When lifting
them up to the model level, they can be modelled on the computation independent model
(CIM), the platform independent model (PIM), or on the platform specific level (PSM). Each
level has different constraints on the modelling of aspects and needs different artefacts and
probably different visual notations. Beside structural AOP modelling, behavioural AOP
modelling is needed especially for the CIM level (for example AOP annotated use cases).

2.2.2.4 Pointcut Languages
Pointcuts connect join points in the target model with aspects. Those connections are crucial
in AOM [24, 23]. On the programming language level pointcuts are described with text for
example with regular expressions for matching join points [25]. Moving to a model level,
pointcuts can also be modelled visually. There do exist several visual pointcut languages,
which either directly associate join points with aspects or provide a visual querying language
for join points [24, 22], which then connects the visual query description with aspects.
Another idea for expressing join points is using colours for each pointcut and aspect
combination, underlying join points with colours.

2.2.2.5 Location of Aspects
Aspects and especially pointcuts can be either located in the aspect package, which models a
domain, or in a separate package joining two independent domain packages. The later
approach enables switching of different pointcut and aspect models and allows developers and
modellers to model their domains without knowledge of aspects [26].

2.2.2.6 Crosscutting Concern Visualization
Aspect-oriented programming and modelling is about the encapsulation of crosscutting
concerns. A visual modelling framework and visual language probably needs to give visual
feedbacks on which join points are adapted by aspects. Otherwise it is hard for the modeller to
debug and correctly model specific pointcuts.

2.2.3 Aspect-Oriented Composition in Model Driven Development
Enabling the use of Aspect-Oriented Modelling (AOM) in a model driven setting includes the
definition of formal semantics for aspect composition, as the created (aspect) models have to
be processed by automated model transformations. Most AOM approaches define concepts
for decomposition, but lack corresponding composition semantics [27]. The modelling of
aspects and their composition can take place at each abstraction layer in an MDA stack, i.e.
CIM, PIM, PSM or Code [28]. Many approaches that deal with aspect model composition
propose a composition at the level where aspects are introduced, i.e. mostly at PIM or PSM
level. The techniques used for model composition are sometimes called ‘model merging’
and/or ‘model weaving’. In our terminology, model merging realises a symmetric composition
of models and results in a composed model which constitutes a union of all model elements
from the input models.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 20 -

Figure 2: Different kinds of model composition

It is a symmetric composition because of the fact that there is no particular ‘primary’ (or
‘base’ or ‘core’) input model, but all input models are equal. Also, the input models and the
merged model are instances of the same meta-model. Elements from different input models
that are matched based on an implicit or explicit matching rule (e.g. by name or meta-
attributes) get merged as one element in the output model. Following the terminology of
AOP, we see model weaving as the asymmetric variant of model composition, because it
defines one input model as the primary model, which is adapted by one or more aspect
models. The meta-models of the resulting model and the primary model (typically not aspect-
aware) are the same, while the aspect model can be based on a different (typically aspect-
aware) meta-model. Model weaving also introduces quantification, which allows for 1:n
matching of model elements and thus weaving of elements of an aspect model into multiple
elements of the primary input model.

Conceptually, model merging and model weaving are specializations of model transformation
and can therefore be realised through standard model transformation techniques [29]. In
contrast to model transformations as used in an MDA context, model composition generally
does not switch abstraction levels or meta-models of the involved models.

A completely different approach beside model transformation is the concept of partial views
on one common model repository. This approach is found in most UML-Tools, where each
diagram depicts only a part of the model. In this case, no explicit composition step is
necessary, because the complete and consistent model is always present in the repository. In
this approach, the modularization and separation of concerns would become an issue of the
modelling tool that would have to integrate the aspect views dynamically.

We identified 4 variables that describe properties of different model composition approaches:

• ‘Where’ - Where are aspects defined and/or composed?
Possible locations are CIMs, PIMs and PSMs as well as the source code [30]. Most
AOM approaches fit into PIM or PSM level, because they are extensions of the UML.
AOM languages representing concepts of a concrete AOP platform should be

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 21 -

considered platform-specific, because the underlying aspect composition semantics is
dependent on this particular platform.

• ‘When’ - When is the composition performed?
Composition can be performed in a horizontal or a vertical transformation step (See
Figure 2). Horizontal composition means that the composition takes place either at
PIM, PSM or Code level. The composed model stays at the same abstraction level and
acts as a source for the next transformation steps. A vertical composition takes place at
the transition from one abstraction level to the next concrete one, i.e. during a
transformation from PIM to PSM or PSM to Code. When model composition can be
performed directly at the level where the aspects are modelled or can be delayed to a
later point, i.e. a more platform specific level [30, 31].

• ‘What’ - What gets composed?
Symmetric approaches allow the definition of modules that are self-contained and
independent of each other. These modules constitute models consisting of structure
and behaviour describing one concern [32, 33]. On the other hand, in asymmetric
approaches it is often crosscutting behaviour that needs to be integrated in one or more
elements of other models [31]. The introduction of additional structure to existing
model elements is also possible.

• ‘How’ - How does the model composition work?
In the first place, model composition is about matching and integrating structures
("static" model elements) and behaviours ("dynamic" model elements). These are
typically identified by name patterns, explicit relationships or meta-data and in the
case of behaviours based on control flow, state or events. For asymmetric model
composition, the bindings of primary model elements to aspects have to be defined.
These bindings can be part of the aspect model or outside of the models. Other
possible configuration artefacts for model composition can be constraints and
composition directives. The former can further restrict identification and matching of
elements from different models, the latter define additional rules for the integration of
model elements [31, 34].

2.3 Chances and Risks

As described in the previous sections, there are many approaches for the adoption of aspect-
oriented concepts to the PIM level. The usage of aspect-oriented modelling und composition
techniques comes up with many advantages and also with some problems, which could hinder
the integration into the existing model-driven development processes.

The next sections discuss the chances and risks with respect to different domains.

2.3.1 Aspect-oriented concepts at model level
Aspect-orientation provides additional concepts for extended modularisation of both structure
and behaviour of crosscutting concerns. These concepts enhance the modularisation,
reusability of modules and allow the reduction of complexity, which have a positive impact
on the evolvability and maintainability of the software.

Since model-driven development also aims at an improved evolvability and maintainability,
consequently the adoption of aspect-oriented concepts into the model-driven development
will achieve a good developer and modeller acceptance.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 22 -

2.3.2 Aspect-oriented Modelling
To enable the usage of aspect-oriented concepts during the modelling phase, new types of
model elements are required to represent the additional aspect-oriented constructs, such as
aspect, advice, Pointcut, etc.

In terms of the modelling standard, UML provides different ways, to extend the UML
metamodel for defining the additional constructs. The different ways can be distilled into two
kinds of metamodel extensions:

• Direct changes to the UML metamodel (heavyweight extension)

• UML metamodel extension using UML Profiles (lightweight extension)

2.3.2.1 Extended UML Metamodel
The heavyweight variant of extending the UML metamodel to support aspect-oriented
constructs causes direct changes to the UML metamodel. Due to these changes, existing tools
and modelling environments have to be modified or generated again. On the other hand, in
comparison to the UML Profiles, this variant provides a more flexible extension mechanism.

If this extension mechanism is used to present aspect-oriented constructs, the high effort for
integration into existing environments could be a reason for avoiding the usage of the aspect-
oriented extension.

2.3.2.2 UML Profile
The UML Profile mechanism provides a lightweight mechanism to present additional types of
model elements, such as aspect-oriented constructs. The UML metamodel is not changed
during the extension. The UML Profile mechanism provides only an additional extension,
which conforms to the original UML metamodel. Therefore many existing tools and
modelling platforms are able to deal with an extended metamodel using the UML Profile
mechanism.

Because of the described characteristics, in comparison to the changed UML metamodel, the
realization of the extension using UML Profiles causes less efforts. So the UML Profile
mechanism is predestined for proving the concepts for aspect-oriented modelling as well as
for basic integration of aspect-oriented concepts into existing modelling tools.

2.3.3 Aspect-oriented composition
This section discovers the chances and risks with regard to the relevant parts of the aspect-
oriented composition. For this purpose the chances and risks for different kinds of aspect
composition and for the underlying technologies are analysed.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 23 -

2.3.3.1 Different kinds of aspect composition
As described in previous sections, different composition techniques can be used for the aspect
composition. In horizontal composition, the transformation is processed at the PIM level, i.e.,
the input models and output models are both at the same level.

This kind of transformation allows a nearly independent integration of the aspect composition
into existing MDD processes. The transformation handling the aspect composition can be
processed before a model compiler transforms object oriented PIM level models into code for
example. In this case, no extension of the model compiler is necessary, because the
transformations, responsible for aspect composition, produce composed object-oriented
models, which can be consumed by the model compiler in a common way.

Since the aspect composition is done at the PIM level in a horizontal way, traditional object-
oriented models are processed in the following phases, e.g. transformation to code. From this
it follows that on the next abstraction level (e.g. PSM, code) no special support for aspect-
oriented concepts is required. So it is possible to adopt the aspect-oriented concepts at PIM
level and consequently produce code for every platform that was supported before.

