I' B E v “
=
Information Society u E
Technologies

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

FP6-1 ST-2004-033606

Vlsualize all moDel drivEn programming
VIDE

WP 3 MDD Suitable AO Modelling and
Composition Techniques D.3.1

Suitable Aspect-Oriented Modelling and
Composition Techniques in Model-driven
Software Development

Project name: Visualize all model driven programming
Start date of theproject: 01 July 2006
Duration of theproject: 30 months
Project coordinator: Polish - Japanese Institute of Information Techgglo
Work package Leader: Fraunhofer FIRST
Duedate of deliverable: 30 June 2007

Actual submission date 08 August 2007

Project supported by the European Commission within Sixth Framework Programme
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Status developed / draftiinal
Document type: Report
Document acronym: D3.1
Editor(s) Jaroslav Svacina, Anis Charfi

Reviewer(s) Anis Charfi, Axel Spriestersbach, Joachim Hé&nsehrdd

Mosconi
Accepting Kazimierz Subieta
Location www.vide-ist.eu

Verson 1.0

Dissemination level PU/PP/RE/CO

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Abstract

The purpose of work package 3 is to investigatatefiies for the integration of aspgct
oriented composition techniques in model driverettlgsment and make recommendationp to
the other project participants on the most suitadgbgroach for aspect-oriented composition
in VIDE. The research goal of Fraunhofer FIRST asréise AO techniques to a higher
abstraction level than programming whereas SAP egkig techniques for a better
modularization and handling of crosscutting coneein business application models gnd
consequently less complex models that are easyhderstand and maintain. This woyk
package addresses the limitations of object-orgm@delling at the PIM level with respgct
to crosscutting concerns. FIRST presents a propdsal introducing aspect-oriented
concepts to the PIM modelling level. Moreover, fegmantics of these concepts will |be
defined and possibilities for implementing aspearded composition using AO-specific
model-to-model transformations will be discusselde Work package shows also throygh
examples how the proposed concepts can be useadelling business applications.

The VIDE consortium:

Polish-Japanese | nstitute of I nformation Technology Coordinator Poland
(PJIIT)
Rodan Systems S.A. Partner Poland
Institute for Information Systems at the German d’esh Partner Germany
Center for Artificial Intelligence
Fraunhofer Partner Germany
Bournemouth University Partner United
Kingdom
SOFTEAM Partner France
TNM Software GmbH Partner Germany
SAP AG Partner Germany
ALTEC Partner Greece
-3-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Executive Summary

The VIDE project aims at developirig fully visual toolset to be used both by IT-spédists
and individuals with little or no IT-experience,cbuas specific domain experts, users and
testers.®. Therefore VIDE investigates'visual user interfaces, executable model
programming, action- and query-language-semant®®P and quality assurance on the
platform-independent level, service oriented amttilire (especially Web services
integration) and business process modelling/IDE is aimed to be embedded in the Model
Driven Architecture of the OMG, thus supporting rathitag both on a domain-oriented
computation-independent layer (CIM), a platformapdndent layer (PIM), and generating
models on a platform-specific layer (PSM). VIDE psimarily targeting the domain of
business application software.

The goal of Work Package 3 in the VIDE projectasirivestigate integration strategies for
adding advanced aspect-oriented software compositithe platform-independent modelling
phase of MDD processes. The resulting knowledgewallintegrating the aspect-oriented
modelling and composition techniques into the VIRRguage and architecture. The benefit
for the VIDE project will be shown by evaluatingetdeveloped concepts and by assessing the
used technology.

In this work package we have researched aspecttatien on the PIM level using Customer
Relationship Management business scenarios thgiravéded by SAP. The lack of support
in object-oriented modelling techniques for modualag crosscutting concerns in the
provided scenarios raised the need for aspectiedetechniques while modelling business
processes and business applications.

Our research included the evaluation of differeqasteng approaches in the domain of aspect
oriented programming by applying them to the ret¢ydases of Model Driven Development
as well as the investigation of existing approachdke area of aspect-oriented modelling.

Based on the research results a suitable conceptddelling aspect-oriented constructs, such
as aspect, advice, and pointcut was developed.ngare a straightforward integration of
these constructs into the VIDE metamodel we havectssl the UML Profile extension
mechanism.

To allow the VIDE model compiler to deal with thepact-oriented modelling concepts that
we have developed, we present an aspect compositiategy, which is based on model-to-
model transformations. The feasibility of the dexgd concepts and strategies was shown by
a proof-of-concept prototype, which consists of URtofiles for aspect modelling and two
transformations respectively for join point matahand aspect weaving at the model level.

Deliverable 3.1 presents the state of the art peeisoriented composition at the model level
and provides an analysis of the chances and risksthfe investigated modelling and
composition techniques. It also aims at providihg tequired knowledge for integrating
aspect orientation into the context of VIDE.

! From the VIDE project summary in the Technical Arn

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Table of Contents

F Y 0153 1 = Lo PRSP -3-
EXECULIVE SUMIMATY .oiiiiiiiiiiiiiiieiie e e e e e si sttt e e e e e s sttt e e e e e e s s ssttaaeeeaeeasssssseaaeeeaeessaasnsteaeeeaeeeaannnsteneaaaenns -5-
TADIE OF CONEENTS oot e e sttt e e s ettt e e e snbe e e e e anbb e e e e annbeeeesnneeeeas -6-
F Y o] o] €AV A= 1T] o B PURTTSP -8-
1 INtroduction ANd OVEIVIEWueieiiiiiie ettt ettt ettt e ettt e et e e s st e e e snbbe e e s snbbeeeeaneees -9-
R O 1 -1 11T o =P -9-
1.1.1 Task 3.1: Practical evaluation of AO modelling and composition in MDA................ -10 -
1.1.2 Task 3.2: Provision of a knowledge base for AO software composition in MDA

0] (010l 2SS ST PP PPPPPPPPPPRTPPIRt -10-

1.1.3 Task 3.3: The specification of the Aspect-Oriented composition mechanisms to be
LS 0] 0 Lo (=T o I ¢)2V | I SRR -10 -
1.2 DOCUMENT OULINEottt e e e e e e ettt r e e e e e e e s aantbe e e e e e e e e aannbbneeaaaeeas -10 -
2 Background: Aspect-Oriented Software Development and Model Driven Development...- 12 -
P NSy o= T o A @ 1 =T 01 = Vi {0] o [T PR -12 -
P22 0t R [11 o Yo L1 od T] o [SRR -12-
P A O7o 1 £ (=] £ 1 1 TP PP PP POPPPPPPPPPRN -12 -
P R T ©70] (=N ol o] g [o1= oS TP P PP PP P PP PPPPPRPTPPRt -16 -
2.2 Aspect Orientation at the Model LEVEL.............uvviiiieiiiiee e -16 -
2.2.1 OVEIVIBW ..ot e ettt e e e e oot ettt e e e e e e s n bt tte e e e e e e e e annsbseeeeaeeeeaannsbnneaaaaeeaannnes -17 -
2.2.2 Aspect-oriented MOAelliNgcoooiiiiiiiiii e -18-
2.2.3 Aspect-Oriented Composition in Model Driven Developmentcccccceeeeeeinnes -19-
2.3 ChanCes ANnd RISKScoiuiiiiiiiiiie ittt ettt e e st e e st e e e enbee e e e nnbaeeeesnees -21-
2.3.1 Aspect-oriented concepts at model leVel..........coocuviiiiiiee i -21-
2.3.2 Aspect-oriented MOAellNGcovieiieiiiiiiiiiie e -22 -
2.3.3 Aspect-oriented COMPOSITIONuvviieeeeiiiiiieiie e e e e e e e e e e s s st e e e e e e s s snrrarreeeeesaannnes -22 -
2.3.4 Refactoring of aspect and base Models ... -23-
3 Crosscutting Concerns in SAP Business AppliCationsccccvviiiiiiiiiiei e -25-
3.1 Example of business appliCAtiONoocuiiiiiiiiiiiie e -25-
3.1.1 Customer Relationship Managementcooiiiiiiiiiiiiiiee i -25-
3.1.2 Lead and Opportunity Managementueiiiiieeiiiiieeee et eieeeeee e e e -26 -
3.2 Crosscutting Concerns in the CRM appliCationcccvvviviiee i -28 -
3.2.1 CONSISIENCY CRECKSeieiiiiie et e et e e e e e e e e eeaeaeeas -28 -
3.2.2 Partner determiNationooiiieiiiiiiii e e e e e a e e -31-
3.3 Benefits of VIDE Aspects in modelling Business Applicationsccccovviiiiiieiieeeeiiciinnen. -33-
G U 0 0 0= -35-
4 Realizing Aspect Oriented ComposSition iN VIDEcoooiiiiiiiiiiiiee e - 36 -
R © Y= V1 PRSPPI -36 -
4.2 TeChNOlOGICAl OVEIVIEWeiiiiiiiiiiee ettt e e ettt e e e e e e e e beeeeeaeeeaannes -37-
ot R = - 1= T =Yoo o] (o T |V PP -38 -
4.2.2 ASPECE EXIENSIONS ...ttt e e e e e e beee e e e -38-
F XS] o 1Tt 1Y, oo (=] 1T To T PP -38-
POINTCUL MAICHING .o e et e e e e e e e sanbeee s -38-
ASpeCt COMPOSItION (WEAVING)vvveeeeeeeiiiiiiieeiee e e e ettt e e e e e s sbbas e e e e e e e s e snbbeeeeeaeeesaannbbeeeaaaaaas -39 -
A B = U= o [0 =T 0 0=) TP PPT TR -39 -
4.2.4 Model TransSfOrMatioNSoooiiiiiiiiie e ee e e e -39 -
4.3 AOC AFCRILECIUIEeeiiiie ettt e ettt e e e e e e e s s bbb b e e e e e e e e e sanbbneeaeaeeaaannes -40 -
4.4 Models and MetamOUEIS.oeiiiiiiii et e e e e e e e e e e e e e e e e anes -41 -
R = 7= £ /[To = L PP PRSP -41 -
N AN o 1= o B 4T To 1= £ PR -41 -
443 AO UML PrOfilE ..ottt e s -42 -
-6-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1

Version 1.0 Date: 08 August 2007
4.4.4 Intermediate model: Join Point Shadow UML Profileccoooviiioiiiiiie e - 46 -
445 RESUILMOUELoun et e et e e e e e s ea e e e eaa e e s enaaaees -47 -
4.5 Model TranSTOMMALIONSccovueiiiete et e et e e et e e e et e e s et e e e et e e e sata e e s saaeesestaseaenrasees -47 -
451 POINICUL RESOIVING .ottt e e e e e e et e e e e e e s s e nnraneeaaaee s -47 -
W72 AN o 1= Tox 0] 4o o T 1S3 4o o PR -48 -
5 Summary and CONCIUSIONS ...uuuiiiiiiiiiiiiiii ittt e e e e e e e e e e e e e e e s s antaeeeaeeeessnneeneees -56 -
TN A O o =T o I TS 01 TR -57 -
LIV O 111 [0 1o T -57 -
|2 I (= (=T A L1 =TT - 58 -
DISCLAIMER OF SAP AG ...ttt e e et e e e e e e et e e e e e e e e eas -62 -

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Abbreviations

CIM Computation Independent Model
PIM Platform Independent Model
PSM Platform Specific Model

MDA Model Driven Architecture

AO Aspect Orientation

AOP Aspect-Oriented Programming
AOM Aspect-Oriented Modelling
AOC Aspect-Oriented Composition

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

1 Introduction and Overview

The object-oriented methodology is the most usethoawlogy in software development in
general and in model driven development in pardiculHowever, object-oriented
decomposition is too limited to efficiently deconsgodifferent domains. To address this
limitation, aspect orientation provides advancedduatarisation and adaptation concepts,
especially behaviour adaptation, i.e., insertingl axecuting encapsulated behaviour at
declared interaction points, as well as structaddptation, i.e., extending already existing
structural elements. These additional conceptsvadlonodularized definition of crosscutting
behaviour, non-invasive adaptation of software (gonents), decapsulation of structure and
behaviour, integration of "unprepared” binary comgrats and parameterized specification of
behavioural composition.

As a result, MDD can gain a lot from the advanceadutarisation concepts provided by
aspect orientation. Decreasing the model compleaity favouring an easier reuse and
extensibility are among the most important bengfitsich allow the modeller to focus on a
certain domain and realize functionality withoutgang and scattering.

1.1 Challenges

To integrate aspect orientation into model drivemedopment in the VIDE context and show
the resulting benefit, three challenges were ifiexti

The first is choosing the right application scensrwhich are valuable for VIDE partners and
users. There are several suitable scenarios fala@went and production aspects. Examples
of development aspects include debugging, testmggformance tuning and monitoring.
Additionally production aspects enable the softwadeseloper to add functionality without
adding more visibility of model element internalwhich eases model comprehension,
maintenance, and extension.

The second challenge is the integration of aspaented concepts into the model driven
development process, which makes an exploratioediired techniques indispensable. First
it is necessary to find out the most suitable waydéscribe, respectively to model the
additional aspect oriented constructs, such ascgsaévice, pointcut, etc. Especially while
modelling pointcuts, there are many different aoias, which have a significant impact on
the resulting power and expressiveness of the nméahafor selecting interaction points in
the modelled control flow. After defining a way model aspect oriented constructs, the
composition of the base model and the aspect mbdslto be investigated. Different
approaches from the aspect oriented software dewedot domain are compared and checked
for suitability, whereas the main focus is on aspezaving and instantiation strategies.

At last, the third challenge concerns the develagraead realisation of aspect composition on
the model level in the VIDE context. The non-invasextension of the VIDE Metamodel

using UML Profiles allows the modelling of aspedeated constructs in VIDE context. The
developed concept for aspect oriented model cortiposis implemented using a set of
model-to-model transformations, which perform pointmatching as well as aspect weaving
on the PIM level using different weaving strategi€se realisation shows the feasibility of
the developed aspect oriented composition straaagyhelps to detect potential technological
problems.

