BmE V]I
-~
Information Society u E
Technologies

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

FP6-1ST-2005-033606

Visualize all moDel drivEn programming
VIDE

WP 1 Deliverable number D.1.1

Standards, Technological and Research-Base
for the VIDE Project, Project Evaluation
Criteria and User Requirements Definition

Project name: Visualize all model driven programming
Start date of the project: 01 July 2006
Duration of the project: 30 months
Project coordinator: Polish - Japanese Institute for Information Techgyl
Leading partner: SAP AG
Due date of deliverable: 14.01.2007
Actual submission date
Status final
Document type: Report
Document acronym: DEL
Editor(s) Andreas Roth, Axel Spriestersbach, Boris Gruschko
Reviewer(s) Simon Crowle, Sherry Jeary
Accepting Kazimierz Subieta
Location www.vide-ist.eu
Version 1
Dissemination level PU/PP/RE/CO

Project supported by the European Commission withirSixth Framework Programme
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007

Abstract:

The VIDE project aims at a visual, Unified Modelihgnguage (UML) compliant actign

language, the VIDE language, suited to businescapipns. This language aims to emf
itself in the Model Driven Architecture of the OMa&d to be accompanied with a powel
toolset. VIDE is intended to support a businesertdd computation independent lay
aspect-oriented facilities, and means for quakisusance.

This first deliverable of VIDE describes the statethe art in all relevant areas for
planned research. It evaluates and selects existgigts of state-of-the-art to be (re-)u
during further execution of the project. Statetod-art artefacts which are investiga
comprise academic research, standards, and tooés.d@scribe typical user grouf
application scenarios, and use cases, and consslecially small and medium-siz
enterprises. The state-of-the-art in other coredewac research areas, such as
modelling, visualisation in modelling, aspect otexh programming, quality assurance,
precise means for describing language semantigs/astigated.

A further focus of the report is the evaluationtloé technological basis of VIDE, which
aimed to be based on standards. We thus evaluateettavioural part of the UML standa
other (de-facto) standards in model-driven softwdeelopment, such as for me
modelling, model transformations, and querying ni&dé/e also give an overview on to(
available for model driven software development.aA®sult of the evaluation and select
in earlier chapters, we then draw conclusions ematichitecture of the VIDE tool.

ed
ful
er,

he
bed
ed
S,
bd
ta-
nd

IS
'd,
a_
Is
on

The VIDE consortium:

Coordinator Poland

Polish-Japanese Institute of Information Technology

(PJIIT)
Rodan Systems S.A. Partner Poland
Institute for Information Systems at the German daesh Partner Germany
Center for Artificial Intelligence
Fraunhofer Partner Germany
Bournemouth University Partner United
Kingdom
SOFTEAM Partner France
TNM Software GmbH Partner Germany
SAP AG Partner Germany
ALTEC Partner Greece

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Executive Summary

The VIDE project aims at developirig fully visual toolset to be used both by IT-spédists
and individuals with little or no IT-experience,cbuas specific domain experts, users and
testers.®. Therefore VIDE investigates‘visual user interfaces, executable model
programming, action- and query-language-semant®®P and quality assurance on the
platform-independent level, service oriented amttiire (especially Web services and
integration) and business process modellifg ¥IDE is aimed to be embedded in the Model
Driven Architecture of the OMG, thus supporting rabidg both on a domain-oriented
computation-independent layer (CIM), a platformapdndent layer (PIM), and generating
models on a platform-specific layer (PSM). VIDE aimprimarily at the domain of business
application software.

Work Package 1 provides research on industrialaaradiemic standards as well as software
tools and environments for model driven softwargimegering, such as the Meta-Object
Facility (MOF), UML, etc., that the project will bbased upon. It introduces possible
architectures for implementing the VIDE tool envingent based on the Eclipse platforms. In
addition, it develops several requirements whigratevant for future work packages — these
are summarised in the Appendix.