Furthermore, due to the independency of the target platform and the nearly independent
integration into the model-driven processes, the horizontal aspect composition at PIM level
has a good chance, to be established.

In vertical composition, the model transformations occur across different model/code levels.
Depending on the point where the aspect composition is processed, additional support of
aspect-oriented concepts is required at another model level or at code level. Therefore in some
cases the integration of aspect-oriented concepts cannot be done independently without
providing support for aspect-orientation at another model level or at the code level.

Anymore due to the composition across more than one level, the aspect composition has to be
integrated into existing model transformation tools or into an existing model compiler. This
integration causes more effort than an integration of the horizontal aspect composition,
because horizontal composition is integrated with just an additional step in the whole process.

Also the integration of new concepts into existing model transformation tools respectively a
model compiler is more error-prone in comparison to the independent integration of the
horizontal aspect composition into the existing MDD process.

2.3.3.2 Technologies for aspect composition
In the domain of model-driven-development there are proven and tested technologies for
processing model-to-model or model-to-code transformations. The new transformations
required by the aspect composition can be realized using these proven technologies, such as
the Atlas Transformation Language (ATL).

The usage of such evaluated technologies reduces the technological risk with regard to the
integration of aspect composition into existing MDD processes.

2.3.4 Refactoring of aspect and base models
The technique of Refactoring was identified as a means to increase software’s quality and
software’s ability to evolve. Refactoring provides a mechanism for removing or at least
improving structural weaknesses. It changes the structure of the software in such a way that
the behaviour of the system is not changed yet its evolvability is improved. Consequently the

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 24 -

refactorings should also be used at model level to improve the evolvability of a modelled
software system.

The refactoring of aspect-oriented models causes similar problems like refactoring of aspect-
oriented programs. One of the problems, which could be a risk for the acceptance of the
aspect-oriented modelling, will be outlined in the sections below.

Pointcuts provide a mechanism for additional referencing of points in the control flow.
Regarding to the UML Action Semantics the so-called join points are also model elements.
These model elements are not referenced directly by the pointcuts. For selecting these model
elements (Pointcut resolving), the pointcut quantifies over their properties, such as join point
kind, signature, etc.

However the properties used by the pointcut for selecting certain model elements can be
changed by a refactoring (e.g. Rename Refactoring changes the name of a model element), so
if a pointcut uses a property of a model element, which is changed by a refactoring, the result
of resolving this pointcut after the refactoring can differ from the resolving result before the
refactoring. The difference in the selected join points can also cause a changed behaviour,
because due to the changed set of join points the bound advice is called at different points.

Since the selected join points are not referenced explicitly using an association, the model
validation is not able to detect the changed behaviour. Therefore a refactoring of model
elements can cause unintentional changes in the modelled behaviour.

Even if a mechanism for detecting a changed set of join points before and after a refactoring
could be provided (e.g. like the PCDiff tool [40]), it is still not possible to decide
automatically whether the detected changes in the behaviour are explicitly intended by the
pointcut modeller.

Likewise it would be hard for the base model developer to check all impact on the set of join
points manually. Typically the modellers roles are separated into base model developer and
aspect model developer, therefore even if the modeller would automatically be informed
about the impact of the refactoring, he would not be able to decide, if the changed behaviour
was intended by the pointcut developer (without communication to the aspect developer)

To deal with the described problem, the following tool support would be necessary:

• Detection of the refactoring impact on the set of join points

• Assessment of the modified references (modified behaviour intended or not) and
detection of broken pointcuts

• Automatic update of broken pointcuts, if possible

• Communication platform between base model developer and aspect model developer
in the following cases:

o Impossible detection of broken pointcuts

o Automatic update of broken pointcuts impossible

Since refactoring is an elementary technique for improving the evolvability in software
development, the absence of suitable refactoring tool support for base and aspect models
represents a risk for the establishment of aspect-oriented concepts at model level.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 25 -

3 Crosscutting Concerns in SAP Business Applications

This section starts by presenting an object-oriented business application from SAP in the
context of Customer Relationship Management. After that, some crosscutting concerns are
presented such as consistency checks and partner determination. When modelling such
concerns with the traditional means of UML several issues arise. These issues can be
addressed by using modelling aspects.

3.1 Example of business application
Business applications span various areas and processes in corporations such as Product Life
Cycle Management (PLM), Supply Chain Management (SCM) and Customer Relationship
Management (CRM). In the following, we will focus on SAP business applications for
Customer Relationship Management (CRM) such as SAP CRM.

CRM is a management concept, which intends to systematize and improve the relationships
between corporations and their customers. It is a customer-oriented corporate strategy that
utilises modern information and communication technologies to establish long-term,
profitable customer relationships through holistic and individual marketing, sales and service
instruments [3].

3.1.1 Customer Relationship Management
CRM software provides a central point to manage all contacts and interactions of a company
with its customers. CRM software covers two functional areas:

• Operational CRM: supports the three CRM processes: marketing, sales, and service.

These processes reflect the different phases in the “customer buying cycle” [4].
Operational CRM software provides applications and tools for supporting and
controlling the different customer interaction points and communication channels.
Common core functionalities of such software include contact management, report
generation, workflow, and activity management.

• Analytical CRM: stores all relevant data about customer contacts and reactions (e.g.

purchase data, billing and payment, returns) in a data warehouse. This data may be
combined with other external data before it is analysed using data mining methods or
used for answering on-line analytical processing (OLAP) queries.

SAP offers several CRM products such as mySAP CRM, which was recently renamed to SAP
CRM [5] [12]. This application supports the entire operational CRM field and provides
components and functionalities supporting the three fundamental CRM processes marketing,
sales, and service. This application is implemented using object-oriented programming and
some important business objects of each process are grouped together below:

• Marketing: Lead
• Sales: Opportunity, Customer Quote, Sales Contract, Service Contract, Sales

Order, and Service Order
• Service: Customer Return, Service Request, and Service Confirmation

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 26 -

3.1.2 Lead and Opportunity Management

Figure 3 shows a Sales Scenario example that focuses on sales processes of enterprises selling
one or more products. This involves different things, ranging from Opportunity Management
to quotations to customers, sales orders and invoice processing. This figure shows also the
different user roles that are involved in each step in the sales process.

Legend
Begin

Identify
Opportunity

Create
Opportunity

Account
Mgmt.

0.

1.

Evaluate
Opportunity

2. No goGo

Field Service
Representative

Office
Sales Assistant

Sales Manager

Create
Quotation Quotation

Create
Quotation

3. Pricing

RejectAccept

Customer

Create
Sales Order

4. Sales
Processing

Check
Creditworth. Payment

Avail. to
Promise Stock

5.

6./7.

Process
Payment Payment8.

Complete
Order

9.

Return
Order

10.
Approve
Return Payment

Financial
Assistant

Warehouse
Assistant

Reject

Reject

Figure 3: Sales Scenario

In the following, we will focus on pre-sales processes such as lead management and
opportunity management. These processes support sales personnel in actively tracking
potential selling possibilities.

Lead and Opportunity management provides a structured approach to turning an initial
recognition of a selling opportunity (i.e., a potential possibility for selling products to a
customer) into a sales contract. In that process, the SAP CRM software guides the sales
representative through a multilevel process and generates next steps and activity suggestions
on the basis of best-practice sales strategies.

The opportunity management process may start with an anonymous address and, by degrees,
track additional prospect attributes such as product interests, discretionary budget amounts,
likely competitors, and the success probability. Completeness and consistency checks ensure
the correctness of the collected data after each step. The accurately documented process
improves reporting capabilities: Sales managers can measure their salesperson productivity,
campaign effectiveness and can, for example, determine in which sales phases the most
prospects were lost [6,7].

Opportunity
process

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 27 -

Figure 3 shows also the different steps of the opportunity process. This process starts by the
identification and the creation of an opportunity, e.g., after a sales contact at a fair. Then, the
opportunity is evaluated and qualified, i.e., feasibility is clarified, information is gathered
about the customer, and a selling team is defined. If a go decision is made, a quotation is
made and sent to the customer, which either accepts the sales offer or rejects it. After that the
opportunity should be closed and the reasons for success or failure should be documented. In
the success case, the opportunity becomes a sales order.

In the following, we present in more details some business objects in opportunity
management. These objects are shown in Figure 4 and they are discussed briefly below:

• The Opportunity class uniquely identifies the opportunity and specifies the various
involved parties. It holds references to other classes with additional business
information and to the documents and activities created during opportunity processing.
Some direct attributes of the opportunity class are:

o priority: specifies the priority of the opportunity.
o processStatusValidSinceDate: the date when the opportunity entered the

current life cycle phase.

• The Party class represents individuals or organizations involved with the opportunity.
Specialized classes may represent customers, suppliers, or employees. Parties are used
within the opportunity to specify the prospect, potential competitors, the responsible
sales team, and other internal or external stakeholders. Some attributes of a party are:

o partyType: specifies whether a party is an organization, a business partner, or
any specialization of these party types.

o partyRole/PartyRoleCategory: describe the role of a party in an opportunity.