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

These challenges correspond to the following fasks

1.1.1 Task 3.1: Practical evaluation of AO modelling and composition in MDA

A demonstrator (for the sole purpose of the evaunateport) utilizing techniques selected in
task 1.3 will be developed, which will show thetability of the technique, investigate the
maturity of its AO modelling approach and spawndeid risks in composing AO models
particularly for data-intense business applicatidiesthis end a metamodel for assessment of
most suitable AO approaches will be developed, riiigg AO model extensions, aspect
weaving level and complexity of MDA transformatiorfseveral parts of a given business
application will be analyzed in order to identifgraposition scenarios crucial for business
applications. The most important composition sdesawill be designed and executed using
the most reasonable composition technique. Theltsesull be assessed considering the
identified factors important to an MDA developmembcess. A report will summarize the
experiment's results, discuss the collected daldaraparticular recommend an AO modelling
technique and design for integrating AO compositida the VIDE environment.

1.1.2 Task 3.2: Provision of a knowledge base for AO software composition in MDA
processes

By structuring the empirical data of Task 3.1 andtad body of knowledge for best practices
of AO modelling and composition techniques in MDévelopment processes with a focus on
the business application domain will be initializétdaddresses the maturity of existing AOP
approaches as well as integration issues. The a&@iuof this body will take place by
dissemination of research results and empiricallueti@n by the research community,
software companies and tool vendors.

1.1.3 Task 3.3: The specification of the Aspect-Oriented composition mechanismsto be
supported by VIDE

Based on the analysis performed and in the coaparnaith VIDE language definition
activities of WP2, the aspect-oriented compositithanisms for VIDE will be specified.
The specification will cover respective semanticgation and visual user interface elements.

1.2 Document Outline

After having given an overview of this deliverakile Chapter 1 we introduce the core
concepts and terms in the domains of Aspect Otienta(AO) and Model Driven
Development (MDD) inChapter 2 This part is split into two sectiongspect-Oriented
ModellingandAspect-Oriented Composition in Model Driven Develept Then, we present
the state of the art in AO and MDD. After that, previde an analysis of chances and risks in
the described approaches.

In Chapter 3 some crosscutting concerns in a typical SAP lassirapplication are identified
and explained. Moreover, the need for aspect-atentodelling capabilities is motivated and
the expected benefits for modelling business agfitins are discussed.

% From the VIDE WP3 description of work in the Teitah Annex
-10-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Chapter 4provides a detailed description of the realizgoeasoriented modelling concepts
and presents a proof-of-concept demonstrator. Mereoit introduces the proposed
composition strategy, the respective model-to-mottahsformations, and the chosen
technology to implement thes€hapter 4also gives examples that illustrate the usagbef t
realized concepts for modelling the crosscuttingceons identified irChapter 3

Chapter 5gives a summary of the proposed approach to aspiectted modelling at the PIM
level and explains its benefits. Moreover, thisptha discusses open issues and gives an
outlook to the future, especially with respect w@iizerable 3.2.

-11-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

2 Background: Aspect-Oriented Software Development
and Model Driven Development

The most pressing problem in software developmerts to be complexity. Most target
domains and projects get more and more complexXlihgcthis complexity during software
development needs new techniques and methodolbgede the currently used ones. Both
Aspect-Oriented Software Development (AOSD) and &tdariven-Development (MDD)
provide new ways to confine and reduce complexitycreating solution domains and
developing software. Both approaches try to sdiedomplexity problem with different but
complementary ideas. So it seems natural to conthiese approaches and reap the benefits
of both for overcoming complexity in software dey@inent.

2.1 Aspect Orientation

This section starts with giving a short motivatiftor the use of aspect oriented software
development in general. After that some frequenslgd terms of the aspect oriented software
development domain will be introduced. This will fsdlowed by a description of weaving
techniques employed for compilers of aspect orgeptegramming languages.

2.1.1 Introduction

The currently mainly used paradigm in software d@w@ent is object-orientation (OO).
After years of object-oriented development, expergehas shown that OO is not sufficient
enough to modularize certain concerns into the tswlu domain. Aspect-Oriented
Programming emerged as a paradigm which wants ablera better modularization and
encapsulation of crosscutting concerns in softwlreelopment While OO uses classes as
modularization units, AO adds aspects as additiomatlularization units for crosscutting
concerns.

Modularized concerns are composed with associatiwh class-based inheritance in object-
orientation. AO extends those with structural cosifpen mechanisms like instance-based
inheritance mixins or behavioural composition medtims. The behavioural composition
mechanism is enabled by well-defined interactiom{soof aspects and class¢sir{ points,
declarative specification of interaction poinp®ifitcutg, and the interception of the execution
to insert behaviour that is defined byaualvice Therefore AO programming (AOP) advances
the modularization of program behaviour.

In Aspect Oriented Programming (AOP) a huge varietytechniques and concepts is

employed to achieve aspect-oriented modularizatdften similar terms denote different

concepts. To avoid confusion, the following seciiminoduces the main terms and concepts in
aspect-oriented software development.

212 Coreterms
Most of the following definitions are based on [3@&5], and [36].

-12-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Separation of Concerns

» Separation of concerns simplifies system developingmllowing the development of
specialized expertise and by producing an overallentomprehensible arrangement
of elements [36].

» Separation of Concerns is an in depth study aridsa¢ian of concerns in isolation for
the sake of their own consistency (adapted from ti@nRole of Scientific Thought”
by Dijkstra, [38]).

» Separation of concerns addresses the issue ofdmgwufficient abstraction for each
concern as a modular artefact.

Tyranny of Dominant Decomposition

 The Tyranny of the Dominant Decomposition refersréstrictions (or tyranny)
imposed by the selected decomposition technigee thhe dominant decomposition)
on software engineer's ability to modularly repreeg®rticular concerns.

* The Tyranny of the Dominant Decomposition refergdstrictions imposed by this
decomposition on the simultaneous use of otherrdpositions.

Composition
» Composition is bringing together separately creatdtivare elements [36].

» Composition is the integration of multiple modudatefacts into a coherent whole.

Weaving
* Weaving is the process of composing core functipnalodules with aspects, thereby
yielding a working system ([36]).
» Historically this term is used to refer to the casgpion of aspects with other concerns
in the system. (See composition)

* Weaving is the composition of aspects with modtited represent other concerns in
the system.

Decomposition

» Decomposition is the breaking down of a larger pobinto a set of smaller problems
which may be tackled individually.

M odularisation

* Modularization is putting together (or partition)ngrtefacts into entities called
modules (usually aiming at low coupling and highe&sion).

Module
* A module is an abstraction in the adopted language.

Concern
* A concern is a thing in an engineering process awbich one cares [36].

-13-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

» A concern is a specific requirement or consideratimt must be addressed in order to
satisfy the overall system goal. [37]

* A concern is an interest which pertains to theesy& development, its operation or
any other matters that are critical or otherwispanant to one or more stakeholders.

Crosscutting Concern

* A crosscutting concern is a concern for which thgplementation is scattered
throughout the rest of an implementation. [36]

» A crosscutting concern is a concern which cannanbdularly represented within the
selected decomposition. Consequently the elemehtsrasscutting concerns are
scattered and tangled within elements of other eorsc

* A crosscutting concern is a concern, which is nodufarly represented within the
selected decomposition into modules, with as altréseloccurrence of crosscutting.

Crosscutting

» Crosscutting is a property of a concern for whible tmplementation is scattered
throughout the rest of an implementation [36].

» Crosscutting is the scattering and/or tanglingaiaerns arising from the inability of
the selected decomposition to modularise them w@ffdy.

» Crosscutting is a structural relationship betweapresentations of concerns.
(Crosscutting is a different concept from scatigand tangling.)

» Crosscutting is the occurrence of scattering amgjlitag of concerns involving a
common module.

Scattering

» Scattering is the occurrence of elements that Igelimn one concern in modules
encapsulating other concerns.

» Scattered concern is a concern which cannot beesgpd as a single abstraction
within the adopted language (Here the term languagg refer to requirement
specification, analysis, architecture specificatiomplementation languages, etc.)

» Scattering is the occurrence of the representati@me concern in multiple modules.

Tangling
» Tangling occurs when the code for the implementadioconcerns is intermixed [36].
» Tangling is the occurrence of multiple concernsedixogether in one module.

» Tangled concern is a concern which cannot be egpdeas a distinctive abstraction
within the adopted language; its definition is separable from the definition of other
concern(s).

* Tangling is the occurrence of the coexistence pfagentations of multiple concerns
in one module.

-14-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Aspect
An aspect is a unit for modularizing an otherwisesscutting concern [39]. It defines

structural or behavioural enhancements that aaetstl to another unit. Most often, an aspect
module provides new features, such as pointcuidnite, to define those enhancements.

The aspect module may influence the AO compositidhree different ways [20]. An aspect:

* may act as base code to be adapted by other aspectselves,
* might be specialized into several sub-aspects, and
* may introduce adaptations that cause conflicts.

Join Point

In AOP join points are considered as well-definpditits in the execution of the program”
where aspects can interact with other parts optbgram. The execution of models requires
an adequate definition and considers model elentatiter than program elements. Similar to
executable program elements, such as statementsxmressions, every structural and
behaviour model element that appears in the ex@cutd the model can act as a join point.
Elements of a structural diagram may representiragoint shadow, specifying where an
aspect adaptation can be introduced. A no furtestrictedjoin point shadowacts as a join
point in every model execution. Model elements efidvioural diagrams directly represent
specifiable join points. They depict the executddmodel elements within a certain scenario.
Both kinds of elements are used to formulate anaéi@ptation.

A join point model defines all elements that cahaacjoin points during model execution.

Pointcut

A pointcut is a predicate that matches join poid8]. Since join points are points in the
execution they comprise static (structure related) dynamic (execution related) properties.
Two kinds of pointcuts can be distinguished: (i)npeut that select join points by specifying
their static properties, i.e., properties of thein point shadows, and (ii) pointcuts that refer
to dynamic (runtime) properties, i.e., properti€maspecific join point shadow execution. A
pointcut is often a member of aspect modules.

Advice
An advice is an artefact that augments or congg@oncerns at join points [39]. An advice is
the actual behaviour to execute before, after @uradt a join point [36].

An advice is similar to a method. It defines a lidtparameters and contains a block of
statements that are executed when the advice akéav However, in several AOP languages
advices do not have a name and also no returnsiafueadvice is often a member of aspect
modules.

Join Point Model

* A Join Point Model (the kind of join points allowegdrovides the common frame of
reference to enable the definition of the structfraspects [36].

* A Join Point Model defines the kinds of join poirdsailable and how they are
accessed and used.

-15-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

2.1.3 Coreconcepts

Aspect-oriented composition is generally achievgdcombining two model elements. The
resulting model element comprises the structurelsetviour of all the elements that were
composed. The way in which the structure or behavaf a particular model element is
adapted, i.e., augmented, modified or replacedpexified by the composition. In general,
two specific model compositions can be distinguisheerge of different module structures
and the adaptation of a module's behaviour.

Structural Composition

The structure of the resulting elements is produbgdmerging the structures of two
(equivalent) model elements, e.g. two classes orgackages. This symmetric composition
allows the introduction of new members and dedlamabf new module relationships. In
contrast to the programming level, also relatiopstietween model elements can be merged
as first-class entities.

Behavioural Adaptation

An aspect adapts the behaviour of a model elentemspecified join point. This asymmetric
composition is specified by a pointcut and bindsadwice to a set of join points. The pointcut
specifies at which join points the aspect modifiles existing behaviour, and the advice
defines the additional behaviour that is executetbrie, after or around the join point.
Behavioural adaptations are in general only navegabm the aspect's side.

In AOP the actual composition is called weavingjolhcan either be static (at design time)
or dynamic (at runtime).

2.2 Aspect Orientation at the Model Leve

An important task in Model Driven Development isetlereation of precise, complete,
platform independent models, which can be transédrinto models conforming to different
abstraction levels or into code for different pdahs. Mainly due to the adoption Attion
SemanticsUML allows also the definition of executable malel

However, UML and the Action Semantics are basedobject-oriented concepts and
consequently certain concerns cannot be adequatalized in a modularized way. There is
no possibility to encapsulate crosscutting concarrssngle design modules. The problems of
scattering and tangling arise at the level of UMlodal constructs. Consequently, the
maintenance and evolution of the software andeheability of existing modules is hindered.

Aspect-Oriented Software Development (AOSD) haygman the recent years to be suitable
for providing technology that allows the encapsatatcrosscutting concerns in a modular
way. Furthermore, AOSD also provides mechanismsotopose the encapsulated concerns
with the software modules they crosscut.

As a result of the additional modularisation consefne software maintenance and the
reusability of software modules is enhanced [15jerEfore the adoption of Aspect-Oriented
concepts has a positive impact on software evatutio

-16-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

To support the adoption of aspect orientation @dustry an adequate tool support is required.
The existing tools focus on development environséot aspect-oriented languages, such as
AspectJ [16]. Obviously, other kinds of softwareselepment approaches, especially Model

Driven Development can benefit from aspect orieomat

The following sections describe the incorporatidnaspect orientation concepts in Model
Driven Development separated into two main partse Ppart on aspect-oriented modelling
gives an overview about the techniques for modgléind representing the additional AOSD
constructs (aspect, advice, etc.). The part oncaspented composition in Model Driven
Development provides mechanisms for composing #se land aspect models.

221 Overview

Some exploratory research in the area of platfordependent AOP and the use of AOP in
MDA has been performed ([43], [44], [45], [47]). @ldomains of the aspect and modelling
communities are partially overlapping ([46], [17]nitial research is ongoing, but no

conclusions on how to best merge AOP and MDA hasenbdrawn. Some sample tools
implement AOP in an MDA setting ([47]). It is likelthat the future will merge AOP and

MDA into a new paradigm, or will extend the MDA pdigm to crosscutting concern

semantics ([48]). Both are powerful methodologiekich solve existing problems in current
mainstream paradigms like OO.

As described in the AOP introduction, AOP providelwanced composition concepts. AOP
enables a modularized behaviour definition anduse of that behaviour in multiple model
elements. With the decapsulation of structure aedatbiour, integration of “unprepared”
binary components, “a posterior” integration of @#ddal interface hooks and the
parameterized specification of behavioural compmsitAOP helps software developers
managing the complexity of software systems.

From the application of AOP to MDA, MDA gains seakbenefits. The model complexity is
decreased and the models become focused on theiargrdomain. And with parting the

models into aspects and models, also the complexitynodel transformations can be
decreased. All this leads to reduced maintenanpenses. An overview of the exploration is
shown in Figure 1.