In this work package, the consortium has investigahe typical user groups in a model
driven software engineering approach for busingpdi@tions and their need with respect to
behavioural modelling. We have identified and dedinaccording to their skills and their
expectations towards VIDE) the following user role®omain users, business analysts,
analysts/designers, analysts/VIDE programmers, awctitects. For these user groups we
have defined typical use cases, ranging from c¢rgaa new business application, to
modifying or modernising existing applications, &noim the implementation of a system to
model simulation. Orthogonal to these use caseshave gathered two typical application
scenarios: a sales scenario and a warehouse attatinis scenario. In addition, the research
for gathering small and medium enterprise (SME)uiresnents (one of the targeted user
groups) is planned and will be executed in thehfaytning work packages.

We have investigated the state of the art in otlbee academic research areas, such as meta-
modelling, visualisation in modelling, aspect otezh programming, quality assurance, and
the precise means for describing language semamassions on the selection of specific
standards, tools and techniques are deferred tefpective work packages as planned.
VIDE aims at strong compliance to existing standarBirst and foremost, this means
compliance to the UML standard and in particular behavioural capabilities, and related
standards, such as the Object Constraint Langu@g&) We have investigated these
standards and their capabilities with respect ¢ontbeds of VIDE, which are in particular the
orientation towards the skills of business peopid the need to process high data volumes
(and modelling the means to deal with them). Alslevant are meta-modelling standards -
we have concluded that it is most suitable to hieeBclipse Modelling Framework (EMF) as
VIDE’s meta-modelling framework. Additionally, VID&ill adopt further meta-modelling
techniques around EMF, such as the Atlas Transftimmd.anguage (ATL), the XPAND
template language, and the Graphical Modelling feraark (GMF). We have conducted an
extensive tool survey on MDA tools which has infednprecise requirements for tool
selection. Finally, based on the investigationshaee elaborated the VIDE architecture from
a meta-modelling perspective as well as from thetpd view of a VIDE user.

! From the VIDE project summary in the Technical Arn

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007

Table of Contents

Y 0111 > Tod oSS RRRRPP -2-

EXECULIVE SUMIMAIY ... e s e e e e e e e e e e e e e e e e et e n s s n e e e e e e eaeaes -3-

TabIe Of CONTENLS ...t e e as -4 -

S o TSP -7-

LISt OF TADIESttt s s e e e e e e e e e e e e e e e eeeesennns -8-

1 INtrodUCLION ANA OVEIVIEWuuuiireess o etetttseeeeeeeeeeeeeaeaaeeessssssssssnnnnneeeeeeeeeeeens -9-

2 Description of Overall Approach and Methodology...........ccceevvviiiiiiiiiiiiiiiiiiiiines =10 -
2.1 Defining Users — a VIDE PEerspectiVe.... .. eeeernmiiiiaiieeeeeeeeeeeeeeeensnnnnnns =10 -
2.2 DefiniNng VIDE USEISccoiiiiiiiiiiiiiieeee ettt -11-

G T U L PP -14 -
3.1 Stakeholders and Requirements Engineering (BU).............uiciiiiiinninieennnnne. -14 -

3.1.1 User requiremMents analySIS........... oummmmmssssssnnsseeeeeeeeeeeerrmemmmmmmmnnnnnnnnannee -14 -
3.1.2 Non-functional User ReqQUIrEMENtS......cccceeeiiiiiiiiiiiiiiiiiiiiiien e =15 -
3.2 VIDE USEI ROIES.....uuiiiiiiiiiiiiiiiie ettt e e e e s eaenes -19 -
3.2.1 Domain USer (CUSIOME)uuuuuuuu o eeeeeetttiiiiinss s e e e e e e e eeeaeeeeeeesseenens -19-