• The SalesForecast class contains estimations for the anticipated sale that an
opportunity represents. it contains various fields such as

o expectedRevenueAmount: the expected amount of the opportunity
o probability: the success probability of the opportunity, expressed in

percentage.

• The class Item represents a product or service which will possibly be sold to the
prospect of the opportunity. It contains product information, quantities, and values. An
item may be associated with master data product information.

• An opportunity passes through several phases during its lifetime. The class SalesCycle
specifies the sales cycle and the current phase of an opportunity. Other attributes of
this class are:

o salesCycleCode: the sales cycle in which the opportunity exists.
o phaseProcessingPeriod: the time period for which an opportunity exists in the

current phase.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 28 -

Figure 4: Main Classes in Opportunity Management

3.2 Crosscutting Concerns in the CRM application

In the following, we introduce consistency checks and partner determination as two examples
of crosscutting concerns in opportunity management. We will elaborate in more details on the
consistency checks example.

3.2.1 Consistency checks

Several consistency checks have to be performed when the state of the opportunity object or
some of the associated objects changes. These consistency checks are crosscutting because
they cut across different classes, i.e., the same checks need to be performed when attributes of
objects that are defined in different classes change. Consequently, the code that enforces them
is scattered across the implementation of several classes.

We classify the consistency rules into two types according to the degree of crosscutting.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 29 -

a) Simple constraints

Constraints that involve only one business object class are called simple constraints. For
instance, the simple constraints C0, C1, and C2 define an opportunity as being
inconsistent if e.g., one of the following conditions is true:

• (C0) Opportunity.processStatusValidSinceDate > CURRENT_DATE
• (C1) SalesForecast.expectedProcessingDatePeriod.EndDate is not set
• (C2) SalesForecast.expectedProcessingDatePeriod.EndDate <

 SalesForecast.expectedProcessingDatePeriod.StartDate

b) Complex constraints

Some consistency constraints are called complex because they involve more than one
business object. The enforcement of such constraints in an object-oriented design will be
scattered across at least two classes. Constraints C3 and C4 are complex constraints,
which specify when an opportunity is inconsistent:

• (C3) Opportunity.processStatusValidSinceDate <
 SalesForecast.expectedProcessingDatePeriod.StartDate

• (C4) SalesCycle.phaseProcessingDatePeriod.StartDate <
 SalesForecast.expectedProcessingDatePeriod.StartDate

Appropriate logic is needed to check such consistency constraints and hinder their
violation. This logic should be triggered when the fields corresponding to the constraints
are modified and also when the setter methods of these fields are called. For instance, to
enforce the complex constraint C3, appropriate logic is required in the method
setProcessStatusValidSinceDate of the class Opportunity to check that the date is smaller
than expectedProcessingDatePeriod.StartDate in the associated SalesForecast object.
Moreover, similar logic is needed in the method setExpectedProcessingDatePeriod to
verify that the StartDate of the new period is smaller than the value of the attribute
processStatusValidSince in the associated Opportunity object. Below, we show an
implementation of these two methods in Java.

//defined in class SalesForecast
public void setExpectedProcessingStartDate (Date nd)
{

 if(nd > this.opportunity.processStatusValideSinceDate)
 this.expectedProcessingStartDatePeriod.startDate = nd;
 }

 //defined in class Opportunity
 public void setProcessStatusValidSince(Date nd)
 {

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 30 -

 if(this.salesForecast.expectedProcessingDatePeriod.startDate > nd)
 this.processStateValidSinceDate = nd;
 }

Figures 5 and 6 show the behaviour models that correspond to the method bodies of these two
methods using UML actions. These models were drawn using the tool TopCased [8]. Figure 5
shows the body of the method setExpectedProcessingStartDate, which is defined in the class
SalesForecast whereas Figure 6 shows the body of the method setProcessStatusValidSince,
which is defined in the class Opportunity.

We observe that these models are complex. Moreover, the parts of the behaviour model that
are responsible for setting the date attributes are mixed with the parts that implement the
consistency check. Consequently, the consistency check cannot be modified without
understanding the whole behaviour model. In addition, if the consistency check should be
modified for some reason, then the user would have to find out the different model elements
that are related to that check and modify all of them consistently.

Figure 5: Method setExpectedProcessingStartDate

Figure 6: Method setProcessStatusValidSince

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 31 -

Figures 7 and 8 show the behaviour models for the same methods as in Figures 5 and 6.
However, these models do not contain any logic for checking/enforcing consistency rules, i.e.,
the method body just sets the appropriate attribute to the new date that is passed as parameter.
One sees easily that these behavioural models are much simpler than those in Figures 5 and 6.

The java code corresponding to the models shown in Figures 7 and 8 is shown below.

//defined in class SalesForecast
public void setExpectedProcessingStartDate (Date nd)
{
 this.expectedProcessingStartDatePeriod.startDate = nd;
}
//defined in class Opportunity
public void setProcessStatusValidSince(Date nd)
{
 this.processStateValidSinceDate = nd;
}

3.2.2 Partner determination

Partner processing is a function in many SAP business applications (including CRM
applications) that allows users to define partners with their company’s terminology and
specify how the system works with those partners. Partner processing ensures the accuracy
and consistency of partner data, e.g., it can be used to make sure that an order document
contains a ship-to-party. Without this field the order would be incomplete and the system
cannot process it. Moreover, partner processing makes users work more easily with the
software through advanced features such as partner determination.

Figure 7: Method setExpectedProcessingStartDate

Figure 8: Method setProcessStatusValidSince

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 32 -

Partner determination [9] refers to the system ability to automatically find and enter partner
information such as addresses in certain transactions and documents. That is, the user enters
manually one or more partners and the system determines and completes other partners and
information by using several sources of information such as the business partner master data,
the company organizational data, documents related to the current document, etc. Automatic
partner determination can also be used to hinder users from entering inconsistent information
or information that is already known to the system.

Figure 9 shows an example that illustrates how partner determination works. The user creates
an opportunity and enters the name of the sales prospect and the system enters the name of the
contact person (by checking the partner master data), the address of the sales prospect, and the
name of the responsible employee for this opportunity (using the company organizational
data).

Figure 9: Partner Determination in Opportunity Management

The way partner determination is done can be very different depending on the business
process, the business transaction, and the companies that run the CRM software. Customers
that use SAP CRM solutions can setup rules for the system defining what data sources to use
for each partner function (e.g., contact person, sold-to-party, ship-to-party, etc.) and in what
order these sources are searched according to their needs. They can also configure when
partner determination is performed, e.g., when data is entered by the user or when the data is
saved. These rules are called partner determination procedures [10] and they can be
associated with a certain type of transactions (e.g., creating a new opportunity).

Partner determination procedures bring together partner functions and access sequences. That
is, for each business function the user specifies whether automatic partner determination is
needed and if that is the case he specifies a search strategy that defines where to search for
partners for that partner function and in what order. This search strategy is refereed to as

Relationships for
Sales Area 1000 Business partner

master data

for

PC4YOU
Electronics

PC4YOU Shops
Sales
Prospect

Opportunity
1. A user creates an
opportunity and enters
the sales-prospect.

2. The system:

Looks in BP
master data

Finds the needed
contact person

Enters him in the
opportunity

3. The system:

Looks in the
organizational data of
the company

Finds the employee
responsible

Enters him in the
opportunity

Organizational
data

for

the company

Jean Khan Contact
Person

Anton May Employee responsible

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 33 -

access sequence. For example, an access sequence can indicate the search order: preceding
document, then the organizational data model, and finally some customer-specific function.

Partner determination is also a crosscutting concern. In fact, the code that is responsible for it
is scattered across several classes of the user interface and the business objects of the CRM
application. Automatic partner determination may be triggered in the UI classes e.g., when the
partner enters the sales prospect for a new opportunity and can be also triggered in the
business object opportunity when that object is saved. Partner determination functionality is
scattered over other classes in the CRM application such as SalesQuote and SalesOrder.

In the following, we concentrate on the partner determination functionality in the business
object opportunity. Partner determination is triggered when the sales prospect is entered (for
the sake of the simplification we assume that this is done when the method setProspect is
called) and also when the opportunity is saved (i.e., the method update of the CRUD interface
is called). Below we show the implementation of these methods in pseudo java.

//defined in class Opportunity
public void setProspect (Party pros)
{
 this.prospect = pros;
 //run partner determination procedure for business function sales prospect

}
//defined in class Opportunity
public void update()
{
 //run partner determination procedures for update opportunity transaction
 //save the updated opportunity
}

Partner determination is a function that is characterized by several extensibility requirements.
That is, customers should be able to define partner determination procedures and new access
sequences according to their needs. To make such extensions easy and non-invasive, it is
important to have the partner determination functionality well-modularized and separated
from the other application logic.