-17-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Work Package 3 — Deliverable D3.1

Version 1.0 Date: 08 August 2007
UML Diagrams as Views,
UML Package Merge/Import
Theme/UML
I AMW
jontlicss - Approaches ———
traceability AOMDF
semantical/abstract pointcuts Issues)»-\ SOD/CP (Amaya et al)
——————————————— binding \
mapping to platform \\ e
symmetric Composition takes place at
identical meta-madels for all) e
source/target models horizontal P i |
— | same level and acts as source
no primary/core model for the next transformation
union of all model elements of steps.

Model Mergin
all input models |reee e
implicit or explicit matching of

corresponding/identical
elements (to be merged)

1:1 identification of model elements

|__Model Composition

elements (via pointcuts)
switching abstraction level

switching meta-model |

Views on models

asymmetric Madel Transformation
primary source model with [~ Techniques }7 7""\ combination
same meta-model as woven g
forgetmodel , | AOC in MDD -
aspect model with potentially | Model Weaving ST
different meta-mode| than PIM
primary model —— Where — psm
1:n identification of model Code

Composition takes place at the
transition from one abstraction
level to the next concrete one,

i.e. during a transformation |
from PIM to PSM or PSM to

Code.

—When |
—| vertical

name patterns
matching structures | relationships

| meta-data
(" self-contained madels fantral ficyA
consisting of strucure and | matching behaviours | state
behaviour describing one seperated Concerns events
_ concern / E—
shared structure \ bindings external
symmetric What “~— How {internal
oo o F implicit
T composition directives [
- 4' explicit
asymmetric? structure static

constraints
S dynamic

awareness

context ‘
exposure

Figure 1: Aspect Orientation in MDD

2.2.2 Aspect-oriented Modelling

Currently aspects are used mostly at the progragiainguage level. With the advent of
model driven development and the increasing foausnodelling, several research groups
tried to move aspects to the model level. With Asyieriented Modelling (AOM) [49]
aspects are integrated in model driven developmethodologies.

2.2.2.1 Kindsof Modes

There are several approaches to AOM. The firstagmtr is to model a specific programming
language aspect framework like Aspectd with UML7{)1 This results in AspectJ typical
artefacts and thinking. The second approach issiract aspect-oriented development and
move it to a conceptually higher level ([18, 19ter this, the aspect model, composition
model, advice model, execution semantics and aspretactions are expressed in a
framework independent way and modelled too ([20]).

2.2.2.2 Notations

Aspects can be modelled with different notationse Thost common way is to use a visual
notation. This is achieved by extending and custorgi UML with UML meta-models and
profiles [21]. For most people this is the prefdrepproach because of its easy tool support
and high user acceptance. If UML and the UML extansnechanisms are not flexible
enough, aspects can be modelled visually with #oousotation. Most current approaches
only use class diagrams for AOM ([22]) and therefonly model structural not behavioural
AOP.

-18-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

2.2.2.3 Modedlling Level

As mentioned, aspects are currently used on thgrgmaming language level. When lifting
them up to the model level, they can be modelledhencomputation independent model
(CIM), the platform independent model (PIM), or thve platform specific level (PSM). Each
level has different constraints on the modellingaspects and needs different artefacts and
probably different visual notations. Beside strugkuAOP modelling, behavioural AOP
modelling is needed especially for the CIM levelr (xample AOP annotated use cases).

2.2.2.4 Pointcut Languages

Pointcuts connect join points in the target modihwaspects. Those connections are crucial
in AOM [24, 23]. On the programming language lepelntcuts are described with text for
example with regular expressions for matching jeaints [25]. Moving to a model level,
pointcuts can also be modelled visually. There Histeseveral visual pointcut languages,
which either directly associate join points witlpests or provide a visual querying language
for join points [24, 22], which then connects thisual query description with aspects.
Another idea for expressing join points is usindoaos for each pointcut and aspect
combination, underlying join points with colours.

2.2.2.5 Location of Aspects

Aspects and especially pointcuts can be eithertéolce the aspect package, which models a
domain, or in a separate package joining two inddpet domain packages. The later
approach enables switching of different pointcut aspect models and allows developers and
modellers to model their domains without knowledfjaspects [26].

2.2.2.6 Crosscutting Concern Visualization

Aspect-oriented programming and modelling is abthé encapsulation of crosscutting
concerns. A visual modelling framework and viswaiduage probably needs to give visual
feedbacks on which join points are adapted by asp@therwise it is hard for the modeller to
debug and correctly model specific pointcuts.

2.2.3 Aspect-Oriented Composition in Model Driven Development

Enabling the use of Aspect-Oriented Modelling (AOiN)a model driven setting includes the
definition of formal semantics for aspect compasifias the created (aspect) models have to
be processed by automated model transformationst IOM approaches define concepts
for decomposition, but lack corresponding compositsemantics [27]. The modelling of
aspects and their composition can take place &t alstraction layer in an MDA stack, i.e.
CIM, PIM, PSM or Code [28]. Many approaches thatldeith aspect model composition
propose a composition at the level where aspeetsn&noduced, i.e. mostly at PIM or PSM
level. The techniques used for model compositian ssmetimes called ‘model merging’
and/or ‘model weaving'. In our terminologyiodel mergingealises a symmetric composition
of models and results in a composed model whiclstdates a union of all model elements
from the input models.

-19-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1

Version 1.0 Date: 08 August 2007
Horizontal composition Vertical composition No model composition
(aspect resolution within the (aspect semantics at PIM level, (aspect weaving deferred to an
abstract syntax of PIM) PSM without aspects) existing AOP platform)
cim

" D) () G

wea\.rlng

weaving ‘ platform
platform
PSM J’ platform platform a0 platfarm
v
Code ao—oode

Figure 2: Different kinds of model composition

It is a symmetric composition because of the faet there is no particular ‘primary’ (or
‘base’ or ‘core’) input model, but all input modeadre equal. Also, the input models and the
merged model are instances of the same meta-miBldehents from different input models
that are matched based on an implicit or explicétahing rule (e.g. by name or meta-
attributes) get merged as one element in the outpdel. Following the terminology of
AOP, we seeamodel weavingas the asymmetric variant of model compositiorcabse it
defines one input model as the primary model, whicladapted by one or more aspect
models. The meta-models of the resulting modelthadgrimary model (typically not aspect-
aware) are the same, while the aspect model caraded on a different (typically aspect-
aware) meta-model. Model weaving also introduceantification, which allows for 1:n
matching of model elements and thus weaving of etgmof an aspect model into multiple
elements of the primary input model.

Conceptually, model merging and model weaving peeiglizations of model transformation
and can therefore be realised through standard Intcatesformation techniques [29]. In
contrast to model transformations as used in an MDAtext, model composition generally
does not switch abstraction levels or meta-modeiseoinvolved models.

A completely different approach beside model tramshtion is the concept of partial views
on one common model repository. This approach usdoin most UML-Tools, where each
diagram depicts only a part of the model. In thése; no explicit composition step is
necessary, because the complete and consistent mad&ays present in the repository. In
this approach, the modularization and separatiocoaterns would become an issue of the
modelling tool that would have to integrate theesviews dynamically.

We identified 4 variables that describe propemiegifferent model composition approaches:

* ‘Where’ - Where are aspects defined and/or composed?
Possible locations are CIMs, PIMs and PSMs as agethe source code [30]. Most
AOM approaches fit into PIM or PSM level, becauseytare extensions of the UML.
AOM languages representing concepts of a concrée platform should be

-20-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

considered platform-specific, because the undeglggpect composition semantics is
dependent on this particular platform.

* ‘When’ - When is the composition performed?
Composition can be performed in a horizontal oedieal transformation step (See
Figure 2). Horizontal composition means that thegosition takes place either at
PIM, PSM or Code level. The composed model stayiseasame abstraction level and
acts as a source for the next transformation sfepsrtical composition takes place at
the transition from one abstraction level to thetre®ncrete one, i.e. during a
transformation from PIM to PSM or PSM to Code. Whandel composition can be
performed directly at the level where the aspe@svadelled or can be delayed to a
later point, i.e. a more platform specific leved[31].

* ‘What' - What gets composed?
Symmetric approaches allow the definition of moduleat are self-contained and
independent of each other. These modules constitatkels consisting of structure
and behaviour describing one concern [32, 33].l@mother hand, in asymmetric
approaches it is often crosscutting behaviournieats to be integrated in one or more
elements of other models [31]. The introductiomadlitional structure to existing
model elements is also possible.

* ‘How’' - How does the model composition work?
In the first place, model composition is about rhatg and integrating structures
("static" model elements) and behaviours ("dynarmotel elements). These are
typically identified by name patterns, explicitagbnships or meta-data and in the
case of behaviours based on control flow, staevents. For asymmetric model
composition, the bindings of primary model elemeataspects have to be defined.
These bindings can be part of the aspect modaltside of the models. Other
possible configuration artefacts for model compositan be constraints and
composition directives. The former can furtherniestdentification and matching of
elements from different models, the latter defiddigonal rules for the integration of
model elements [31, 34].

2.3 Chancesand Risks

As described in the previous sections, there aneyrapproaches for the adoption of aspect-
oriented concepts to the PIM level. The usage péetsoriented modelling und composition
techniques comes up with many advantages and d@lse@me problems, which could hinder
the integration into the existing model-driven depenent processes.

The next sections discuss the chances and riskg@spect to different domains.

2.3.1 Agpect-oriented concepts at model level

Aspect-orientation provides additional conceptseidiended modularisation of both structure
and behaviour of crosscutting concerns. These @dmicenhance the modularisation,
reusability of modules and allow the reduction ofmplexity, which have a positive impact
on the evolvability and maintainability of the se#re.

Since model-driven development also aims at anongu evolvability and maintainability,
consequently the adoption of aspect-oriented cdacepo the model-driven development
will achieve a good developer and modeller acceman

-21-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

2.3.2 Aspect-oriented Modelling

To enable the usage of aspect-oriented concepisgdtive modelling phase, new types of
model elements are required to represent the addltiaspect-oriented constructs, such as
aspect, advice, Pointcut, etc.

In terms of the modelling standard, UML providedfatent ways, to extend the UML
metamodel for defining the additional constructse Hifferent ways can be distilled into two
kinds of metamodel extensions:

» Direct changes to the UML metamodel (heavyweighgm@sion)

* UML metamodel extension using UML Profiles (lighiglet extension)

2.3.2.1 Extended UML Metamodd

The heavyweight variant of extending the UML metdeloto support aspect-oriented
constructs causes direct changes to the UML metainDde to these changes, existing tools
and modelling environments have to be modified @megated again. On the other hand, in
comparison to the UML Profiles, this variant praagda more flexible extension mechanism.

If this extension mechanism is used to presentcaspesnted constructs, the high effort for
integration into existing environments could beeason for avoiding the usage of the aspect-
oriented extension.

2.3.2.2 UML Profile

The UML Profile mechanism provides a lightweightalnanism to present additional types of
model elements, such as aspect-oriented constriibtss.UML metamodel is not changed
during the extension. The UML Profile mechanismvpdes only an additional extension,
which conforms to the original UML metamodel. THere many existing tools and

modelling platforms are able to deal with an exeshdnetamodel using the UML Profile

mechanism.

Because of the described characteristics, in casgato the changed UML metamodel, the
realization of the extension using UML Profiles sasi less efforts. So the UML Profile
mechanism is predestined for proving the concemta$pect-oriented modelling as well as
for basic integration of aspect-oriented conceniis existing modelling tools.

2.3.3 Aspect-oriented composition

This section discovers the chances and risks weigland to the relevant parts of the aspect-
oriented composition. For this purpose the charares risks for different kinds of aspect
composition and for the underlying technologiesaaralysed.

-22-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

2.3.3.1 Different kinds of aspect composition

As described in previous sections, different contpmstechniques can be used for the aspect
composition. Inhorizontal compositiofthe transformation is processed at the PIM level, i
the input models and output models are both asainee level.

This kind of transformation allows a nearly indegent integration of the aspect composition
into existing MDD processes. The transformationdfiag the aspect composition can be
processed before a model compiler transforms objeented PIM level models into code for
example. In this case, no extension of the modehpier is necessary, because the
transformations, responsible for aspect compositiproduce composed object-oriented
models, which can be consumed by the model compilecommon way.

Since the aspect composition is done at the PIMI leva horizontal way, traditional object-
oriented models are processed in the following phias.g. transformation to code. From this
it follows that on the next abstraction level (6&35M, code) no special support for aspect-
oriented concepts is required. So it is possibladopt the aspect-oriented concepts at PIM
level and consequently produce code for everyqiatithat was supported before.

Furthermore, due to the independency of the taptgform and the nearly independent
integration into the model-driven processes, thezbatal aspect composition at PIM level
has a good chance, to be established.

In vertical compositionthe model transformations occur across differeatel/code levels.
Depending on the point where the aspect composiioprocessed, additional support of
aspect-oriented concepts is required at anotheehteekel or at code level. Therefore in some
cases the integration of aspect-oriented concepitsiat be done independently without
providing support for aspect-orientation at anothedel level or at the code level.

Anymore due to the composition across more thanered, the aspect composition has to be
integrated into existing model transformation toofsinto an existing model compiler. This
integration causes more effort than an integrabbrthe horizontal aspect composition,
because horizontal composition is integrated wigt an additional step in the whole process.

Also the integration of new concepts into existingdel transformation tools respectively a
model compiler is more error-prone in comparisontite independent integration of the
horizontal aspect composition into the existing Mpiocess.

2.3.3.2 Technologiesfor aspect composition

In the domain of model-driven-development there ar@ven and tested technologies for

processing model-to-model or model-to-code tramsédions. The new transformations

required by the aspect composition can be realissugy these proven technologies, such as
theAtlas Transformation Language (ATL)

The usage of such evaluated technologies redueetetinological risk with regard to the
integration of aspect composition into existing Mpidcesses.

2.34 Refactoring of aspect and base models

The technique of Refactoring was identified as amseto increase software’s quality and
software’s ability to evolve. Refactoring providasmechanism for removing or at least
improving structural weaknesses. It changes thectstre of the software in such a way that
the behaviour of the system is not changed yehvitdvability is improved. Consequently the

-23-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

refactorings should also be used at model leveimiarove the evolvability of a modelled
software system.