3.2.2 BUSINESS ANAIYSToveiiiiiiiiii st s s e e e e e e e e e e e e eeeeessrennnnrennnnne - 20 -
3.2.3 ANAlYSE/ DESIGNETottt e e e e e e e e e e e e e e s beeenneeeeeeee -21 -
3.2.4 Analyst/VIDE ProgrammMer..............cecemmmmeeursaseeeaaeaeeseeeseeesessnnsnnnnnnnnns -21 -
.25 AICRITECT ... -22 -
3.3 Functional User REQUIFEMENTSuuuueceeiiiie e e e e e e e eeeeeeee e e -22 -
3.4 REQ - Flexibility and Interoperability of VIDEEnguage and tools................... -22 -
3.5 REQ — Reuse of Existing UML Standards............cccovvvvviviiiiiiiiiiiiieeeeeeeee, 23 -

4 Assessment of SME ReqUIrEMENTS..........oooeiiiiiiiiiiiiiiiee e -24 -
4.1 Model Driven Development in SMES.........ccuuceiiiiiiiie e .24 -
4.2 Defining and Measuring the Requirements forAteption of MDA by SMEs- 24 -

4.2.1 Cost Related ReqUIrEMENLSoi e e e e e e e e e e eeeeeeeenes -24 -

4.2.2 Utility Related ReqUIremMentsS...........ooooviiiiiiiiiiiiiiiiiieee e -25 -
4.3 SMES Requirements ASSESSIMENT oo eeeeeeeeeeeerreerermrrnnnnnn .26 -
4.4 CONCIUSIONS ...ttt ettt s s e e e e e e e e e e e e e e eeaeeaeeeeeeeesnnees - 27 -

5 Application Scenarios and USE CaASEScceeueeerrieeeriiiniiiiiiiiiieeeeeeeeeeeeeeeeseeenneee - 28 -

5.1 Business Application SCENATIOScoeiiieeuiiiiiiiee e - 28 -
5.1.1 Sales Management SCENANO...........ucmmmmmmmreeeeeeeerrereeeeeirinninnaeeeeeeaeaeees - 28 -
5.1.2 Warehouse ADdmINIStration SCENANO.....ccauurrumniiiiaieeeeeeeeeeeeeeeeiiiiiianes =30 -

5.2 USE CASES ..iiiieiieeiiii e e ettt een s -32 -
5.2.1 Model SIMUIALIONcoooiiiiiii e -33-
5.2.2 Provide a Final Implementationccccceiiiiiiei e -34 -
5.2.3 Construction of Business Software Applicaion...............coovvvvvviiiiivininnnnn. -35
5.2.4 Extend an EXisting ApPlICAtioN.........cummeeeeieeeeeiiieiiiiiiiinn e e eeeeens -37 -
5.2.5 Process EXtenSIDIIItYcoooviiiiiiiiiii e -38 -
5.2.6 Modernise EXisting APPlICALIONS ... eeerereeeeerrriiiiiiireeeeeeeeeeeeaseeeees : 39 -

6 AcademiC ReSearCh BasSe..........coooiiiiieee e -40 -
6.1 Model Driven Software Developmentccccceiiiiiiniii i =40 -
6.2 Human Computer Interaction and Visual Programgiiools...............coeeeeeeee. -41 -
6.3 Aspect-Oriented Programming and Modelling...............oooovriiiiiiiiiiiiiinnneenn. -43