3.3 Benefits of VIDE Aspects in modelling Business Applications

VIDE introduces Aspect-Oriented Software Development concepts to Model-Driven Software
Development by defining new modelling constructs at the PIM level such as aspect, pointcut,
and advice. Supporting aspects at the modelling level brings several benefits to the users that
model business applications as explained in the following.

• Better modularization of crosscutting concerns at the model level:

VIDE allows defining fully executable applications through the use of UML actions.
Consequently, VIDE models are more complex than traditional object-oriented models, which
do not model any behaviour (i.e., the bodies of methods and constructors). This high
complexity can be seen in the models presented in Figures 4 and 5.

To master the complexity of business application models, good modularization techniques are
needed and aspect-oriented modelling is such a technique. Aspects provide means to
modularize the logic belonging to crosscutting concerns. Thus, this logic will be defined in a

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 34 -

separate aspect module rather than being scattered across several tangled models.
Consequently, the complexity of business application models is reduced.

• Easier understanding and maintenance of models:

Through the better modularization of crosscutting concerns, business application models
become simpler and consequently easier to understand and to maintain. For instance, to
modify a certain consistency check without aspects, the user would have to first identify all
models and model elements (i.e., various classes, activities, etc) that are related to that
consistency check. Then, the user has to update the models (e.g., by adding some fields and
methods, or modifying the implementation of some methods) to accommodate the change of
the consistency check. As several consistency checks are crosscutting, the same change needs
to be done at multiple locations, which is quite redundant and error-prone. With aspects, this
becomes easier because the user needs only to modify the consistency check aspects.

• Improved reuse of business logic:

With aspects, crosscutting business logic can be encapsulated in separate modules and it is in
this way no longer scattered across various model elements. Consequently, that business logic
can be reused more easily.

Quantification is an important property of aspect-oriented approaches [11]. It refers to the
ability to quantify over a set of points in the execution of a program in the case of Aspect-
Oriented Programming (respectively a set of model elements in VIDE PIM models). This
property is supported through the pointcut construct, which can be easily extended to select
more join points (in our case model elements) so that a piece of crosscutting business logic
can be activated and executed at multiple locations. For example, if some consistency check is
modularized in an aspect and one wants to reuse that check in the UI classes in addition to the
backend business object classes, then one only has to modify the pointcut of the consistency
check aspect.

• Easier extensibility:

Aspect-oriented software development provides techniques and constructs that support an
easy extension of business applications. For instance, customers can define new partner
determination procedures and access sequences in a modular and non-invasive way when
partner determination is modelled as an aspect.

The pricing module can also be easily extended with customer-specific policies and rules by
using aspects. This pricing module is used in sales quotations to determine the price whilst
taking into account all discounts that the customer qualifies for. When pricing policies are
modularized using aspects customers will be able to activate/deactivate them in a flexible way
according to their needs. Moreover, new policies can be easily supported by modelling an
appropriate aspect.

• Easier customization through better modularization of features:

Aspects can be used as encapsulation modules for certain features. Through the composition
mechanism, feature aspects can be easily switched on/off and composed with the application.
Features are especially relevant in the context of product line engineering, where variants of a
business application (e.g., a set of CRM applications) share several commonalities.

Product line development requires support for feature-oriented development at all stages,
whereby a feature is an increment in program functionality. Features are a de-facto standard in
distinguishing the individual programs in a product line, since each program is defined by a

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 35 -

unique combination of features. Product-line architects reason about programs in terms of
their features.

SAP is involved in several research projects, which aim at using AOSD and MDD in the
context of Product Line Engineering such as the EU project AMPLE [13] and the national
research project FeasiPLE [14]. The aim of AMPLE is to provide a software product line
development methodology that offers improved modularization of variations, their holistic
treatment across the software lifecycle and maintenance of their (forward and backward)
traceability during product line evolution.

• Support for multiple target platforms and programming languages

VIDE supports aspects at the PIM level, i.e., VIDE aspect-oriented concepts are not
dependent on a specific aspect-oriented language such as AspectJ or AspectC++. Thus, VIDE
aspects can be modelled once and mapped to multiple aspect-oriented programming
languages with appropriate model transformations.

This particular benefit of aspect-oriented modelling in VIDE is especially important for SAP
business applications because two application stacks (ABAP and Java) coexist together in
some SAP products. With VIDE aspects, crosscutting concerns such as consistency checks
and partner determination can be modelled once and then generated using appropriate
transformations either as Java aspects (for consistency checks in the User Interface) or as
ABAP enhancements (for consistency checks in the backend).

• Getting the benefits of AOSD without using an AOP language

The aspect composition mechanism of VIDE can be implemented in various ways. In vertical
composition, the object-oriented models are transformed to object-oriented code (e.g., in Java)
and the VIDE aspects will be mapped to aspects (e.g., in AspectJ). In horizontal composition,
which is the chosen composition approach in WP3, the composition of aspects and base
application is done at the PIM level and the resulting model is purely object-oriented.
Consequently, the resulting model can be transformed to object-oriented code. The horizontal
composition alternative brings the benefits of AOSD to the model-level without posing any
restrictions on the target programming language/platform.

3.4 Summary
In this section, we introduced a CRM application from SAP as an example business
application. Then, we focused on opportunity management and discussed two crosscutting
concerns there: consistency checks and partner determination. When modelling such concerns
with aspects, several problems arise. These problems can be solved by using the aspect-
oriented modelling capabilities of VIDE.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 36 -

4 Realizing Aspect Oriented Composition in VIDE

This chapter describes a proposal for the integration of aspect-oriented concepts into MDD in
the VIDE context. The realisation is a proof-of-concept solution and does not serve as a
prototype or a separate tool to be used by users for modelling and composing aspect-oriented
constructs. The main objective of the realisation, called Demonstrator, is to show the
feasibility of the proposed concepts and to indicate possible technological problems.

Generally the realisation can be split into two parts. The first part contains the UML Profile
extension for modelling aspect-oriented constructs. The second part provides a set of model-
to-model transformations for implementing aspect composition at the PIM level.

After a short overview, the following sections present the required metamodel extensions and
the transformations by means of some examples.

4.1 Overview
To allow having multiple model-to-code compilers in VIDE, the aspect composition should
be implemented as a pre-processing step prior to the code generation by the model-to-code
compiler For this purpose the concept of the horizontal composition has been chosen (see
Figure 10). The models before and after the aspect oriented composition are models on the
PIM level. Therefore the resulting model can be processed like the original base model
without requiring any special handling of the aspect composition that was done before.

Figure 10: Horizontal Composition

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 37 -

In the first phase of the Demonstrator development, we extend the pure UML metamodel for
integrating the aspect-oriented model. The VIDE/UML metamodel can be extended in the
same way later on.

The concept provided by the UML Actions Semantics allows the modelling of behaviour
using pre-defined model elements like actions and activities. The usage of the UML Action
Semantics makes the control and data flow explicit. There is also the possibility, partially
used in the VIDE context, to model behaviour using OCL expressions.

As already mentioned, the Demonstrator mainly consists of UML Profile extensions and a set
of transformations realising the composition of the aspect and the base model. The
transformations used for the aspect model composition require access to the modelled control
flow to determine the interaction points and insert or modify the modelled behaviour.

The development of the required transformations based on UML Action Semantics proves to
be the easier way because of the modelled behaviour is more explicit. Therefore the
Demonstrator supports aspect composition works on behaviour models that are based on the
UML Action Semantics, so we can mainly focus on the exploration of different composition
strategies.

The following steps are necessary to extend UML (and later UML/VIDE) by aspects:

• The UML model is extended for modelling aspects.

• Model-to-model transformations for converting the aspect model to a plain
VIDE/UML model are developed.

• The resulting model can be fed into any VIDE-to-code generator, the aspect behaviour
is executed by generated VIDE/UML model elements.

4.2 Technological overview
Regarding the technologies to be used for an integrated aspect-oriented and model-driven
scenario, there are mainly two influencing forces: a) the given technology from the underlying
model-driven infrastructure and b) the additional technology needed to support the aspect-
oriented extensions. In the context of the VIDE project, the underlying dependent technology
is the model repository with its metamodels and the editors used to create user models.
Following a horizontal approach where aspect composition is realized completely at the PIM
level no direct integration with the model compiler is necessary. This is, because the aspect
composition is implemented solely as an external tool component working on the model
repository. As such, it adds one additional step to the “build process” – right before a model
compiler generates code from the (composed) models. A vertical approach on the other hand
would require the aspect composition to be developed as part of the model compiler. Support
for aspect-oriented modelling also has to be incorporated into metamodels, notations and tools
like editors. Further explanation of architectural issues will follow as part of WP8.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 38 -

4.2.1 Base Technology

UML 2.1
The metamodel of the VIDE language is based on UML 2, supporting a subset of its structural
and behavioural modelling capabilities. On top of that metamodel, there will be at least one
textual and one graphical concrete syntax, simplifying the construction of VIDE models.

Extensions to the original UML 2 metamodel are realized as UML Profiles and are described
in Deliverable 2.1.