The refactoring of aspect-oriented models causagasi problems like refactoring of aspect-
oriented programs. One of the problems, which cddda risk for the acceptance of the
aspect-oriented modelling, will be outlined in dextions below.

Pointcuts provide a mechanism for additional refeirey of points in the control flow.
Regarding to the UML Action Semantics the so-cajl@d points are also model elements.
These model elements are not referenced directihédypointcuts. For selecting these model
elements (Pointcut resolving), the pointcut quagiver their properties, such as join point
kind, signature, etc.

However the properties used by the pointcut foectelg certain model elements can be
changed by a refactoring (e.g. Rename Refactohagges the name of a model element), so
if a pointcut uses a property of a model elemeiiclvis changed by a refactoring, the result
of resolving this pointcut after the refactoringhadiffer from the resolving result before the
refactoring. The difference in the selected joinng can also cause a changed behaviour,
because due to the changed set of join pointsdbedadvice is called at different points.

Since the selected join points are not referencgulicitly using an association, the model
validation is not able to detect the changed behaviTherefore a refactoring of model
elements can cause unintentional changes in thelfeddehaviour.

Even if a mechanism for detecting a changed sginfpoints before and after a refactoring
could be provided (e.g. like the PCDiff tool [40] is still not possible to decide
automatically whether the detected changes in #feldour are explicitly intended by the
pointcut modeller.

Likewise it would be hard for the base model depetao check all impact on the set of join
points manually. Typically the modellers roles agparated into base model developer and
aspect model developer, therefore even if the ned&lould automatically be informed
about the impact of the refactoring, he would netable to decide, if the changed behaviour
was intended by the pointcut developer (without gmmication to the aspect developer)

To deal with the described problem, the followingltsupport would be necessary:
» Detection of the refactoring impact on the setoaf points

* Assessment of the modified references (modifiedabeur intended or not) and
detection of broken pointcuts

» Automatic update of broken pointcuts, if possible

e Communication platform between base model develapdraspect model developer
in the following cases:

o Impossible detection of broken pointcuts
0 Automatic update of broken pointcuts impossible

Since refactoring is an elementary technique foprowing the evolvability in software
development, the absence of suitable refactoridg sapport for base and aspect models
represents a risk for the establishment of aspgetied concepts at model level.

-24-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

3 Crosscutting Concernsin SAP Business Applications

This section starts by presenting an object-orgerdesiness application from SAP in the
context of Customer Relationship Management. Atftét, some crosscutting concerns are
presented such as consistency checks and parttemdsation. When modelling such
concerns with the traditional means of UML sevesdues arise. These issues can be
addressed by using modelling aspects.

3.1 Example of business application

Business applications span various areas and @@&@s corporations such as Product Life
Cycle Management (PLM), Supply Chain ManagementM¥p@nd Customer Relationship

Management (CRM). In the following, we will focush SAP business applications for
Customer Relationship Management (CRM) sucBAaB CRM

CRM is a management concept, which intends to syaiee and improve the relationships
between corporations and their customers. It isigtomer-oriented corporate strategy that
utilises modern information and communication texbgies to establish long-term,
profitable customer relationships through holistnad individual marketing, sales and service
instruments [3].

3.1.1 Customer Relationship Management

CRM software provides a central point to managea@titacts and interactions of a company
with its customers. CRM software covers two funcélbareas:

» Operational CRM supports the three CRM processes: marketings,sated service.
These processes reflect the different phases in“dhstomer buying cycle” [4].
Operational CRM software provides applications dandls for supporting and
controlling the different customer interaction psirand communication channels.
Common core functionalities of such software ineluwbntact management, report
generation, workflow, and activity management.

* Analytical CRM stores all relevant data about customer contutsreactions (e.g.
purchase data, billing and payment, returns) irata @varehouse. This data may be
combined with other external data before it is gsedl using data mining methods or
used for answering on-line analytical processingAP) queries.

SAP offers several CRM products such as mySAP CRihich was recently renamed to SAP
CRM [5] [12]. This application supports the entioperational CRM field and provides

components and functionalities supporting the tliveelamental CRM processes marketing,
sales, and service. This application is implengkniging object-oriented programming and
some important business objects of each procegganped together below:

* Marketing: Lead

» Sales. Opportunity, Customer Quote, Sales Contract, iBer@ontract, Sales
Order, and Service Order

» Service: Customer Return, Service Request, and Servicér@aiion

-25.-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

3.1.2 Lead and Opportunity M anagement

Figure 3 shows a Sales Scenario example that fearseales processes of enterprises selling
one or more products. This involves different tisinganging from Opportunity Management
to quotations to customers, sales orders and iavpiocessing. This figure shows also the
different user roles that are involved in each stejhe sales process.

Opportunity

Legend
9 process
N

=3

Field Service 0. Identify_ 4, Create k- _)\Salgs>
Representative Opportunlty Sales Order processing
i ¢ —
Check
Create 5. .
1 Opportunity > foeount Crediworth, | | Payment
Sales Manager pp Mgmt. @ ¢
; S
r Avail. to
% Evaluate 6./7. Promise = Stock
Opportunity
Office ¢
Sales Assistant R :
8. L=
Payment > Payment

=_b

F ' Create || -
Assistant L Quotation Quotation 0.
ﬂ 3 Create | ici Return
Warehouse ' Quotation PnCIng Order

Assistant

10.

O

l

Customer

—
Approve |
Return Payment

{
i

Figure 3: Sales Scenario

In the following, we will focus on pre-sales proses such as lead management and
opportunity management. These processes suppas gmrsonnel in actively tracking
potential selling possibilities.

Lead and Opportunity management provides a stredtapproach to turning an initial
recognition of a selling opportunity (i.e., a pdiah possibility for selling products to a
customer) into a sales contract. In that procdss,SAP CRM software guides the sales
representative through a multilevel process aneégdes next steps and activity suggestions
on the basis of best-practice sales strategies.

The opportunity management process may start witarenymous address and, by degrees,
track additional prospect attributes such as prodierests, discretionary budget amounts,
likely competitors, and the success probabilitympteteness and consistency checks ensure
the correctness of the collected data after eagp. Sthe accurately documented process
improves reporting capabilities: Sales managersnoaasure their salesperson productivity,
campaign effectiveness and can, for example, deternm which sales phases the most
prospects were lost [6,7].

-26-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Figure 3 shows also the different steps of the dppdy process. This process starts by the
identification and the creation of an opportunéyg., after a sales contact at a fair. Then, the
opportunity is evaluated and qualified, i.e., fedsy is clarified, information is gathered
about the customer, and a selling team is defilfed.go decision is made, a quotation is
made and sent to the customer, which either actleptsales offer or rejects it. After that the
opportunity should be closed and the reasons foress or failure should be documented. In
the success case, the opportunity becomes a sdkss o

In the following, we present in more details somesibess objects in opportunity
management. These objects are shown in Figure thagdare discussed briefly below:

* The Opportunity class uniquely identifies the opportunity and $jpes the various
involved parties. It holds references to other s#as with additional business
information and to the documents and activitieqt@e@ during opportunity processing.
Some direct attributes of the opportunity class are

0 priority: specifies the priority of the opportunity.
0 processStatusValidSinceDathe date when the opportunity entered the
current life cycle phase.

* TheParty class represents individuals or organizationsliresbwith the opportunity.
Specialized classes may represent customers, stgpir employees. Parties are used
within the opportunity to specify the prospect, gratal competitors, the responsible
sales team, and other internal or external staklen®l Some attributes of a party are:

o0 partyType specifies whether a party is an organization)siress partner, or
any specialization of these party types.
o partyRole/PartyRoleCategargescribe the role of a party in an opportunity.

 The SalesForecastclass contains estimations for the anticipatece shlat an
opportunity represents. it contains various fieddsh as
0 expectedRevenueAmouttte expected amount of the opportunity
0 probability: the success probability of the opportunity, @ssed in
percentage.

* The classltem represents a product or service which will pogsité sold to the
prospect of the opportunity. It contains produébimation, quantities, and values. An
item may be associated with master data produatrirdtion.

* An opportunity passes through several phases diigtifetime. The clasSalesCycle
specifies the sales cycle and the current phase apportunity. Other attributes of
this class are:

o salesCycleCodeéhe sales cycle in which the opportunity exists.
o phaseProcessingPeriothe time period for which an opportunity exisighe
current phase.

-27-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

< <inberfaoes >
Cosre:
il
§ < <interfacms >
< <intmrfas Action
< <intarlace= > Trarsackon
CRUD: d
=Commit < <enumeration> >
~create () - 7 B e et LifeCylzeState
~update) CEilies | , FProgressState o
el T M - b << mmmeration =
read U | F \ s CansistencyState
~delete () " Oppurhunity Actitns e stopped consistent
[I stalled inPracress ; ;
won inConsistent
' loisty) 1 Y +progres sEXRET]
y s +COnsistency
=reQpen 0 1, slifeCycleState
b =stapped
i <progress
y T i) Tat g SalesCycke
L ' | Tem [Ca ityState | FE——— -startDlate : Zete
) t Mezcription : 2rng FlesultReasonCode endDate : Set=
\ | +quantity - Eit Froadshow =phazeProcessingDatePeriod : Pariod
\ | ~netAmount : S -OppOrUnitEtate | 1o nbenelnquiny
1 | | ExternalPartner +zalesCycle | dnfjue i
1 I 1
1 | +itemns JAinique }
| | +zalesPhaseCode
l | 1 1
ol 1 szalesCycleCodd
o < < enumeralions > < < enumeralion= >
=i Eation SalesCycleCode SalesPhaseCode
<zalesTeam : P=ly ’ 1 ~CALCULATE_FROM_ITEMS : Sogem B IdentifyCIppartunity
=eternalParty : Parly i =daysSlow St ewCustomer GualifyOpportunity
=rezponsibleEmployee Pty W +daysStalled - Eat EvaluateCpportunity
+
=prospect : Pty +SoUrGe CreateProposal
=pricrity 1 +customizellata Securefgresment
=processStatusialidSineeDate : EDsle 1 ClozeOppartunity
=checkConsistency
=zatProcessStatutsValidSince (nd : EDal=) .
1 1 +SOUTCE
=setProspect (pros @ Parly)
SalesForcast

+salesForecast = —
=prapability : Eat0.1] = 100

=egpectedRevenueAmount : ESiglecmal
-weightedFarecast : EDouike

=EtpectedProceszsingDatePeriod : Pericd

-calcweightedForecast (retum : Currsncy, propslility @ null, valus @ Currency)
=getweightedForecast 0

= setExpectedProcessingStartDlate (ad : EDete)

Figure 4: Main Classes in Opportunity Management

3.2 Crosscutting Concernsin the CRM application

In the following, we introduceonsistency checksdpartner determinatioras two examples
of crosscutting concerns in opportunity managemta.will elaborate in more details on the

consistency checks example.

3.2.1 Consistency checks

Several consistency checks have to be performed Wieestate of the opportunity object or
some of the associated objects changes. Thesestamtsi checks are crosscutting because
they cut across different classes, i.e., the sdraeks need to be performed when attributes of
objects that are defined in different classes cha@gnsequently, the code that enforces them
is scattered across the implementation of sevéasses.

We classify the consistency rules into two typeading to the degree of crosscutting.

-28-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

a) Simple constraints

Constraints that involve only one business objésscare called simple constraints. For
instance, the simple constraints CO, C1, and Cdnelehn opportunity as being
inconsistent if e.g., one of the following conditfois true:

* (CO0) Opportunity.processStatusValidSinceDate > CHRR_DATE

* (C1) SalesForecast.expectedProcessingDatePeriddafnd not set

* (C2) SalesForecast.expectedProcessingDatePeridoaine
SalesForecast.expectedProcessingBadelStartDate

b) Complex constraints

Some consistency constraints are called compleausecthey involve more than one
business object. The enforcement of such conssraanén object-oriented design will be
scattered across at least two classes. Consti@®tand C4 are complex constraints,
which specify when an opportunity is inconsistent:

» (C3)OpportunityprocessStatusValidSinceDate
SalesForecaexpectedProcessingDatePeriod.StartDate

» (C4)SalesCyclghaseProcessingDatePeriod.StartDate <
SalesForecaexpectedProcessingDatePeriod.StartDate

Appropriate logic is needed to check such consisteconstraints and hinder their
violation. This logic should be triggered when fledds corresponding to the constraints
are modified and also when the setter methodsesetliields are called. For instance, to
enforce the complex constraint C3, appropriate clog required in the method
setProcessStatusValidSinceDaffethe clasOpportunityto check that the date is smaller
than expectedProcessingDatePeriod.StartDaite the associatedalesForecasibject.
Moreover, similar logic is needed in the methsstExpectedProcessingDatePerita
verify that theStartDate of the new period is smaller than the value of #teibute
processStatusValidSinca the associatedpportunity object. Below, we show an
implementation of these two methods in Java.

//defined in class SalesForecast
public void setExpectedProcessingStartDate (Date nd)

{

if(nd > this.opportunity.processStatusValideSinceDate)
this.expectedProcessingStartDatePeriod.startDate = nd;

}

/ldefined in class Opportunity
public void setProcessStatusValidSince(Date nd)

{
-29.
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

if(this.salesForecast.expectedProcessingDatePeriod.startDate > nd)
this.processStateValidSinceDate = nd;

CH

CF1
read self
0o to opportunity
F%ICFQ

=1

- [
@Sta‘cus\/alid&nceme
30
OFz OF3) cFa
CF3 N3 . .
[read expectedProcessingDatePeriod]
<dataStorerr NE
date
OF4 CF4
read StartDate |
nesw date
new date
OF9
set new date ©
CFa
CFa

Figures 5 and 6 show the behaviour models thaespand to the method bodies of these two
methods using UML actions. These models were duasimg the tool TopCased [8]. Figure 5
shows the body of the methsdtExpectedProcessingStartDatéhich is defined in the class
SalesForecastwhereas Figure 6 shows the body of the meset®rocessStatusValidSince
which is defined in the clag3pportunity.

We observe that these models are complex. Moretiverparts of the behaviour model that
are responsible for setting the date attributesnaiseed with the parts that implement the
consistency check. Consequently, the consistenagckchcannot be modified without

understanding the whole behaviour model. In adidljtif the consistency check should be
modified for some reason, then the user would havend out the different model elements
that are related to that check and modify all eihthconsistently.