6.3.1 INrOAUCTION ...ttt eeeee e e e e e e e -43 -
6.3.2 Core Terms and CONCEPLS ...ooeeieiiiii et e e -44 -
-4 -

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007
6.3.3 COre CONCEPLS ...t eemmee et e e e ettt e e e e e e e et e e e e e eeemmnsan e e e e -45 -
6.3.4 Aspect-oriented Modelling............oiceeeeeeeeiveiiiiie e -46 -
6.3.5 Aspect-Oriented Composition in Model DriveeM@lopment........................ - 47 -
6.4 Quality Assurance in Model-driven Software Depenent...........ccccceevveeeeeeennn. -48 -
6.4.1 INrOAUCTION ...t e reeee et e e e e e e e e e e eeaeeeaaeeeees -48 -
6.4.2 Quality Defects and Quality Defect DIagnoSiS...........ccuvvvveviiiiiieiiieeeeeeennn. -49
6.4.3 Quality Defect MOdElScoooiii e - 50 -
6.4.4 Automated Quality Defect Diagnosis Techniques..........ccccevvvvvvveiienneennn. -50 -
6.4.5 Software Quality Improvement Techniques...........ccccooviiiiiiiiiiiiieeeeeee, -50
6.4.6 Quality Defect Handling Methodsccccciiiiiiii e =51 -
6.4.7 Beyond the State Of the Art...........emeeeeiiiii e -51-
6.5 Semantics of Programming Languages from theB/frspective.................... -51-
6.5.1 General REMArKScooiiiiiiiiiiiiii e s -51-
6.5.2 What the Description of Semantics IS fOr2..........coovvvvviiiiiiiiiieeeeeeeee, .52 -
6.5.3 Who is the Addressee of the SemantiCS? e oo, 53 -
6.5.4 Semantics of Various Features of a Languadetits Environment -54 -
6.5.5 Alternatives for Specifying Language SemantiC.............ccoeeeeevvieeveeiinnnnnnns -57 -
6.5.6 On the Semantics of the VIDE Language .. X 5)
6.5.7 Concluding Requirements on Language Semafmlctlae VIDE Language - 62 -
7 Standards and LANQUAGESuuuuueumummmmmmmmreeeeeeeeeeeeeerssnnnnsnaaaaeeaessasaaeaaaseseeeees - 63 -
7.1 INEFOTUCTION .. e e e e e e e e e e e e e e e e eees -63 -
7.1.1 Standards Within VIDEcouimmmmmerreieeiiiiieeaeee e ssssssisvveeeeee s - 63 -
7.1.2 Technical REqQUIrEMENTS........ccooeiiiieiiiieiie e - 63 -
7.1.3 Requirements of Modelling Technique on CIMAe..........ccooveviiiiieeennnnnne, - 64 -
7.1.4 Enterprise Frameworks and ArchiteCtUreS.coou...ueueieiiieeieeeiiieeeeeeeiiiiins 64 -
7.2 Modelling Standardscooviiiiiiiceeeeee e ———————— - 69 -
T.2.1 UML 2ttt ettt et e e e e e e e e e e e e e e e e e e nn—nr e e e e aaaaans - 69 -
7.2.2 Enterprise Modelling Languagesccccceeeeeiiiiiiieeiiiiiiiiieeneeeeeeeeaeeeens .89 -
7.2.3 Business Process Modelling NOtationcccccc..vvueiiiiiininiiiiiiiieeeeeiiiiiinee 292 -
7.3 Meta-Modelling Standards..............uuccciiiiiieec e - 93 -
7.3.1 REQUITEIMENTS ...uttitiiiiiie e e e e e e e e e e s e e e e e e e e e e e e e eeeeeeebaeae s s -93-
7.3.2 EXiSting M3 MOAEIScccoiiiieeeeeeeeee e e e e -95 -
7.3.3 Feature Comparison of M3 MOdEISccooeeriiiiiiiiiiiiiiiiiii e =95 -
T7.3.4 SEIECHION ...ttt -95-
7.3.5 Selected Standardccoooo o e - 96 -
7.4 Model TranSforMatioNSovviiiiiiiiiiiie e -96 -
7.4.1 Importance for the ProjeCt.........ooocceeeeei e - 96 -
A A (=T (U1 =10 0T= o € - 96 -
7.4.3 Available Model-to-Model standards..............eeeeiiiiiiininiiiiiiieeeiiiiiies =97 -
7.4.4 Available Model-to-Text Standards........ccccuvvviiiiiiiiiiiiiiiiieeeee e .98 -
7.4.5 Available Text-to-Model t0O0IS............uueiiiiiiiii e, - 98 -
7.5 Graphical Modelling Frameworkscouuueiiiiiiiiiee e .98 -
7.6 Query and Constraint Language Standards............ccoovveiiireeeiiiiiiiieiiiiinnnnns 99 -
40T S © 1 TP UUTPPPTPPR -99 -
7.7 Related Standards.............uuueeuii e - 106 -
TT.L XIMI ettt e e e e e e e e e bbbt e e e e e e - 106 -
T.7.2 CWM ettt e e ettt et e e e e e e e e e e e e e e e e s s e s rnnnnneeeaeaaeaens - 106 -
ST oo IS =] (=T od 1 o] o H PRSPPI -108 -
8.1 MDA TOOI FEVIBW ... ettt e e e e e e e e e e eee e - 108 -
8.1.1 TOOI OVEIVIEWuiiiiiiiiiiiiiiiieiee e ettt ettt e e e e e e s s eeeeeee s e -110 -
-5-