In the absence of usable VIDE model editors during the development of the WP3
demonstrator, other modelling tools had to be used for the example models. For this purpose,
IBM Rational Software Architect and Topcased were chosen, because of their UML 2
Activity modelling facilities.

OCL 2.0
As the final VIDE language will make use of OCL to directly support queries and to ease the
specification of navigation and read access to features in Activities, an integration with the
aspect models and composition process has to be carried out. The current approach and
demonstrator do not directly support OCL in VIDE models yet. While the replacement of read
Actions with corresponding OCL statements should be straight forward from a technical point
of view, the integration with queries would require more research, because they may
introduce new join point kinds and composition issues.

4.2.2 Aspect Extensions
Supporting aspect-oriented concepts in a model-driven environment requires the following
components to be integrated with existing technology:

Aspect Modelling
The modelling infrastructure has to be extended to support the expression of aspect-oriented
language constructs in user models. These extensions should integrate seamlessly with
existing model elements to be used in an intuitive and productive way. Technically, the
introduction of aspect-specific modelling constructs involves changes in the abstract syntax
(i.e. the metamodel) and the concrete syntax (i.e. the notation that is mostly hard-coded in
model editors). These changes should be completely additive, leaving the base modelling
language independent from the aspect-oriented extensions.

Pointcut matching
The next essential step in an aspect-oriented composition process is the evaluation of
pointcuts, and thus identifying join point shadows in the base models. The functionality of the
pointcut matching itself has to be incorporated on the tooling side and requires parsing
pointcut expressions and querying the base models. In a 2-step composition process, as
proposed in our demonstrator, an additional meta-model extension is needed for the
annotation of located join point shadows in an intermediate model.

Another - optional - feature could be the visualization of identified join point shadows and
their crosscutting (or the impact of the aspect) in the base model. Such visualization would
have to be implemented in the notational tooling, that is, the model editors.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 39 -

Aspect composition (weaving)
The final composition step involves the weaving of aspect elements (structure, advices) at the
join point shadows as well as the generation of and integration with aspect infrastructure. This
step requires navigation and analysis of the base and aspect models and finally the
modification of the base model according to the chosen weaving strategy and the aspect
model.

4.2.3 Requirements
The implementation of these features imposes some technological requirements.

For metamodel extensions as needed for aspect models and join point shadow annotations, the
underlying modelling language should support easy and purely additive metamodel
extensions. This can be achieved by using an elaborated metamodel infrastructure like
MOF/EMF in conjunction with UML 2.1. The metamodel should support the annotation of
model elements, including references to other model elements. For pointcut matching and
aspect weaving, the navigation/query capabilities of models are important and should be
supported by either the metamodel API or an external query language.

On the tooling side, pointcut matching and aspect weaving can be realized with existing
model-to-model transformation technology. A suitable transformation technology should offer
good navigation and querying capabilities including quantification over properties of model
elements. It should be possible to add missing functionality through custom extensions, like
e.g. user-defined query functions. Considering the nature of pointcut expressions, a
declarative transformation language should fit better than operational/imperative ones. In the
case that base and aspect models are kept separate, the model transformations have to be able
to deal with multiple input models with potentially different metamodels. Using UML 2
Profiles for light-weight metamodel extensions, the transformations must be able to handle
them in source and target models, i.e. analyzing and creating stereotype applications correctly.
Modularization and combination/layering of model transformations could be an issue when
they get complex and/or different weaving strategies are to be supported in the transformation
process.

To integrate with the VIDE architecture, the AO composition module has to work with the
underlying model repository and later be integrated in user tools (mainly editors). As the
VIDE model repository is based on Eclipse UML2, the EMF-based implementation of UML
2, the aspect composition module should also be build on that base.

4.2.4 Model Transformations
In MDA, model transformations are used for two different purposes. The first and most used
kind are transformations that map platform independent models (PIM) onto a platform,
creating a platform specific model (PSM). The property “platform independent” is relative,
i.e. it is a technical refinement step that can be done incrementally, each time adding more
platform specific detail to the application model. Ultimately, a last transformation typically
produces source code artefacts for the target platform, thus leaving the modelling world.

The second purpose of model transformations is not so widely used, but in the context of
aspect-oriented modelling of great importance. These transformations do not alter the level of
platform (in)dependence, but refine the model according to other concerns. These concerns
come either from the domain or the application itself.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 40 -

Model transformations that produce target models from other models are called model-to-
model (M2M) transformations, whereas transformations producing textual artefacts (typically
source code) are called model-to-code (M2C) transformations. The latter are often based on
template languages, because of their syntactical affinity with the output artefacts. Model-to-
model transformations on the other hand are usually realized on M3 level, allowing the
transformation of models from arbitrary metamodels.

For the demonstrator of WP3, ATL (ATLAS Transformation Language, [42]) was chosen as
model transformation language, because of its maturity, support for multiple input and output
models and metamodels, OCL navigation and querying syntax and ability to process UML2
models. ATL is a hybrid transformation language, supporting declarative as well as
imperative transformation rules. This offers enough flexibility to implement even complex
pointcut matching and aspect composition rules.

4.3 AOC Architecture
The architecture for the aspect-oriented composition at PIM level describes UML Profile
extensions as well as transformation processes (see Figure 11).

The composition process “merges” the input models embarking on a strategy. The input of the
AOC process is a base model and an aspect model. The base model is a plain UML/VIDE
model. Located in the aspect model are the aspects which extend the behaviour and/or the
structure of the base model elements.

The transformation process is shown in Figure 11. It is split up in two phases: Pointcut
Resolving and Aspect Weaving. This is done to allow changing the weaving phase
independently of the pointcut matching phase (e.g. to implement a different strategy) and for
debugging purposes. These two phases are quite independent. The final output of the AOC
transformation process is a plain VIDE/UML model.

As depicted in Figure 11 the pointcut matching transformation produces an intermediate
model, which is the input base model enhanced with markers for the matched join points.
Therefore not only a UML Profile for modelling aspect-oriented constructs, but also an UML
Profile for marking model elements as join points is necessary. The intermediate model serves
as the input model for the aspect weaving transformation, which inserts or modifies behaviour
at the marked join points.

The next section provides a description of the input models and the corresponding required
UML Profiles.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 41 -

Figure 11: AOC Architecture

4.4 Models and Metamodels

4.4.1 Base Models
The base models are pure VIDE/UML models. To create base models, no further UML
Profile is necessary.

Until further details are available from the other work packages about the exact structure and
contents of VIDE PIM models, we assume the following:

• A PIM model consists of a structural part defining classes with their attributes and
operations.

• The exact and complete behaviour of each operation is defined in one Activity which
makes use of the model elements selected in the VIDE metamodel.

• Currently, the use of OCL Expressions instead of read actions is not supported.

4.4.2 Aspect models
Aspects are defined in separate models. They include pointcuts, advice and the association
between a pointcut and an advice. The metamodel for aspect models is defined by a UML

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 42 -

profile described in the next section. Advices encapsulate the additional behaviour and the
pointcuts describes in a declarative way, where to insert or adapt the behaviour.

4.4.3 AO UML Profile
The AO UML Profile defines the modelling of aspect-oriented constructs in UML (see Figure
12). The following aspect oriented constructs are supported by this UML Profile:

• Aspect

• Advice

• Binding

• Pointcut

Aspect, Advice and Pointcut were already described in the section “Core Terms”. The binding
represents an association between an advice encapsulating the additional behaviour and the
pointcut, which declares the locations (join points) for inserting that behaviour. Consequently
an advice can be bound to more than one pointcut and a pointcut can be bound by more than
one advice.

The AO UML Profile can be split into two parts: Adaptation and Quantification. There are
elements defining adaptation (Figure 13) and quantification (Figure 14).

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 43 -
Figure 12: AO UML Profile

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 44 -

4.4.3.1 Adaptation
The Aspect stereotype depicts a class as an aspect. The property instantiationKind describes
how the aspect is to be instantiated. Singleton means there will be one aspect instance for the
whole system, if instantiationKind is set to “instance”, one aspect instance will be created for
each object instance from which an advice is called. An advice stereotype classifies an
operation as an advice operation which can be bound to pointcuts. Bindings state on which
join points (selected by the pointcut property) an advice operation is executed. The property
bindingKind of the Binding element states whether an advice operation will be executed.
Supported binding kinds are before, after and around bindings.

Inside advice operations it has to be possible to access parameters, source and target objects
of the join point. In an around advice a ProceedAction calls the original join point with its
parameters and returns its return value.

Figure 13: Adaptation part of AO UML Profile

4.4.3.2 Quantification
Model elements for quantifying join point sets are Pointcuts and PCEs (pointcut expressions).
A pointcut has a name property and a property expression. The expression property holds the
pointcut expression selecting the join points. The demonstrator supports operation expressions
(OperationPCE element) for selecting method calls and executions as well as property
expressions (PropertyPCE element) for selecting property read and write accesses. Both
expression elements have the properties namePattern, visibility, isStatic, declaringType, type
and target. A join point must fulfil all properties of a pointcut expression to be selected.