-30-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Figures 7 and 8 show the behaviour models for #mesmethods as in Figures 5 and 6.
However, these models do not contain any logickacking/enforcing consistency rules, i.e.,
the method body just sets the appropriate attritbitbe new date that is passed as parameter.
One sees easily that these behavioural models ach simpler than those in Figures 5 and 6.

CF1

readEFStartDatePeriod
[J
[

nenw date
\\ new date
\\
OF2 OF1
y CF2
e
write StanDate
set new date
CF3
@ CFz2
Figure7: Method setExpectedProcessingStartDate Figure 8: Method setProcessStatusvValidSince

The java code corresponding to the models showAigres 7 and 8 is shown below.

/ldefined in class SalesForecast
public void setExpectedProcessingStartDate (Date nd)

{

this.expectedProcessingStartDatePeriod.startDate = nd;

/ldefined in class Opportunity
public void setProcessStatusValidSince(Date nd)

{
}

this.processStateValidSinceDate = nd;

3.2.2 Partner determination

Partner processingis a function in many SAP business applicationsl@iding CRM
applications) that allows users to define partneith their company’s terminology and
specify how the system works with those partnesstrér processing ensures the accuracy
and consistency of partner data, e.g., it can leel i make sure that an order document
contains a ship-to-party. Without this field theder would be incomplete and the system
cannot process it. Moreover, partner processingesiaksers work more easily with the
software through advanced features such as patétermination.

-31-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Partner determination9] refers to the system ability to automaticdityd and enter partner
information such as addresses in certain trangectod documents. That is, the user enters
manually one or more partners and the system detesnand completes other partners and
information by using several sources of informatsoich as the business partner master data,
the company organizational data, documents rekatékde current document, etc. Automatic
partner determination can also be used to hindensufsom entering inconsistent information
or information that is already known to the system.

Figure 9 shows an example that illustrates howngaretermination works. The user creates
an opportunity and enters the name of the salesppob and the system enters the name of the
contact person (by checking the partner mastej),dataaddress of the sales prospect, and the
name of the responsible employee for this oppanitufusing the company organizational
data).

1. A user creates an o ;
opportunity and enters pportunity
the sales-prospect.
prosp Sales
P> | Prospect PC4YOU Shops
: » | Contact Jean Khan
2. The system: Person
Looks in BP
master data
Finds the needed
contact person
Enters him in the Employee responsible | Anton Mav < .
opportunity 3. The system:
Looks in the
organizational data of
/\ the company
v Finds the employee
- responsible
Business partner Organizational Enters him i the
master data data opportunity
o for for IS
PC4YOU the company

Figure 9: Partner Determination in Opportunity Mgeaent

The way partner determination is done can be véifgrdnt depending on the business
process, the business transaction, and the congptrderun the CRM software. Customers
that use SAP CRM solutions can setup rules fossttstéem defining what data sources to use
for eachpartner function(e.g., contact person, sold-to-party, ship-to-pagtg.) and in what
order these sources are searched according tortbeds. They can also configure when
partner determination is performed, e.g., when datntered by the user or when the data is
saved. These rules are callpartner determination procedureglO] and they can be
associated with a certain type of transactions,(ergating a new opportunity).

Partner determination procedures bring togeplaetmer functionsandaccess sequencebhat

is, for each business function the user specifibstiaer automatic partner determination is
needed and if that is the case he specifies alsstmategy that defines where to search for
partners for that partner function and in what ordénis search strategy is refereed to as

-32-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

access sequenceor example, an access sequence can indicateetiteh order: preceding
document, then the organizational data model, exadly some customer-specific function.

Partner determination is also a crosscutting candarfact, the code that is responsible for it
is scattered across several classes of the usgfaice and the business objects of the CRM
application. Automatic partner determination mayriggered in the Ul classes e.g., when the
partner enters the sales prospect for a new opptytand can be also triggered in the

business object opportunity when that object issdaWartner determination functionality is

scattered over other classes in the CRM applicatimh asSalesQuoteandSalesOrder

In the following, we concentrate on the partneredaination functionality in the business
object opportunity. Partner determination is triggewhen the sales prospect is entered (for
the sake of the simplification we assume that thidone when the methaktProspects
called) and also when the opportunity is saved, fbe methodipdateof the CRUD interface

is called). Below we show the implementation @&fsth methods in pseudo java.

/ldefined in class Opportunity
public void setProspect (Party pros)

{
this.prospect = pros;
/lrun partner determination procedure for business function sales prospect

/ldefined in class Opportunity
public void update()

{

/Irun partner determination procedures for update opportunity transaction
/[save the updated opportunity

}

Partner determination is a function that is cham@oed by several extensibility requirements.
That is, customers should be able to define padetarmination procedures and new access
sequences according to their needs. To make suemstans easy and non-invasive, it is
important to have the partner determination fumaly well-modularized and separated
from the other application logic.

3.3 Ben€fitsof VIDE Aspectsin modelling Business Applications

VIDE introduces Aspect-Oriented Software Developtreamcepts to Model-Driven Software
Development by defining new modelling constructthat PIM level such as aspect, pointcut,
and advice. Supporting aspects at the modellingl lekings several benefits to the users that
model business applications as explained in tHeviarhg.

e Better modularization of crosscutting concerns &etmodel level

VIDE allows defining fully executable applicatiorthrough the use of UML actions.
Consequently, VIDE models are more complex thaditicaal object-oriented models, which
do not model any behaviour (i.e., the bodies of hme$ and constructors). This high
complexity can be seen in the models presentedyurés 4 and 5.

To master the complexity of business applicatiorel® good modularization techniques are

needed and aspect-oriented modelling is such anitpof. Aspects provide means to

modularize the logic belonging to crosscutting @ns. Thus, this logic will be defined in a
-33-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

separate aspect module rather than being scattapedss several tangled models.
Consequently, the complexity of business applicatmdels is reduced.

» Easier understanding and maintenance of models:

Through the better modularization of crosscuttimnaerns, business application models
become simpler and consequently easier to undersgad to maintain. For instance, to
modify a certain consistency check without aspebis,user would have to first identify all
models and model elements (i.e., various classesyitees, etc) that are related to that
consistency check. Then, the user has to updatetiels (e.g., by adding some fields and
methods, or modifying the implementation of somehods) to accommodate the change of
the consistency check. As several consistency shaakcrosscutting, the same change needs
to be done at multiple locations, which is quitdwedant and error-prone. With aspects, this
becomes easier because the user needs only toyrtioeliconsistency check aspects.

* Improved reuse of business logic:

With aspects, crosscutting business logic can bapsulated in separate modules and it is in
this way no longer scattered across various mddeients. Consequently, that business logic
can be reused more easily.

Quantification is an important property of aspegéted approaches [11]. It refers to the
ability to quantify over a set of points in the engon of a program in the case of Aspect-
Oriented Programming (respectively a set of modeients in VIDE PIM models). This
property is supported through the pointcut constrwbich can be easily extended to select
more join points (in our case model elements) sb #hpiece of crosscutting business logic
can be activated and executed at multiple locatiBasexample, if some consistency check is
modularized in an aspect and one wants to reuseltleak in the Ul classes in addition to the
backend business object classes, then one onliohasdify the pointcut of the consistency
check aspect.

» Easier extensibility:

Aspect-oriented software development provides teglas and constructs that support an
easy extension of business applications. For iostanustomers can define new partner
determination procedures and access sequencesniodalar and non-invasive way when
partner determination is modelled as an aspect.

The pricing module can also be easily extended wigtomer-specific policies and rules by
using aspects. This pricing module is used in salegations to determine the price whilst
taking into account all discounts that the custonpalifies for. When pricing policies are
modularized using aspects customers will be abéetivate/deactivate them in a flexible way
according to their needs. Moreover, new policieis ba easily supported by modelling an
appropriate aspect.

» Easier customization through better modularizatiar features:

Aspects can be used as encapsulation modules ftaircéeatures. Through the composition

mechanism, feature aspects can be easily switahedf and composed with the application.

Features are especially relevant in the contepta@duct line engineering, where variants of a
business application (e.g., a set of CRM applicafichare several commonalities.

Product line development requires support for featuiented development at all stages,
whereby a feature is an increment in program fonetity. Features are a de-facto standard in
distinguishing the individual programs in a prodlice, since each program is defined by a

-34-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

unique combination of features. Product-line aesdtg reason about programs in terms of
their features.

SAP is involved in several research projects, whaoh at using AOSD and MDD in the
context of Product Line Engineering such as thefdJect AMPLE [13] and the national
research project FeasiPLE [14]. The aim of AMPkRa provide a software product line
development methodology that offers improved madizééion of variations, their holistic
treatment across the software lifecycle and maartea of their (forward and backward)
traceability during product line evolution.

» Support for multiple target platforms and programmyg languages

VIDE supports aspects at the PIM level, i.e., VIREpect-oriented concepts are not
dependent on a specific aspect-oriented languageasiAspect] or AspectC++. Thus, VIDE
aspects can be modelled once and mapped to mulappect-oriented programming
languages with appropriate model transformations.

This particular benefit of aspect-oriented modellin VIDE is especially important for SAP
business applications because two application sté8BAP and Java) coexist together in
some SAP products. With VIDE aspects, crosscuttimgcerns such as consistency checks
and partner determination can be modelled once taed generated using appropriate
transformations either as Java aspects (for cemsigtchecks in the User Interface) or as
ABAP enhancements (for consistency checks in tickdrad).

* Getting the benefits of AOSD without using an AO&nlguage

The aspect composition mechanism of VIDE can bdampnted in various ways. In vertical
composition, the object-oriented models are tramséal to object-oriented code (e.g., in Java)
and the VIDE aspects will be mapped to aspects, (@.gspectd). In horizontal composition,
which is the chosen composition approach in WP8, dbmposition of aspects and base
application is done at the PIM level and the rasgltmodel is purely object-oriented.
Consequently, the resulting model can be transfdrtoebject-oriented code. The horizontal
composition alternative brings the benefits of AO®Cthe model-level without posing any
restrictions on the target programming languagéipia.

3.4 Summary

In this section, we introduced a CRM applicatioonir SAP as an example business
application. Then, we focused on opportunity manage and discussed two crosscutting
concerns there: consistency checks and partnemdetgion. When modelling such concerns
with aspects, several problems arise. These prablesn be solved by using the aspect-
oriented modelling capabilities of VIDE.

- 35-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

4 Realizing Aspect Oriented Composition in VIDE

This chapter describes a proposal for the integmnadf aspect-oriented concepts into MDD in
the VIDE context. The realisation is a proof-of-cept solution and does not serve as a
prototype or a separate tool to be used by usemndalelling and composing aspect-oriented
constructs. The main objective of the realisatioalled Demonstrator is to show the
feasibility of the proposed concepts and to indigadssible technological problems.

Generally the realisation can be split into twotgafhe first part contains the UML Profile
extension for modelling aspect-oriented construthe second part provides a set of model-
to-model transformations for implementing aspechposition at the PIM level.

After a short overview, the following sections mesthe required metamodel extensions and
the transformations by means of some examples.

4.1 Overview

To allow having multiple model-to-code compilersMitDE, the aspect composition should

be implemented as a pre-processing step prioreatide generation by the model-to-code
compiler For this purpose the concept of the hatiabcomposition has been chosen (see
Figure 10). The models before and after the aspeehted composition are models on the
PIM level. Therefore the resulting model can becpssed like the original base model

without requiring any special handling of the asmernposition that was done before.

Horizontal composition
(aspect resolution within the
abstract syntax of PIM)

CiM

PIM
AO+0O0 weaving —>

platform ——
PSM \l(

Code

Figure 10: Horizontal Composition

- 36-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

In the first phase of the Demonstrator developmertextend the pure UML metamodel for
integrating the aspect-oriented model. The VIDE/UNhietamodel can be extended in the
same way later on.

The concept provided by the UML Actions Semantitswes the modelling of behaviour
using pre-defined model elements like actions astiviies. The usage of the UML Action
Semantics makes the control and data flow expliditere is also the possibility, partially
used in the VIDE context, to model behaviour usd@L expressions.

As already mentioned, the Demonstrator mainly cia®f UML Profile extensions and a set
of transformations realising the composition of thspect and the base model. The
transformations used for the aspect model composigquire access to the modelled control
flow to determine the interaction points and inggnnodify the modelled behaviour.

The development of the required transformationgdas UML Action Semantics proves to
be the easier way because of the modelled behawsounore explicit. Therefore the
Demonstrator supports aspect composition worksetraWour models that are based on the
UML Action Semantics, so we can mainly focus on élploration of different composition
strategies.

The following steps are necessary to extend UMW (ater UML/VIDE) by aspects:
 The UML model is extended for modelling aspects.

* Model-to-model transformations for converting thepact model to a plain
VIDE/UML model are developed.

* The resulting model can be fed into any VIDE-to-€@gnerator, the aspect behaviour
is executed by generated VIDE/UML model elements.

4.2 Technological overview

Regarding the technologies to be used for an iatedraspect-oriented and model-driven
scenario, there are mainly two influencing fora@sthe given technology from the underlying
model-driven infrastructure and b) the additioredhinology needed to support the aspect-
oriented extensions. In the context of the VIDEjgct the underlying dependent technology
is the model repository with its metamodels and ¢déors used to create user models.
Following a horizontal approach where aspect cottipass realized completely at the PIM
level no direct integration with the model compiiemecessary. This is, because the aspect
composition is implemented solely as an external tmmponent working on the model
repository. As such, it adds one additional steth&"build process” — right before a model
compiler generates code from the (composed) modelertical approach on the other hand
would require the aspect composition to be devel@separt of the model compiler. Support
for aspect-oriented modelling also has to be ina@ied into metamodels, notations and tools
like editors. Further explanation of architectusaues will follow as part of WP8.

-37-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

4.2.1 BaseTechnology

UML 2.1

The metamodel of the VIDE language is based on @\Vdupporting a subset of its structural
and behavioural modelling capabilities. On top ledttmetamodel, there will be at least one
textual and one graphical concrete syntax, simplifghe construction of VIDE models.

Extensions to the original UML 2 metamodel areireal as UML Profiles and are described
in Deliverable 2.1.

In the absence of usable VIDE model editors durthg development of the WP3
demonstrator, other modelling tools had to be dsethe example models. For this purpose,
IBM Rational Software Architect and Topcased wel®sen, because of their UML 2
Activity modelling facilities.