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Date 08.01.2007

Work Package 1 — Deliverable D1.1

8.2 Tools from the European Research Project MODBRE...........cccccoeeeeeennnn. -111 -

8.3 Modelling and Language Implications for Toole€®#on.................evvvvvveennnn. -113 -
8.3.1 VIDE Development Tool Requirements: SupportStandards................... -114 -
8.3.2 VIDE Development Tool Requirements: SupportModelling Frameworks...... -

114 -

8.3.3 VIDE Development Tool Requirements: SuppartModelling Languages- 115 -
8.3.4 VIDE Development Tool Requirements: Intergpdity of VIDE Technology ...-

116 -

8.4 (OFo] o (o 1517 (o] o R -116 -
9 Implications for the VIDE ArchiteCtureoueeeeeeeeeiiiiiiiiiiiieee e eeeeeeeeseeeeeeeens - 117 -

9.1 The VIDE Architecture as Contribution to MDSD.............ccooovviiiiiiiiiiiieeins -117 -

9.2 The VIDE Architecture from a User's Point OfeV............ccoeeeiivieiiiiiieeeennnn, -121 -
10 LiSt Of REQUIFEMENTSuiiiiiiiiiie et eeeanee -123 -
11 (€] 01 T Y75 -124 -
12 [ST (=] (=] (=T -128 -

-6 -

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

List of Figures

Figure 1: Business and VIDE USEI FOIESccouveeeieeiiiiiieeeeeeiie e ee e e e e -11-
FIQUIE 2 USEI ROIES ...t -19-
Figure 3: An EPC model describing the warehousBaBeccccceevveeeeeeeeeenenenne, .31 -
Figure 4: The Zachman Framework (http://www.zifandwamework.pdf) - 65 -
Figure 5: View concept Of ARISoooiiiiieeeeee e e e e e e e e - 67 -
Figure 6: The CIMOSA cube (Vernadat 1996)...ccccceeooiiiiiiiiiiiiiiiiiieee e - 68 -
Figure 7 Simplified Meta-classes related with UMLtiitiesccceevvvvveennnnnn. 280 -
Figure 8: A simple process described with BPMN (W/I2004)...........cooovviiiiiiiiiiiiiinnnnnn. 2-9
Figure 9 Domain classes for the OCL eXample . eevvveevenniiiiiiiieeeeeeeeseeeeeesssvennnnn- 101 -
Figure 10 Meta Modelling ArChiteCture....... .o - 117 -
Figure 11 Views on UML ADSIracCt SYNTAX.......cuummeeeeeeeeeeeriieieeiieriiinninne e eeeeeenns -118 -
Figure 12: Meta-model of a VIDE DemMONSIIatorccoeeiiiieieiiiiieeeeeieiiiiiiieaes 119 -
Figure 13: The generated €ditOroeeeieeiiiiiiiiiiiiiee e e e e e e e e ee e eeenneeeeeeennnae - 120 -
Figure 14: A model drawn with the prototype ..., -121 -
Figure 15: The VIDE architecture from the userspof viewccccoevvvvvvceeennnnnn. 122 -
-7 -

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007

List of Tables

Table 1 Stakeholders on modelling levels..........iieiiiiiiies
Table 2: Requirements assessment table ... eeeeees

Table 3: Overview of tool support for modellingrsdiardscccccoevvvvviiiiieennnn.