The namePattern property specifies the name of the selected feature, operation name and
property name respectively. If multiple names are specified, a join point matches the
expression if its name matches one of the name patterns. Name patterns can include the
wildcards “?” and “*”. The question mark is a placeholder for one arbitrary character; the
asterisk matches any number of characters. Thus the string “Foo*ba?” matches “Foobar” and
“Foofoobar”, but not “Foofoofoo” or “Foobarr”.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 45 -

The visibility property restricts the selected join points to those with the set visibility (private,
protected, public). Similarly the isStatic property omits static (if set to false) or non-static (if
set to true) join points.

The properties declaringType, type and target specify different types in the context of join
points. The property declaringType is the type owning a join point shadow (operation’s or
property’s owner). Property type specifies the return type of the method or the property’s type
respectively. The property target specifies the type of the object on which an operation or
property access is called. All three properties are optional and can specify multiple types. In
the case when a property specifies multiple type patterns a join point must fulfil one of the
type patterns to match the property (disjunction, “or” function).

The pointcut expressions are composed of some or all of these properties. Each specified
property narrows the search scope for join point shadows. There is a conjunction (“and”
function) between the specified properties of a pointcut expression.

Figure 14: Quantification part of AO UML Profile

Currently supported join point kinds are method call, method execution and field accesses (get
and set). These are probably the most common join point kinds. The quantification part of the
AO UML Profile is easily extensible to implement new join point kinds or new aspect
instantiation types. In a first step, the demonstrator only supports static pointcut expressions

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 46 -

(no cflow etc.). Also, the definition of pointcuts is restricted to the use of standard tooling for
UML Profiles, i.e. editing of tagged values (there is no special concrete syntax yet – neither
textual nor visual). It should be found out if OCL can be used directly for the specification of
advanced pointcuts (this is currently not easily possible in the demonstrator).

4.4.3.3 Example
To demonstrate the expressiveness of the modelled pointcuts, an example in AspectJ syntax is
modelled using the AO UML Profile. The AspectJ syntax for this pointcut is as follows:

set(* Date Period.*) || set(* Date Opportunity.*).

This pointcut expression is modelled in Figure 15.

Figure 15: Example for modelling pointcuts using the AO UML Profile

4.4.4 Intermediate model: Join Point Shadow UML Profile
The result of the pointcut matching transformation is the join point shadow model. All base
model elements matching pointcuts of the aspect model are annotated by a <<JPshadow>>
stereotype. Each supported join point kind is represented by a separate stereotype to make the
annotation explicit and to facilitate the handling of the intermediate model by the
corresponding transformation. These stereotypes are defined in a separate UML Profile (see
Figure 16).

The binding property of the stereotype holds the relation to one or more bindings in the aspect
model. These bindings have properties pointing to the advice operation which is to be
executed at the join points. The join point shadow model can be used for visualizations of the
locations in the base model where aspects or advice operations get applied. It is also useful for
debugging purposes when developing the model transformations.

In the final VIDE environment the join point metamodel is a mere intermediate model which
is not visible to or editable by the user.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 47 -

Figure 16: Join Point Shadow UML Profile

4.4.5 Result model
The resulting model is a pure VIDE/UML model at PIM level again. Usually the resulting
model should not be changed or even seen by the user. This is because a lot of model
elements are generated by the model transformations to implement the aspect behaviour.

These transformations, which are part of the aspect composition, are described in the
following sections.

4.5 Model Transformations
After the extension for modelling aspect-oriented constructs was introduced, this section
describes the model transformations which are required for realizing the aspect composition at
the PIM level.

As already mentioned, the transformation process of the base and aspect models to a VIDE
model is divided into two phases, pointcut matching and aspect composition (or aspect
weaving).

4.5.1 Pointcut Resolving
The pointcut resolving transformation translates a base model (VIDE/UML model) and an
aspect model into a join point shadow model (intermediate model). All pointcuts are resolved
and their matching elements in the base model are annotated with corresponding stereotypes

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 48 -

from the join point shadow UML Profile. To resolve pointcuts, elements from the base model
are checked for properties declared in the pointcuts.

The example pictured in Figure 17 and Figure 18 show models before (Figure 17) and after
(Figure 18) pointcut resolving. While resolving the pointcut declared in Figure 15 the
corresponding transformation generates the stereotype <<PropertySetJPshadow>> at the
action node “set new date” in the model after pointcut resolving. After pointcut resolving has
been processed the transformations responsible for aspect composition can access the
information about the types of join point shadow.

4.5.2 Aspect composition
Aspect composition is also realized as a set of model-to-model transformations. These
transformations weave aspect structures and advices into the annotated base model, resulting
in a standard VIDE/UML model. This model is completely woven, i.e. all base and aspect
behaviour is integrated and the model does not contain any aspect-specific elements. This
resulting model can be processed by any transformation which expects the input of
VIDE/UML models, e.g. model-to-code compilers.

The inputs of the aspect composition transformation are the join point model and the aspect
model. This transformation replaces all join point shadows with model elements representing
the aspect behaviour. Different transformation operations are needed depending on the join
point kind, the binding kind and the aspect instantiation kind.

Figure 17: Model before Pointcut Resolving

Figure 18: Model after Pointcut Resolving

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 49 -

The chosen weaving strategy encapsulates the aspect in a separate class and creates calls to
the advice operations on the matching join points. The advice operations are defined in aspect
classes. By contrast in the approach of Fuentes and Sanches [21] the advice activity model is
inlined at the join points. The approach generally allows an easier transformation in terms of
special advice actions. For instance the getTarget action is transformed to the readSelfAction.

Because aspects are encapsulated in separate classes, there are possibilities within the
Demonstrator to realize several instantiation strategies with a minimal effort. For different
instantiation of the aspect class, generally we only have to change the creation mechanism of
the current aspect class during the aspect composition. The creation of the aspect class can for
example be realized using the Singleton pattern. In this case, the aspect class has only one
instance and all calls to the encapsulated advice operations are called on the same instance.
Different weaving strategies and their impacts, advantages and disadvantages will be
discussed in Deliverable 3.2.

The transformation in our approach translates each element having a join point stereotype. If
the join point is a UML action it generates the following model elements:

1. Action node(s) to retrieve the aspect instance (depending on aspect instantiation)

2. Action node(s) to invoke the advice operation (depending on advice kind)

3. Object flow edges to pass aspect instance to advice call

4. Edges to introduce actions into the control flow of the original action (depending on
advice kind)

4.5.2.1 Advice invocation
If the advice is bound before or after the join points one CallOperationAction is generated.
This CallOperationAction calls the advice operation given in the join point’s binding.

If the advice is to be woven “around” (instead of) the join point the transformation must
generate more model elements. In “around” advice operations it is possible to call the adapted
operation with a ProceedAction. This join point can have parameters which have to be
available at the ProceedAction. This is done by a closure object. The motivation for this
approach was given by the Weaving Strategy in AspectJ (see [41]).

Figure 19: Examples for “Closure” classes

The closure stores the parameters of an operation call and its return value (see Figure 19).
Therefore a closure class is created for each operation which can be a target of a call which is

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 50 -

adapted by an “around” advice. The closure classes implement a common interface because
one advice call can be called at different join points which can have different signatures.

On each join point a closure object is created which stores all parameters of this join point.
This closure object is input of the generated advice operation call. Each ProceedAction within
the advice operation is translated into a call of the closure’s runProceed operation.

4.5.2.2 Aspect Instantiation
For calling the advice operation the aspect instance must be provided. In AspectJ there are
several aspect instantiation kinds, two of them are implemented in the Demonstrator:
Singleton aspects (issingleton or no modifier), one aspect instance per current object (perthis).
Singleton aspects are used when aspects monitor all objects of a kind or when aspects do not
have to store information at all. Perthis aspects are used for object wrappers or when objects
are to be augmented with additional data.

Possible future additions are the remaining AspectJ instantiation kinds like one aspect
instance per called object (pertarget in AspectJ) or one instance per join point call.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 51 -

4.5.2.3 Consistency check example: an around advice
In this section an example for an around advice is described. Starting with an object-oriented
model, the model from Figure 6 (presented in section 3.2.1) an advice is extracted. The
binding kind is around. Next the matching and weaving process is demonstrated. The first
transformation annotates the matching join point shadows (matching). The second
transformation translates the join point shadows in aspect behaviour in a plain UML model.

Figure 20 shows the model of an object-oriented method. This operation compares the
property self.salesForecast.expectedProcessingDatePeriod.StartDate with the parameter
newDate. If the former is bigger than the latter, the property self.processingStatusValidSince
is set to newDate, otherwise nothing happens. This date check implements a consistency
check. The purpose of the future advice is to extract all consistency checks into one aspect to
have them in one module.

Figure 20: Method setProcessStatusValidSince

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 52 -

The extracted advice and the remaining base code are shown in Figure 22 and Figure 21
respectively. The base code now consists only of operations to set the new date while all other
operations are enforcing consistency constraints and therefore must be moved into the advice.
Inside the aspect the “proceed” action takes the place of the former “set new date” action. The
“proceed” is a placeholder for the execution of the adapted join point shadow. In our case this
is the “set new date” action. In that way, the logic for setting the date and enforcing the
consistency check are separated.