OCL 20

As the final VIDE language will make use of OCLdwectly support queries and to ease the
specification of navigation and read access toufeatin Activities, an integration with the
aspect models and composition process has to bedarut. The current approach and
demonstrator do not directly support OCL in VIDEdets yet. While the replacement of read
Actions with corresponding OCL statements shouldtbeght forward from a technical point
of view, the integration with queries would requingore research, because they may
introduce new join point kinds and composition essu

4.2.2 Aspect Extensions

Supporting aspect-oriented concepts in a modekdrignvironment requires the following
components to be integrated with existing technglog

Aspect Modelling

The modelling infrastructure has to be extendedujaport the expression of aspect-oriented
language constructs in user models. These extensbould integrate seamlessly with

existing model elements to be used in an intuiawel productive way. Technically, the

introduction of aspect-specific modelling constsugtvolves changes in the abstract syntax
(i.e. the metamodel) and the concrete syntax tfie.notation that is mostly hard-coded in
model editors). These changes should be compleigdytive, leaving the base modelling

language independent from the aspect-oriented sixies

Pointcut matching

The next essential step in an aspect-oriented cesitigo process is the evaluation of
pointcuts, and thus identifying join point shadawshe base models. The functionality of the
pointcut matching itself has to be incorporatedtba tooling side and requires parsing
pointcut expressions and querying the base models 2-step composition process, as
proposed in our demonstrator, an additional metdehaextension is needed for the
annotation of located join point shadows in anrmidiate model.

Another - optional - feature could be the visudlaa of identified join point shadows and
their crosscutting (or the impact of the aspect)hi@ base model. Such visualization would
have to be implemented in the notational toolihgt is, the model editors.

- 38-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Aspect composition (weaving)

The final composition step involves the weavin@spect elements (structure, advices) at the
join point shadows as well as the generation ofiatedyration with aspect infrastructure. This
step requires navigation and analysis of the bas® aspect models and finally the
modification of the base model according to thesemoweaving strategy and the aspect
model.

4.2.3 Requirements
The implementation of these features imposes seontaoblogical requirements.

For metamodel extensions as needed for aspect snadeljoin point shadow annotations, the
underlying modelling language should support easyl gurely additive metamodel

extensions. This can be achieved by using an da#&dwbrmetamodel infrastructure like
MOF/EMF in conjunction with UML 2.1. The metamodgiould support the annotation of
model elements, including references to other metents. For pointcut matching and
aspect weaving, the navigation/query capabilititsmodels are important and should be
supported by either the metamodel API or an exteumary language.

On the tooling side, pointcut matching and aspeeawng can be realized with existing
model-to-model transformation technology. A suigatsansformation technology should offer
good navigation and querying capabilities includmgntification over properties of model
elements. It should be possible to add missingtionality through custom extensions, like
e.g. user-defined query functions. Considering thaure of pointcut expressions, a
declarative transformation language should fitdyetthan operational/imperative ones. In the
case that base and aspect models are kept sepheateodel transformations have to be able
to deal with multiple input models with potentialtifferent metamodels. Using UML 2
Profiles for light-weight metamodel extensions, thensformations must be able to handle
them in source and target models, i.e. analyzimgcaeating stereotype applications correctly.
Modularization and combination/layering of modelnsformations could be an issue when
they get complex and/or different weaving strategiee to be supported in the transformation
process.

To integrate with the VIDE architecture, the AO gmsition module has to work with the
underlying model repository and later be integratediser tools (mainly editors). As the
VIDE model repository is based on Eclipse UML2, EdF-based implementation of UML
2, the aspect composition module should also be buithat base.

424 Mode Transformations

In MDA, model transformations are used for two eliéint purposes. The first and most used
kind are transformations that map platform indegetdmodels (PIM) onto a platform,
creating a platform specific model (PSM). The propéplatform independent” is relative,
i.e. it is a technical refinement step that candbee incrementally, each time adding more
platform specific detail to the application modeéltimately, a last transformation typically
produces source code artefacts for the targetophatfthus leaving the modelling world.

The second purpose of model transformations issnotvidely used, but in the context of

aspect-oriented modelling of great importance. €hemnsformations do not alter the level of
platform (in)dependence, but refine the model atiogrto other concerns. These concerns
come either from the domain or the applicationlfitse

- 39-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Model transformations that produce target modedsnfiother models are calledodel-to-
model(M2M) transformations, whereas transformationsdpming textual artefacts (typically
source code) are calledodel-to-codgM2C) transformations. The latter are often based
template languages, because of their syntactialitgfwith the output artefacts. Model-to-
model transformations on the other hand are usualyized on M3 level, allowing the
transformation of models from arbitrary metamodels.

For the demonstrator of WP3, ATL (ATLAS TransformatLanguage, [42]) was chosen as
model transformation language, because of its ntatsupport for multiple input and output
models and metamodels, OCL navigation and quergymgax and ability to process UML2
models. ATL is a hybrid transformation languagepmsarting declarative as well as
imperative transformation rules. This offers enodigixibility to implement even complex
pointcut matching and aspect composition rules.

4.3 AOQOC Architecture

The architecture for the aspect-oriented compaositd PIM level describes UML Profile
extensions as well as transformation processed~(geaee 11).

The composition process “merges” the input modelbarking on a strategy. The input of the
AOC process is a base model and an aspect modelbd$e model is a plain UML/VIDE
model. Located in the aspect model are the aspdutsh extend the behaviour and/or the
structure of the base model elements.

The transformation process is shown in Figure 11s Isplit up in two phased?ointcut
Resolving and Aspect Weaving This is done to allow changing the weaving phase
independently of the pointcut matching phase (@.gmplement a different strategy) and for
debugging purposes. These two phases are quitpendent. The final output of the AOC
transformation process is a plain VIDE/UML model.

As depicted in Figure 11 the pointcut matching $farmation produces an intermediate
model, which is the input base model enhanced wmitlnkers for the matched join points.
Therefore not only a UML Profile for modelling asp@riented constructs, but also an UML
Profile for marking model elements as join poistaécessary. The intermediate model serves
as the input model for the aspect weaving transdtion, which inserts or modifies behaviour
at the marked join points.

The next section provides a description of the inpodels and the corresponding required
UML Profiles.

-40-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1

Version 1.0 Date: 08 August 2007
UML-MM
AO-MM JP-MM
(UML Profile) (UML Profile)
M2 A Y.

M1

______________ - Aspect N
—> UML-Model
PC ; :
Advice/
Introduction

Aspect-Model

Q Transformation 7 reference

Y instance of / data flow

Figure 11: AOC Architecture

4.4 Modelsand Metamode's

441 BaseModels
The base models are pure VIDE/UML models. To crdmse models, no further UML
Profile is necessary.

Until further details are available from the othesrk packages about the exact structure and
contents of VIDE PIM models, we assume the follayvin

- A PIM model consists of a structural part definalgsses with their attributes and
operations.

- The exact and complete behaviour of each operéidafined in one Activity which
makes use of the model elements selected in th& WiiBtamodel.

- Currently, the use of OCL Expressions instead adl r&ctions is not supported.

4.4.2 Aspect models

Aspects are defined in separate models. They iechaintcuts, advice and the association
between a pointcut and an advice. The metamodehdpect models is defined by a UML

-4]1-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

profile described in the next section. Advices @scdate the additional behaviour and the
pointcuts describes in a declarative way, wheiadert or adapt the behaviour.

443 AOUML Profile

The AO UML Profile defines the modelling of aspectented constructs in UML (see Figure
12). The following aspect oriented constructs agsrted by this UML Profile:

» Aspect

* Advice

* Binding
* Pointcut

Aspect, Advice and Pointcut were already describdle section “Core Terms”. The binding

represents an association between an advice enatpguhe additional behaviour and the
pointcut, which declares the locations (join poirits inserting that behaviour. Consequently
an advice can be bound to more than one pointaiagsointcut can be bound by more than
one advice.

The AO UML Profile can be split into two part8daptationand Quantification There are
elements definingdaptation(Figure 13) andjuantification(Figure 14).

-42-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1

Version 1.0 Date: 08 August 2007
==profile==
videAD
==metaclass== ==metaclass== ==metaclass=»
Class e = Operation S Activity
K K]
|
T — ! l I
==sterectypes== ==sterectypes== B
Aspect Advice Advice behaviour
[Clazs] [Cperstion) — — -definedin Activity,
| J as for notmal
-instantiationkind : Instantistionkind -iz&round . Boolean Operations
1 | -advice
-poirtout 0.* ==enumeration==
-hinding P -
0.t —L BindingKind
Pointeut | 1.7 Binding -
_pointcut -hindingkind : Bindingkinc after
around
-expreasion 1.3 [~ _
’ ; . i ==enumerstion==
PCE custom classes for . 4
O OperationJPkind
pointclt expressions call
—— (PCE) nsing patterns, execttion
awhed by Pointcuts
==enumeration==
PropertyJPkind
ExceptionPCE FagtyrePLE o
] g
-namePattern © String [0..#%] zet
[] -wigihility : Visibilitykind [0.%]
-izStatic : Boolean [1] = falze -
| ==enumerstion==
T : InstantiationKind
zingleton
| | instance
OperationPCE PropertyPCE

-kind : CperationdPkind [1]] |-kind : PropettyJPkind [1]

type | -declarinogType Aype [taroet
0.* 0.* o.x |0.F

TypePattern

-exception
-includesubtypes : Boolean [1] = falze | g =
-riamePattern String [0..%]

L _parameter
o:*
{ordered}
-packageScope
0.*
PackagePattern

-namePattern ; String [0, *{ordered}

Figure 12: AO UML Profile
- 45-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

4.4.3.1 Adaptation

The Aspect stereotype depicts a class as an aggexpropertyinstantiationKinddescribes
how the aspect is to be instantiated. Singletonnséaere will be one aspect instance for the
whole system, ifnstantiationKindis set to “instance”, one aspect instance wiltteated for
each object instance from which an advice is calked advice stereotype classifies an
operation as an advice operation which can be beéambintcuts. Bindings state on which
join points (selected by the pointcut property)aalvice operation is executed. The property
bindingKind of the Binding element states whether an adviceragpn will be executed.
Supported binding kinds are before, after and atdaindings.

Inside advice operations it has to be possiblectess parameters, source and target objects
of the join point. In an around advicePaoceedActiorcalls the original join point with its
parameters and returns its return value.

::-zmetaclass*:b 'r:zﬂmetaclass*:b E*—iccmetaclass*:b
Class 3 Operation —u—ﬁc—l Activity
z=sterectypes= ==sterectypes== (™
Aspect Advice Advice behaviour
[':|EISS] [OpErﬁtiDl’I] | == —defined in .ﬂ'.l:“tl".l'l't':.",
PORR 2= P S 1L PR | a= for normal
-instartistionkind ; Instantistionkind -iz&round : Boolean Operations
1 | -advice
1 ®
p':"rg'zft pinding 1
Pnimﬁ 1.# Binding
pairtcut -hindingkind : Bindingkind
¥

Figure 13: Adaptation part of AO UML Profile

4.4.3.2 Quantification

Model elements for quantifying join point sets B@ntcuts and PCEs (pointcut expressions).
A pointcut has aameproperty and a propergxpressionTheexpressiorproperty holds the
pointcut expression selecting the join points. @amonstrator supports operation expressions
(OperationPCE element) for selecting method calls and executiagswell as property
expressions RropertyPCE element) for selecting property read and writeeases. Both
expression elements have the propenti@nePatternvisibility, isStatig declaringTypetype
andtarget A join point must fulfil all properties of a pdizut expression to be selected.

The namePatternproperty specifies the name of the selected featoperation name and

property name respectively. If multiple names apectffied, a join point matches the

expression if its name matches one of the namerpatt Name patterns can include the
wildcards “?” and “*”. The question mark is a placéder for one arbitrary character; the
asterisk matches any number of characters. Thustting “Foo*ba?” matches “Foobar” and

“Foofoobar”, but not “Foofoofoo” or “Foobarr”.

-44-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

Thevisibility property restricts the selected join points testhwith the set visibilitygrivate,
protected public). Similarly theisStaticproperty omits static (if set to false) or nontisté#if
set to true) join points.

The propertiesleclaringType type andtarget specify different types in the context of join
points. The propertgleclaringTypeis the type owning a join point shadow (operatsoat
property’s owner). Propertypespecifies the return type of the method or theerty's type
respectively. The propertiarget specifies the type of the object on which an ojp@naor
property access is called. All three propertiesaotonal and can specify multiple types. In
the case when a property specifies multiple typ#eps a join point must fulfil one of the
type patterns to match the property (disjunctiam’, function).

The pointcut expressions are composed of somé of thiese properties. Each specified
property narrows the search scope for join poiatskwvs. There is a conjunction (*and”
function) between the specified properties of anfmit expression.

-expression (1.4 i \,
PCE . custc-m. -:‘..l'{.'sses for
— — = — — — o — [thedefimition of
| paintcut expressions
I | FPCE) nsing patterns,
T | awned by Pointcuts

S -

ExceptionPCE =1' FoaturePCE

-mamePsattern | String [0.%]
-wizihility ;- Yisibilitykind [0.*]
-izstatic : Boolean [1] = falze

I
| |

OperationPCE PropertyPCE
-kind : CperationdPkind [1]] |-kind:: PropedyJPkind [1]

type | -declaringType Aype [taroet
0.* .= o+ |o.F

TypePattern :
-exception
-includeSubtypes : Boolean [1]=falze | g =

-ramePattern: String [0.%]

-parameter
0.*
{ordered}
-package=cope
0.*
PackagePattern

-mamePattern . String [0, *Hordered}

Figure 14: Quantification part of AO UML Profile

Currently supported join point kinds areethod callmethod executioandfield accessefget
and set). These are probably the most common imt ginds. The quantification part of the
AO UML Profile is easily extensible to implementwagoin point kinds or new aspect
instantiation types. In a first step, the demonstranly supports static pointcut expressions

-45-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

(no cflow etc.). Also, the definition of pointcutsrestricted to the use of standard tooling for
UML Profiles, i.e. editing of tagged values (théseno special concrete syntax yet — neither
textual nor visual). It should be found out if OC&n be used directly for the specification of
advanced pointcuts (this is currently not easilggilole in the demonstrator).