The pointcut’s purpose is to describe the join points in the base model on which a consistency
check has to be performed. In the example this is the case when a date is set. The pointcut
(shown in Figure 23) is similar to the one in section 4.4.2. It selects all write accesses (kind =
set) of properties which have the type Date (pce1.type.namePattern = “Date”) and which
belong to objects of type “Opportunity” (pce1.declaringType.namePattern = “Opportunity”).

Figure 21: Base model

Figure 22: Advice in aspect model

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 53 -

The advice operation is bound “around” the selected join point shadows. This is because it
replaces the original behaviour and executes it only when the date is “consistent”.

Figure 23: Pointcut and Binding

After modelling the base model, the pointcuts, and the aspects the aspect composition process
starts as described in the past sections of this chapter.

The first transformation is for pointcut matching. This transformation was described in section
4.5.1. The “set new date” action of the base model (see Figure 21) matches the pointcut and is
annotated with a <<JPShadow>> stereotype (see Figure 24).

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 54 -

During the aspect composition the weaving transformation replaces the join point stereotype
by model elements which get the aspect instance, call the advice and create a closure object
because the advice is woven around the join point. The closure object stores all parameters
which were passed to the base join point to allow calling this base join point from within the
advice operation. The resulting model is shown in Figure 25.

The aspect composition transformation also converts all aspects into object-oriented classes.
All special actions are translated to plain UML/VIDE model actions. The around advice of the
aspect model is replaced by an operation with a closure parameter (see section 4.5.2 for
details). The “proceed” action of the advice in the aspect model is converted to a
CallOperationAction which calls an operation of the closure object parameter. The result is
shown in Figure 26.

Figure 24: Joinpoint

Shadow Model

Figure 25: After weaving

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 55 -

Figure 26: Advice operation after weaving

Summary

The weaving transformation replaces all join point shadows from the join point shadow model
with model elements that integrate the aspect behaviour. Different adaptations are needed,
depending on the join point kind (e.g. call vs. execution), binding kind (before, after, around)
and aspect instantiation kind defined (e.g. singleton vs. instance). As a result all dependencies
to AO profiles and models are removed. The result is a plain VIDE model to be further
processed by the model compiler.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 56 -

5 Summary and Conclusions

Both Aspect-Oriented Software Development (AOSD) and Model Driven Development
(MDD) are approaches to reduce complexity in software development. These approaches use
different but complementary ideas to reduce complexity. AOSD adds additional modules and
a weaving mechanism to extract tangled and scattered functionality, so called crosscutting
concerns. MDD reduces complexity by replacing the writing of source code by using abstract
models instead; executable code is generated from the models. Crosscutting concerns appear
already in the modelling phases of MDD while aspect-oriented programs can have a lot of
source code. So it seems natural that a combination of the two approaches can have the
advantages of both and thus can help overcome complexity in software development. Task 3.1
was aimed at checking whether such a concept of Aspect-Oriented Modelling (AOM) is
realizable.

Chapter 3 presented an object oriented business application as an example application that had
been realized using a traditional object oriented design. Such a design has its limitations
especially w.r.t. the modularization of crosscutting concerns. On the basis of two examples of
crosscutting concerns it was shown that the modelling of the respective behaviour using an
object-oriented caused problems that are not solvable with regular MDD techniques. These
examples show the need for Aspect-Oriented Modelling

A proposal for the integration of aspect-oriented concepts into MDD was given in Chapter 4.
In order to develop the proposal some other concepts had to be defined after requirements for
them had been explored. The first was the concept of modelling aspects on the PIM level
which included an extension of the UML/VIDE metamodel. The second was a model-to-
model transformation from an aspect-model and a base model into a plain UML/VIDE-model.

The model-to-model transformation was realized as a so called Demonstrator, a prototypic
implementation in the sense of a proof-of-concept. The Demonstrator uses ATL as the
transformation description language. Choosing ATL allowed us to focus on the actual
transformations since the model query and modification part is implemented by the creators of
the ATL implementation.

An aspect composition strategy was developed by FIRST. The aspect composition takes place
completely on the PIM level resulting in a model-to-code transformation which is totally
unaware of aspects. The chosen strategy requires the advice operations to be modelled using
UML actions.

The composition transformation process is split into two phases: Matching phase and weaving
phase. The Demonstrator implements one composition strategy, but due to the modular design
that we choose it is possible to implement another strategy. In that case only the weaving
transformations have to be changed. It is even possible to use a different aspect metamodel,
which only requires a change of the join point matching transformations but not of the
weaving transformations.

The Demonstrator was able to leverage the concept of AOM for some parts of the examples
from chapter 4. It thus indicated that the AOM concept is feasible and will be able to help to
circumvent the problems that arise when modelling crosscutting concerns with regular MDD.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 57 -

5.1 Open issues

Although many issues had been solved some remain still open, they are presented here.

The examples presented in chapter 4 had been a good basis for gathering most of the
necessary requirements. In addition to them other examples should help in identifying special
requirements on the weaving strategy and the expressiveness of pointcut expressions.

A further issue is about problems that arise when weaving advices to behaviour modelled by
activities. The same flow of control may be modelled in different ways, the model looks
different but the modelled behaviour is the same. This fact results in the need for one weaving
strategy per way of modelling a control flow. Otherwise the weaving would only lead to
correct results when applied to the way of modelling the strategy was initially developed for.
For this a decision has to be made either by restricting the way of modelling the flow of
control or by providing respective weaving strategies.

A syntax in terms of common VIDE syntax for the pointcuts both on graphical and textual
language level are not defined yet. For now pointcuts, advice and aspects can be defined only
with a prototypic enhancement of standard UML.

Currently, the use of OCL instead of read actions is not supported, because of lacking tool
support. The integration with OCL abstract syntax should be no problem for the model
compiler, but it will not be an option for the demonstrator. However, string representations of
OCL expressions are highly discouraged (for the abstract syntax level).

5.2 Outlook

Task 3.2 is about the comparison of the AOM approach and the traditional object-oriented
MDD to examine the benefits and drawbacks of introducing aspects into modelling. For the
purpose of that comparison some measurements will be developed. These will provide means
to evaluate different viewpoints which indicate software complexity like software metrics for
object-oriented code. Examples for complexity measures are the number of model elements or
the number of relations between model elements. It is also possible to compare different
composition strategies or different UML AO Profiles. More examples for crosscutting
concerns will be provided to compare the AOM approach with OO modelling and draw
conclusions supported by facts. The examples will be modelled with and without aspects and
the criteria will be applied to find out whether AOM is useful for reducing complexity.
Different composition strategies and AO Profiles can be used for the same example to find out
which approach is the best.

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 58 -

References

1. SAP AG, SAP Netweaver Developer Studio,
http://help.sap.com/saphelp_nw04/helpdata/en/cb/f4bc3d42f46c33e10000000a11405a/fra
meset.htm

2. Michael Altenhofen, Thomas Hettel, Stefan Kusterer: OCL Support in an Industrial

Environment. MoDELS Workshops, pp.169-178, Genova, Italy, October 2006

3. Hippner, H. and Wilde, K. D. (2002). CRM—Ein Überblick, in S. Helmke, M. Uebel and

W. Dangelmaier (eds), Effektives Customer Relationship Management: Instrumente—
Einführungskonzepte—Organisation, second edition, Gabler, Wiesbaden, pp. 3–37.

4. Walser, K. (2002). Integrierte Prozessabwicklung aus Sicht der Kundenbeziehung—Eine

Übersicht, in M. Meyer (ed.), CRM-Systeme mit EAI - Konzeption, Implementierung und
Evaluation, Vieweg, Wiesbaden, pp. 61–86.

5. SAP AG, SAP CRM, http://www.sap.com/solutions/business-suite/crm/index.epx

6. Amberg, M. and Schumacher, J. (2002). CRM-Systeme und Basistechnologien, in M.

Meyer (ed.), CRM-Systeme mit EAI - Konzeption, Implementierung und Evaluation,
Vieweg, Wiesbaden, pp. 21–59.

7. Hippner, H., Hoffmann, O., Rimmelspacher, U. and Wilde, K. D. (2006). IT

Unterstützung durch CRM-Systeme am Beispiel von mySAP CRM, in H. Hippner and K.
D. Wilde (eds), Grundlagen des CRM, second edn, Gabler, Wiesbaden, pp. 15–44.