4.4.3.3 Example

To demonstrate the expressiveness of the modeatiedcpts, an example in AspectJ syntax is
modelled using the AO UML Profile. The AspectJ syntor this pointcut is as follows:

set(* Date Period.*) || set(* Date Qpportunity.*).

This pointcut expression is modelled in Figure 15.

b Blndlng ==fzpect==
pointcut = dateSetter Consistency
advice = checkDate Tpointcut = dateSetter,

instantiationkind = singletan,

R |
hindingkind = araund binding = b}

==fvice==+checkDatel {isAround}

dateSetter : Pointeut |

expression = peel |

. 1 2 [tp1: TypePattern
BEET - FrapeviyPiE. - | | namePattarn = "Date"
type =t [T | includeSubtypes = false |
declatingType =tp2 |
isStatic = false 1 tp2 : TypePattern

| i ' namePattern = "Opportunity, "Period” :
includeSubtypes = false

Figure 15: Example for modelling pointcuts using &0 UML Profile

444 |Intermediate modd: Join Point Shadow UML Profile

The result of the pointcut matching transformati®rhe join point shadow model. All base
model elements matching pointcuts of the aspecteinad annotated by e<JPshadow>>
stereotype. Each supported join point kind is re@néed by a separate stereotype to make the
annotation explicit and to facilitate the handlimf the intermediate model by the
corresponding transformation. These stereotypesielieed in a separate UML Profile (see
Figure 16).

Thebinding property of the stereotype holds the relationrte or more bindings in the aspect
model. These bindings have properties pointingh® &dvice operation which is to be
executed at the join points. The join point shadoedel can be used for visualizations of the
locations in the base model where aspects or adyierations get applied. It is also useful for
debugging purposes when developing the model wamsttions.

In the final VIDE environment the join point metadsd is a mere intermediate model which
is not visible to or editable by the user.

-46-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1

Version 1.0 Date: 08 August 2007
==profile==
videJPS
T ==stereatype==
) JPshadow
references =l
FiRcling Fror | [l |
|Zerentingiet | |-binding ; Binding [1..4]
=z=gterectypes== il ==gterectypes== | | ==gterectype== I | ==zterectypes=»=
CallJPshadow | |ExecutionJPshadow [PropertySetJPshadow | PropertyGetJPshadow
:[CaIIOperation.&ction] [Cperation] |viriteStructuralF esturefction] |[ReadStructuralF estureLction)
==metaclazs=>- ==metaclazs=>= ==tetaclazss»= ==metaclazss=»=
CallDperationAction Operation WriteStructuralFeatureAction | |ReadStructuralFeatureAction
==metaclazz== ==metaclazs==
AddStructuralFeatureValueAction RemoveStructuralFeatureValueAction

Figure 16: Join Point Shadow UML Profile

445 Result modd

The resulting model is a pure VIDE/UML model at Pl&Vel again. Usually the resulting
model should not be changed or even seen by the The is because a lot of model
elements are generated by the model transformatioingplement the aspect behaviour.

These transformations, which are part of the aspechposition, are described in the
following sections.

45 Mode Transformations

After the extension for modelling aspect-orientexhstructs was introduced, this section

describes the model transformations which are requor realizing the aspect composition at
the PIM level.

As already mentioned, the transformation procesth®fbase and aspect models to a VIDE
model is divided into two phases, pointcut matchamg aspect composition (or aspect
weaving).

45.1 Pointcut Resolving

The pointcut resolving transformation translatesage model (VIDE/UML model) and an
aspect model into a join point shadow model (inexiate model). All pointcuts are resolved
and their matching elements in the base model rmmetated with corresponding stereotypes

-47-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

from the join point shadow UML Profile. To resolgeintcuts, elements from the base model
are checked for properties declared in the poistcut

|nlate

1]

F1

Nl

{Pré‘ptrlYSEtJPShadDW}}
set new date

CF2

CF2

Figure 17: Model before Pointcut Resolving Figure 18: Model after Pointcut Resolving

The example pictured in Figure 17 and Figure 18wshwdels before (Figure 17) and after
(Figure 18) pointcut resolving. While resolving tip@intcut declared in Figure 15 the
corresponding transformation generates the stgreotyxPropertySetJPshadow>>at the
action node “set new date” in the model after pnihtesolving. After pointcut resolving has
been processed the transformations responsibleagpect composition can access the
information about the types of join point shadow.

4.5.2 Aspect composition

Aspect composition is also realized as a set of ehtmdmodel transformations. These
transformations weave aspect structures and adnteshe annotated base model, resulting
in a standard VIDE/UML model. This model is complgtwoven, i.e. all base and aspect
behaviour is integrated and the model does notagorany aspect-specific elements. This
resulting model can be processed by any transfawmatvhich expects the input of

VIDE/UML models, e.g. model-to-code compilers.

The inputs of the aspect composition transformasicnthe join point model and the aspect
model. This transformation replaces all join pahadows with model elements representing
the aspect behaviour. Different transformation apens are needed depending on the join
point kind, the binding kind and the aspect instdian kind.

-48-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

The chosen weaving strategy encapsulates the aspacteparate class and creates calls to
the advice operations on the matching join poifite advice operations are defined in aspect
classes. By contrast in the approach of FuentesSandhes [21] the advice activity model is

inlined at the join points. The approach generallgws an easier transformation in terms of

special advice actions. For instancedleé€largetaction is transformed to tlieadSelfAction

Because aspects are encapsulated in separatescléisesee are possibilities within the
Demonstrator to realize several instantiation sgi@s with a minimal effort. For different
instantiation of the aspect class, generally we bave to change the creation mechanism of
the current aspect class during the aspect conmasithe creation of the aspect class can for
example be realized using tl#ngletonpattern. In this case, the aspect class has armdy o
instance and all calls to the encapsulated adyezations are called on the same instance.
Different weaving strategies and their impacts, asdi@ges and disadvantages will be
discussed ieliverable 3.2

The transformation in our approach translates ed@ment having a join point stereotype. If
the join point is a UML action it generates thddaling model elements:

1.

Action node(s) to retrieve the aspect instancedddimg on aspect instantiation)

2. Action node(s) to invoke the advice operation (aejireg on advice kind)
3.
4

Object flow edges to pass aspect instance to adweite

Edges to introduce actions into the control flomtwé original action (depending on
advice kind)

45.2.1 Adviceinvocation

If the advice is bound before or after the joinnteioneCallOperationActionis generated.
This CallOperationActioncalls the advice operation given in the join paihinding.

If the advice is to be woven “around” (instead tif¢ join point the transformation must
generate more model elements. In “around” adviegaions it is possible to call the adapted
operation with aProceedAction This join point can have parameters which havebéo
available at theProceedAction This is done by a closure object. The motivation this
approach was given by the Weaving Strategy in ASpeee [41]).

<<interface==»
AroundClosura

+getResult] : Object
+runFroceed)

+Foo_methodFaram_Closuredtarget : Foo, param : String)

7 W7
o Sm
B k.
- .
Foo_methodParam_Closure w Foo_methodWithReturn_Closure
+_pararn ¢ String +_target: Foo
+_target: Foo +etResult) : Object
+getResult] : Object +runProceed)
+runProceed0 +Foo_methodvithReturn_Closure(target : Foo)

Figure 19: Examples for “Closure” classes

The closure stores the parameters of an operatsibraied its return value (see Figure 19).
Therefore a closure class is created for each tperahich can be a target of a call which is

-49-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

adapted by an “around” advice. The closure clasapement a common interface because
one advice call can be called at different joimp®iwhich can have different signatures.

On each join point a closure object is created tisiores all parameters of this join point.
This closure object is input of the generated aglwiperation call. EacRroceedActiorwithin
the advice operation is translated into a calhef¢losure’sunProceedoperation.

45.2.2 Aspect Instantiation

For calling the advice operation the aspect ingamast be provided. In AspectJ there are
several aspect instantiation kinds, two of them mn@lemented in the Demonstrator:
Singleton aspectsskingletonor no modifier), one aspect instance per currbjgab perthis.
Singleton aspects are used when aspects monitobjaltts of a kind or when aspects do not
have to store information at aPerthisaspects are used for object wrappers or when tsbjec
are to be augmented with additional data.

Possible future additions are the remaining Aspécsiantiation kinds like one aspect
instance per called objegdrtargetin AspectJ) or one instance per join point call.

-50-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

45.2.3 Consistency check example: an around advice

In this section an example for an around adviadescribed. Starting with an object-oriented
model, the model from Figure 6 (presented in sac8®.1) an advice is extracted. The
binding kind isaround Next the matching and weaving process is dematestr The first
transformation annotates the matching join poindsiiws (matching). The second
transformation translates the join point shadowasipect behaviour in a plain UML model.

CF1
read self

NOF2 oy
L]

[Fead salesForecast]

M |

[read expectedProcessingDatePeriod
NP

OF4 \CF4

read StartDate

setnew date

CFa

Figure 20: Method setProcessStatusValidSince

Figure 20 shows the model of an object-orientedhogkt This operation compares the

property self.salesForecast.expectedProcessing®ateiStartDate with the parameter

newDate. If the former is bigger than the lattbg property self.processingStatusValidSince
is set to newDate, otherwise nothing happens. @hie check implements a consistency
check. The purpose of the future advice is to ekl consistency checks into one aspect to
have them in one module.

-51-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

The extracted advice and the remaining base coglestaown in Figure 22 and Figure 21
respectively. The base code now consists only efains to set the new date while all other
operations are enforcing consistency constraindstlagrefore must be moved into the advice.
Inside the aspect the “proceed” action takes thegobf the former “set new date” action. The
“proceed” is a placeholder for the execution of éld@pted join point shadow. In our case this
is the “set new date” action. In that way, the tofpr setting the date and enforcing the
consistency check are separated.

ReadSelfAction

read salesForecast

N

read exHj_c\tedProcessingDatePeriod

Figure 21: Base model

new date

Figure 22: Advice in aspect model

The pointcut’s purpose is to describe the join f®in the base model on which a consistency
check has to be performed. In the example thikescase when a date is set. The pointcut
(shown in Figure 23) is similar to the one in sati.4.2. It selects all write accesses (kind =
set) of properties which have the type Date (pgpé&.namePattern = “Date”) and which
belong to objects of type “Opportunity” (pcel.derigType.namePattern = “Opportunity”).

-52-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

The advice operation is bound “around” the selegbaul point shadows. This is because it
replaces the original behaviour and executes it whien the date is “consistent”.

b : Binding ‘ <<Aspect>>
pointeut = dateSetter Consistency
advice = checkDate {pointcut = dateSetter,
o gl instantiationKind = singleton,
hindingKind = around binding = b}

|<<Advice=»+checkDate(){isAround}

dateSetter : Pointcut
expression = pcel

] tp1: TypePattern i
cel: PropertyPCE namePattern ="Date" |
type = tp1 includeSubtypes = false
declaringType = tp2
isStatic = false —_—
kind = set

tp2 : TypePattern
namePattern = "Opportunity
includeSubtypes = false

Figure 23: Pointcut and Binding

After modelling the base model, the pointcuts, tredaspects the aspect composition process
starts as described in the past sections of tlaipteh

The first transformation is for pointcut matchifdnis transformation was described in section

4.5.1. The “set new date” action of the base m{gb#t Figure 21) matches the pointcut and is
annotated with a <<JPShadow>> stereotype (seed-Rjl)t

-B53-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

During the aspect composition the weaving transédion replaces the join point stereotype
by model elements which get the aspect instandetheaadvice and create a closure object
because the advice is woven around the join pdime. closure object stores all parameters
which were passed to the base join point to allaling this base join point from within the
advice operation. The resulting model is shownigufe 25.

The aspect composition transformation also conwdttaspects into object-oriented classes.
All special actions are translated to plain UML/\HDnodel actions. The around advice of the
aspect model is replaced by an operation with auct parameter (see section 4.5.2 for
details). The “proceed” action of the advice in thepect model is converted to a
CallOperationAction which calls an operation of #lesure object parameter. The result is
shown in Figure 26.

e dlate
Mate ("] .

CF1

perty3etIPshadow == create closure ‘

set new date

r[T
CF2 call closure ctor

Figure 24: Joinpoint
Shadow Model

CF4

Figure 25: After weaving

-54-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

ReadSelfAction

read startDate
<<dataStore>>
startDate

[startDate > newDate]
/ &
call runProceed on closure] @

.

Figure 26: Advice operation after weaving

closure

Summary

The weaving transformation replaces all join pgimhdows from the join point shadow model
with model elements that integrate the aspect betavDifferent adaptations are needed,
depending on the join point kind (e.g. call vs.@x®n), binding kind (before, after, around)
and aspect instantiation kind defined (e.g. simglets. instance). As a result all dependencies
to AO profiles and models are removed. The resula iplain VIDE model to be further
processed by the model compiler.

-55-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

5 Summary and Conclusions

Both Aspect-Oriented Software Development (AOSDY aviodel Driven Development
(MDD) are approaches to reduce complexity in sofén@evelopment. These approaches use
different but complementary ideas to reduce comyeROSD adds additional modules and
a weaving mechanism to extract tangled and scdttenectionality, so called crosscutting
concerns. MDD reduces complexity by replacing thmging of source code by using abstract
models instead; executable code is generated fnenmbdels. Crosscutting concerns appear
already in the modelling phases of MDD while asfeatnted programs can have a lot of
source code. So it seems natural that a combinatiathe two approaches can have the
advantages of both and thus can help overcome esmtpin software development. Task 3.1
was aimed at checking whether such a concept okd&gpriented Modelling (AOM) is
realizable.

Chapter 3 presented an object oriented businessaign as an example application that had
been realized using a traditional object orientedigh. Such a design has its limitations
especially w.r.t. the modularization of crosscuytaoncerns. On the basis of two examples of
crosscutting concerns it was shown that the madglif the respective behaviour using an
object-oriented caused problems that are not stdwatih regular MDD techniques. These
examples show the need for Aspect-Oriented Modgllin

A proposal for the integration of aspect-orientedaepts into MDD was given in Chapter 4.
In order to develop the proposal some other cosdegd to be defined after requirements for
them had been explored. The first was the conceptanlelling aspects on the PIM level

which included an extension of the UML/VIDE metarabdThe second was a model-to-
model transformation from an aspect-model and a basdel into a plain UML/VIDE-model.

The model-to-model transformation was realized & a&alledDemonstratoy a prototypic
implementation in the sense of a proof-of-concdfite Demonstrator uses ATL as the
transformation description language. Choosing ATlowed us to focus on the actual
transformations since the model query and modibogpart is implemented by the creators of
the ATL implementation.

An aspect composition strategy was developed by FIR he aspect composition takes place
completely on the PIM level resulting in a modektme transformation which is totally
unaware of aspects. The chosen strategy requieeadvice operations to be modelled using
UML actions.

The composition transformation process is split imto phases: Matching phase and weaving
phase. The Demonstrator implements one compostrategy, but due to the modular design
that we choose it is possible to implement anotiteategy. In that case only the weaving
transformations have to be changed. It is evenilplest® use a different aspect metamodel,
which only requires a change of the join point rhatg transformations but not of the
weaving transformations.

The Demonstrator was able to leverage the condepOM for some parts of the examples
from chapter 4. It thus indicated that the AOM agpicis feasible and will be able to help to
circumvent the problems that arise when modellimgscutting concerns with regular MDD.
-56-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

5.1 Openissues
Although many issues had been solved some reniliopsn, they are presented here.

The examples presented in chapter 4 had been a lgasid for gathering most of the
necessary requirements. In addition to them otk@meles should help in identifying special
requirements on the weaving strategy and the esipergess of pointcut expressions.

A further issue is about problems that arise wheawng advices to behaviour modelled by
activities. The same flow of control may be modilia different ways, the model looks
different but the modelled behaviour is the santes Tact results in the need for one weaving
strategy per way of modelling a control flow. Othese the weaving would only lead to
correct results when applied to the way of modgllime strategy was initially developed for.
For this a decision has to be made either by otisigi the way of modelling the flow of
control or by providing respective weaving stragsgi

A syntax in terms of common VIDE syntax for the rgouts both on graphical and textual
language level are not defined yet. For now potstcadvice and aspects can be defined only
with a prototypic enhancement of standard UML.

Currently, the use of OCL instead of read actiasot supported, because of lacking tool
support. The integration with OCL abstract synt&wowd be no problem for the model
compiler, but it will not be an option for the denstrator. However, string representations of
OCL expressions are highly discouraged (for thérabissyntax level).

5.2 Outlook

Task 3.2 is about the comparison of the AOM apgrcad the traditional object-oriented
MDD to examine the benefits and drawbacks of intodag aspects into modelling. For the
purpose of that comparison some measurements evilelbeloped. These will provide means
to evaluate different viewpoints which indicateta@fre complexity like software metrics for
object-oriented code. Examples for complexity measare the number of model elements or
the number of relations between model elementss Hlso possible to compare different
composition strategies or different UML AO Profileslore examples for crosscutting
concerns will be provided to compare the AOM apphoavith OO modelling and draw
conclusions supported by facts. The examples wiliMfodelled with and without aspects and
the criteria will be applied to find out whether ADis useful for reducing complexity.
Different composition strategies and AO Profiles ba used for the same example to find out
which approach is the best.

-57-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

References

1. SAP AG, SAP Netweaver Developer Studio,
http://help.sap.com/saphelp nw04/helpdata/en/cbBd#$#2f46c33e10000000al11405a/fra
meset.htm

2. Michael Altenhofen, Thomas Hettel, Stefan Kuste@&€L Support in an Industrial
EnvironmentMoDELS Workshops, pp.169-178, Genova, Italy, dbet 2006

3. Hippner, H. and Wilde, K. D. (2002). CRM—Ein Ubed}, in S. Helmke, M. Uebel and
W. Dangelmaier (eds), Effektives Customer Relatiqm&lanagement: Instrumente—
Einfuhrungskonzepte—Organisation, second editiabl&, Wiesbaden, pp. 3-37.

4. Walser, K. (2002). Integrierte Prozessabwicklung 8icht der Kundenbeziehung—Eine
Ubersicht, in M. Meyer (ed.), CRM-Systeme mit EAenzeption, Implementierung und
Evaluation, Vieweg, Wiesbaden, pp. 61-86.

5. SAP AG,SAP CRMhttp://www.sap.com/solutions/business-suite/crnemdpx

6. Amberg, M. and Schumacher, J. (200€RM-Systeme und Basistechnologien M.
Meyer (ed.), CRM-Systeme mit EAI - Konzeption, lmplentierung und Evaluation,
Vieweg, Wiesbaden, pp. 21-59.

7. Hippner, H., Hoffmann, O., Rimmelspacher, U. andldé&/i K. D. (2006). IT
Unterstitzung durch CRM-Systeme am Beispiel volARYERM in H. Hippner and K.
D. Wilde (eds), Grundlagen des CRM, second edn|ggalviesbaden, pp. 15—-44.

8. TopCasedhttp://www.topcased.org/

9. Khanna, AHow to set up partner determination in mySAP CRIRM Expert
http://lwww.crmexpertonline.com/archive/Volume 03@2Z)/Issue 01 (January and Fe
bruary)/v3ila3.cfm

10.SAP AG, Partner Determination Procedures, SAP kybra
http://help.sap.com/saphelp crm40/helpdata/en/8c484a11d5980800a0c9306667/co
ntent.htm

11.Filman R, Friedman P., Aspect-Oriented Programnsr@uantification and
Obliviousness, technical report, 2001
http://www.riacs.edu/research/technical_reportsfidR/TR_01.12.pdf

12.Buck-Emden R., Zencke, P., mySARM: The Offcial Guidebook to SAP CRM Release
4.0, SAP Press, May 2004

13. Aspect-oriented Model-driven Product Line EnginegriAMPLE),
http://www.ample-project.net/

-58-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

14.Feature-getriebene, aspektorientierte und modekdpeine Produktlinienentwicklung,
http://www.feasiple.de/

15.Parnas, D.L.. On the criteria to be used in decamgo systems into modules.
Communications of the ACM 15(12) (1972) 1053-1058

16. Aspectj homepage, October 2008p://www.eclipse.org/aspectj/

17.Yan Han, Ginter Kniesel, Armin Cremers: TowardsudisAspectJ by a Meta Model and
Modelling Notation, Proceedings of the 6th Interor@él Workshop on Aspect-Oriented
Modelling, Chicago, USA, March 2005

18.Christina von Flach G. Chavez & Carlos J. P. LucAngheory of Aspects for Aspect-
oriented Software Development. 1st Brazilian Sympuoson Software Engineering, pp.
130-145, Manaus, Brazil, 2003

19.Siobhan Clarke, Robert Walker: Towards a Standardidh Language for AOSD, Proc.
1st Int' Conf. on Aspect-Oriented Software Develeplm(AOSD 2002), pp. 113-119,
Enschede, The Netherlands, March 2002

20.Andrea Schauerhuber, Wieland Schwinger, Elisabetrapskmmer, Werner
Retschitzegger, Manuel Wimmer: Towards a CommoneiRete Architecture for
Aspect-Oriented Modelling, Proceedings of Workshmp Aspect-Oriented Modelling,
Fifth International Conference on Aspect-Orientedft@Bare Development, Bonn,
Germany, March 20-24, 2006

21.Lidia Fuentes, Pablo Sanchez: Elaborating UML Zdfiles for AO Design, Proceedings
of Workshop on Aspect-Oriented Modelling, Fifthdntational Conference on Aspect-
Oriented Software Development, Bonn, Germany, Ma@24, 2006

22.Gefei Zzhang: Towards Aspect-Oriented Class DiagrdPnsceedings of the 12th Asia-
Pacific Software Engineering Conference (APSEC'(G), 763-768, Taipei, Taiwan,
December 15-17

23.Awais Rashid, Alessandro Garcia, Ana Moreira: Asfigigented Software Development
Beyond Programming, Proceedings of 9th Internati@wnference on Software Reuse,
pp. 441-442, Torino, Italy, June 11-15, 2006

24.Dominik Stein, Stefan Hanenberg, Rainer Unland:itlos Paper on Aspect-Oriented
Modelling: Issues on Representing Crosscutting Ufeat Proceedings of Third
International Workshop on Aspect Oriented ModelliBgston, USA, March 17-21, 2003

25.Jackson, Andrew and Clarke, Siobhan. Initial Versiof Aspect-Oriented Design
Approach. Trinity College Dublin, AOSD-Europe Deanable D38, AOSD-Europe-TCD-
7, February 2006

26.Iris Groher, Stefan Schulze: Generating Aspect Gomte UML Models, Proceedings of
Third International Workshop on Aspect Oriented Miidg, Boston, USA, March 17-21,
2003

-59-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

27.Chitchyan, Ruzanna and Rashid, Awais and Sawyde &&d Garcia, Alessandro and
Alarcon, Monica Pinto and Bakker, Jethro and Teklngan, Bedir and Clarke, Siobhan
and Jackson, Andrew. Report synthesizing stat&@frt in aspect-oriented requirements
engineering, architectures and design. Lancastevetsity, AOSD-Europe Deliverable
D11, AOSD-Europe-ULANC-9, May 2005

28.D. Wampler: The Role of Aspect-Oriented Programming OMG's Model-Driven
Architecture, 2003

29.B. Baudry et al.: Exploring the Relationship betwedodel Composition and Model
Transformation, in AOM-WS at MoDELS 2005

30.B. Tekinerdogan, M. Aksit, F. Henninger: Impactifolution of Concerns in the Model-
Driven Architecture Design Approach, in ABMB at ECM-FA 2006

31.D. Simmonds, A. Solberg, R. Reddy, R. France, SodBhAn Aspect Oriented Model
Driven Framework, Proceedings of the 9th IntermetioEnterprise Distributed Object
Computing Conference (EDOC 2005), IEEE ComputeriegdpcPress, pp. 119-130,
Enschede, The Netherlands, September 19-23, 2005

32.S. Clarke and E. Baniassad: Aspect-Oriented Amalysid Design - The Theme
Approach, Addison-Wesley, 2005

33.P. Amaya, C. Gonzalez, J.M. Murillo: Towards a ®abjOriented Model-Driven
Framework, in ABMB at ECMDA-FA, 2005

34.Straw et. al.. Model Composition Directives, Pratiags of the 7th UML Conference,
Lisbon, Portugal, October 10-15, 2004

35.NoE AOSD-Europe report D9 IST-2-004349-NOE AOSD-éne
36.Filman, R., et al., Aspect-Oriented Software Depeient. 2004: Addison-Wesley.
37.R. Laddad, AspectJ in Action, 2003, Manning Pubiares

38.E. W. Dijkstra, On the role of scientific thoughtuplished as EWD447), Aug 1974,
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD4BDF.P

39.K. van den Berg, J.M. Conejero, R. Chitchyan, AGSitology 1.0 — Public Ontology of
Aspect-Orientation, 2005, Technical Report, AOSDdpe

40.Ch. Koppen, M. Stoerzer, PCDiff: Attacking the HhagPointcut Problem, In:
Proceedings on®*1European Interactive Workshop on Aspects in So#wWiEIWAS),
2004

41.E. Hilsdale, J. Hugunin, Advice Weaving in Aspediiir 2004, AOSD04

42.ATLAS Transformation Language (ATLhtp://www.eclipse.org/m2m/atl/

-60-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 3 — Deliverable D3.1
Version 1.0 Date: 08 August 2007

43.M. Eichberg: MDA and Programming Languages, In Beatings of the Workshop on
Generative Techniques in the context of Model Drivechitecture. OOPSLA, November
2002

44.V. Kulkarni and S. Reddy: Supporting Aspects in MDRroc. of the Workshop in
Software Model Engineering on the UML'2003, SamEisco, USA, 2003

45.D. Wampler: The Role of Aspect-Oriented Programming OMG's Model-Driven
Architecture, 2003

46.D. Stein, S. Hanenberg, and R. Unland: Modelingtats, Proc. of the 7th International
Conference on the Unified Modeling Language (UMIOZ)) Lisbon, Portugal, October
11-15, 2004, Springer, LNCS 3273, pp. 98-112

47.P.A. Amaya Barbosa , C.F. Gonzalez Contreras, MMrillo Rodriguez: MDA and
Separation of Aspects: An approach based on meltyitws and Subject Oriented
Design, Proc. of 5rd International Workshop on Adg@riented Modeling with UML,
AOSD 2005, Chicago, IL, 2005

48.M. Mezini and K. Ostermann: A Comparison of Progr&eneration with Aspect-
Oriented Programming, In Proc. of the EU-NSF SgiateResearch Workshop on
Unconventional Programming Paradigms. Springera¢ekINCS 3566

49.0mar Aldawud: A UML Profile for Aspect Oriented Bramming, Workshop on Aspect-
Oriented Programming in conjunction with OOPSLAampa, Florida, 2001

-61-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Work Package 3 — Deliverable D3.1
Date: 08 August 2007

DISCLAIMER OF SAPAG

Copyright 2007 SAP AG, All Rights Reserved.

No part of this publication may be reproduced or tr
for any purpose without the express permission of S

The information in this document is proprietary to
document may be reproduced, copied, or transmitted
purpose without the express prior written permissio

This document is a preliminary version and not subj
agreement or any other agreement with SAP. This doc
intended strategies, developments, and functionalit

and is not intended to be binding upon SAP to any p
business, product strategy, and/or development. Ple
document is subject to change and may be changed by

notice.

SAP assumes no responsibility for errors or omissio

SAP does not warrant the accuracy or completeness o
graphics, links, or other items contained within th
document is provided without a warranty of any kind

implied, including but not

limited to

the implied w

merchantability, fithess for a particular purpose,

SAP shall have no liability for damages of any kind
limitation direct, special, indirect, or consequent
result from the use of these materials. This limita

cases of intent or gross negligence.

The statutory liability for personal injury and def

affected. SAP has no control over the information t
through the use of hot links contained in these mat
endorse your use of third-party Web pages nor provi
whatsoever relating to third-party Web pages.

© Copyright by VIDE Consortium

ansmitted in any form or
AP AG.

SAP AG. No part of this
in any form or for any
n of SAP AG.

ect to your license
ument contains only
ies of the SAP® product
articular course of
ase note that this
SAP at any time without

ns in this document.

f the information, text,
is material. This
, either express or
arranties of
or non-infringement.

including without
ial damages that may
tion shall not apply in

ective products is not
hat you may access
erials and does not
de any warranty

-62-