8. TopCased, http://www.topcased.org/

9. Khanna, A. How to set up partner determination in mySAP CRM, CRM Expert

http://www.crmexpertonline.com/archive/Volume_03_(2007)/Issue_01_(January_and_Fe
bruary)/v3i1a3.cfm

10. SAP AG, Partner Determination Procedures, SAP Library

http://help.sap.com/saphelp_crm40/helpdata/en/3c/92ecee484a11d5980800a0c9306667/co
ntent.htm

11. Filman R, Friedman P., Aspect-Oriented Programming is Quantification and

Obliviousness, technical report, 2001
http://www.riacs.edu/research/technical_reports/TR_pdf/TR_01.12.pdf

12. Buck-Emden R., Zencke, P., mySAP CRM: The Offcial Guidebook to SAP CRM Release

4.0, SAP Press, May 2004

13. Aspect-oriented Model-driven Product Line Engineering (AMPLE),

http://www.ample-project.net/

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 59 -

14. Feature-getriebene, aspektorientierte und modellgetriebene Produktlinienentwicklung,
http://www.feasiple.de/

15. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Communications of the ACM 15(12) (1972) 1053-1058

16. Aspectj homepage, October 2006. http://www.eclipse.org/aspectj/.

17. Yan Han, Günter Kniesel, Armin Cremers: Towards Visual AspectJ by a Meta Model and

Modelling Notation, Proceedings of the 6th International Workshop on Aspect-Oriented
Modelling, Chicago, USA, March 2005

18. Christina von Flach G. Chavez & Carlos J. P. Lucena A Theory of Aspects for Aspect-

oriented Software Development. 1st Brazilian Symposium on Software Engineering, pp.
130-145, Manaus, Brazil, 2003

19. Siobhán Clarke, Robert Walker: Towards a Standard Design Language for AOSD, Proc.

1st Int' Conf. on Aspect-Oriented Software Development (AOSD 2002), pp. 113-119,
Enschede, The Netherlands, March 2002

20. Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner

Retschitzegger, Manuel Wimmer: Towards a Common Reference Architecture for
Aspect-Oriented Modelling, Proceedings of Workshop on Aspect-Oriented Modelling,
Fifth International Conference on Aspect-Oriented Software Development, Bonn,
Germany, March 20-24, 2006

21. Lidia Fuentes, Pablo Sánchez: Elaborating UML 2.0 Profiles for AO Design, Proceedings

of Workshop on Aspect-Oriented Modelling, Fifth International Conference on Aspect-
Oriented Software Development, Bonn, Germany, March 20-24, 2006

22. Gefei Zhang: Towards Aspect-Oriented Class Diagrams, Proceedings of the 12th Asia-

Pacific Software Engineering Conference (APSEC'05), pp. 763-768, Taipei, Taiwan,
December 15-17

23. Awais Rashid, Alessandro Garcia, Ana Moreira: Aspect-Oriented Software Development

Beyond Programming, Proceedings of 9th International Conference on Software Reuse,
pp. 441-442, Torino, Italy, June 11-15, 2006

24. Dominik Stein, Stefan Hanenberg, Rainer Unland: Position Paper on Aspect-Oriented

Modelling: Issues on Representing Crosscutting Features, Proceedings of Third
International Workshop on Aspect Oriented Modelling, Boston, USA, March 17-21, 2003

25. Jackson, Andrew and Clarke, Siobhán. Initial Version of Aspect-Oriented Design

Approach. Trinity College Dublin, AOSD-Europe Deliverable D38, AOSD-Europe-TCD-
7, February 2006

26. Iris Groher, Stefan Schulze: Generating Aspect Code from UML Models, Proceedings of

Third International Workshop on Aspect Oriented Modelling, Boston, USA, March 17-21,
2003

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 60 -

27. Chitchyan, Ruzanna and Rashid, Awais and Sawyer, Pete and Garcia, Alessandro and
Alarcon, Mónica Pinto and Bakker, Jethro and Tekinerdogan, Bedir and Clarke, Siobhán
and Jackson, Andrew. Report synthesizing state-of-the-art in aspect-oriented requirements
engineering, architectures and design. Lancaster University, AOSD-Europe Deliverable
D11, AOSD-Europe-ULANC-9, May 2005

28. D. Wampler: The Role of Aspect-Oriented Programming in OMG's Model-Driven

Architecture, 2003

29. B. Baudry et al.: Exploring the Relationship between Model Composition and Model

Transformation, in AOM-WS at MoDELS 2005

30. B. Tekinerdogan, M. Aksit, F. Henninger: Impact of Evolution of Concerns in the Model-

Driven Architecture Design Approach, in ABMB at ECMDA-FA 2006

31. D. Simmonds, A. Solberg, R. Reddy, R. France, S. Ghosh: An Aspect Oriented Model

Driven Framework, Proceedings of the 9th International Enterprise Distributed Object
Computing Conference (EDOC 2005), IEEE Computer Society Press, pp. 119-130,
Enschede, The Netherlands, September 19-23, 2005

32. S. Clarke and E. Baniassad: Aspect-Oriented Analysis and Design - The Theme

Approach, Addison-Wesley, 2005

33. P. Amaya, C. Gonzalez, J.M. Murillo: Towards a Subject-Oriented Model-Driven

Framework, in ABMB at ECMDA-FA, 2005

34. Straw et. al.: Model Composition Directives, Proceedings of the 7th UML Conference,

Lisbon, Portugal, October 10-15, 2004

35. NoE AOSD-Europe report D9 IST-2-004349-NOE AOSD-Europe

36. Filman, R., et al., Aspect-Oriented Software Development. 2004: Addison-Wesley.

37. R. Laddad, AspectJ in Action, 2003, Manning Publications

38. E. W. Dijkstra, On the role of scientific thought (published as EWD447), Aug 1974,

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

39. K. van den Berg, J.M. Conejero, R. Chitchyan, AOSD Ontology 1.0 – Public Ontology of

Aspect-Orientation, 2005, Technical Report, AOSD Europe

40. Ch. Koppen, M. Stoerzer, PCDiff: Attacking the Fragile Pointcut Problem, In:

Proceedings on 1st European Interactive Workshop on Aspects in Software (EIWAS),
2004

41. E. Hilsdale, J. Hugunin, Advice Weaving in AspectJ, Mar 2004, AOSD04

42. ATLAS Transformation Language (ATL), http://www.eclipse.org/m2m/atl/

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 61 -

43. M. Eichberg: MDA and Programming Languages, In Proceedings of the Workshop on
Generative Techniques in the context of Model Driven Architecture. OOPSLA, November
2002

44. V. Kulkarni and S. Reddy: Supporting Aspects in MDA, Proc. of the Workshop in

Software Model Engineering on the UML'2003, San Francisco, USA, 2003

45. D. Wampler: The Role of Aspect-Oriented Programming in OMG's Model-Driven

Architecture, 2003

46. D. Stein, S. Hanenberg, and R. Unland: Modeling Pointcuts, Proc. of the 7th International

Conference on the Unified Modeling Language (UML 2004), Lisbon, Portugal, October
11-15, 2004, Springer, LNCS 3273, pp. 98-112

47. P.A. Amaya Barbosa , C.F. Gonzalez Contreras, J.M. Murillo Rodriguez: MDA and

Separation of Aspects: An approach based on multiple views and Subject Oriented
Design, Proc. of 5rd International Workshop on Aspect-Oriented Modeling with UML,
AOSD 2005, Chicago, IL, 2005

48. M. Mezini and K. Ostermann: A Comparison of Program Generation with Aspect-

Oriented Programming, In Proc. of the EU-NSF Strategic Research Workshop on
Unconventional Programming Paradigms. Springer Verlag LNCS 3566

49. Omar Aldawud: A UML Profile for Aspect Oriented Programming, Workshop on Aspect-

Oriented Programming in conjunction with OOPSLA . Tampa, Florida, 2001

FP6-IST-2004-033606, VIsualize all moDel drivEn programming Work Package 3 – Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

- 62 -

DISCLAIMER OF SAP AG

Copyright 2007 SAP AG, All Rights Reserved.

No part of this publication may be reproduced or tr ansmitted in any form or
for any purpose without the express permission of S AP AG.

The information in this document is proprietary to SAP AG. No part of this
document may be reproduced, copied, or transmitted in any form or for any
purpose without the express prior written permissio n of SAP AG.

This document is a preliminary version and not subj ect to your license
agreement or any other agreement with SAP. This doc ument contains only
intended strategies, developments, and functionalit ies of the SAP® product
and is not intended to be binding upon SAP to any p articular course of
business, product strategy, and/or development. Ple ase note that this
document is subject to change and may be changed by SAP at any time without
notice.

SAP assumes no responsibility for errors or omissio ns in this document.

SAP does not warrant the accuracy or completeness o f the information, text,
graphics, links, or other items contained within th is material. This
document is provided without a warranty of any kind , either express or
implied, including but not limited to the implied w arranties of
merchantability, fitness for a particular purpose, or non-infringement.

SAP shall have no liability for damages of any kind including without
limitation direct, special, indirect, or consequent ial damages that may
result from the use of these materials. This limita tion shall not apply in
cases of intent or gross negligence.

The statutory liability for personal injury and def ective products is not
affected. SAP has no control over the information t hat you may access
through the use of hot links contained in these mat erials and does not
endorse your use of third-party Web pages nor provi de any warranty
whatsoever relating to third-party Web pages.