Table 4 Outline of standards, frameworks, langaaygéools discussed in section

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

1 Introduction and Overview

The VIDE project aims at developirig fully visual toolset to be used both by IT-spédists
and individuals with little or no IT-experience,cbuas specific domain experts, users and
testers.””. Therefore VIDE investigates‘visual user interfaces, executable model
programming, action- and query-language-semant®®P and quality assurance on the
platform-independent level, service oriented amttiire (especially Web services and
integration) and business process modellifg ¥IDE is aimed to be embedded in the Model
Driven Architecture of the OMG, thus supporting rablidg both on a domain-oriented
computation-independent layer (CIM), a platformapdndent layer (PIM), and generating
models on a platform-specific layer (PSM). VIDE aimprimarily at the domain of business
application software.

Work Package 1 provides research on industrialaaradiemic standards as well as software
tools and environments for model driven softwargimegering, such as MOF, UML, etc., that
the project be based upon. It introduces possiolaitactures for implementing the VIDE tool
environment based on the Eclipse platforms.

The work package investigates typical user grompa model driven software engineering
approach and their need with respect to behaviouaaelling. In addition the research for
gathering SME requirements (the targeted user grsuplanned and will be executed in the
forthcoming work packages.

The results of the research performed is summarnsethis deliverable. To guide and
synchronize subsequent work it defines a coupleregfuirements to be fulfilled. The
requirements from Work Package 1 are the basifuftrer investigations and development in
the subsequent work packages (2, 3, 4, 5, anda start in parallel.

We provide, after having given an overview on o@tmodology inChapter 2 a definition of
VIDE's target user groups @hapter 3

A special user group of VIDE are small and mediured enterprises (SMEs). How VIDE is
approaching their special needs is describéthapter 4

These users will interact with the system perfogriertain use cases. Moreover they will act
within of certain application scenarios, of whicle wresent two typical ones. Both use cases
and application scenarios will be presente@lmapter 5

In Chapter 6 we have a closer look at the state of the adtirer core academic research
areas. We give an overview on meta-modelling, ®ualisation in modelling, on aspect
oriented programming, on quality assurance, andiggemeans for describing language
semantics. VIDE aims at strong compliance to exgsstandards. First and foremost, this
means compliance to the UML standard, and in pdaticits action part. This is what is
covered inChapter 7 followed by a discussion on other (de-facto) deads in model-driven
software development, such as for meta-modellingdeh transformations, and querying
models.

In Chapter 8we give an overview on tools available for modéveh software development
and in Chapter9 we draw conclusions on the architecture of th®B/Itool, which are
consequences of the evaluation and selection inque chapters.

2 From the VIDE project summary in the Technical Arn

© Copyright by VIDE Consortium

2 Description of Overall Approach and Methodology

The overall VIDE objectives are:

Objective 1: Introduce a fully visual programmingradigm for data-intense business
applications

Objective 2: Support fully UML-based programming

Objective 3: Implement and disseminate tools supppOMG’s emerging Executable UML
technology

Objective 4: Support the application of MDA to ness systems

Objective 5: Become a “plugin” to modern MDA toalsd technologies

In the course of its development, the project @ithw on the expertise and experience of its
partners to inform and critically appraise the desand evaluation of the VIDE tool. Each
partner will utilize their knowledge of the busiseapplication domains and the software
engineering process to identify the critical anfirdieg needs of business application project
stakeholders. This document sets out the VIDE pariewpoint on these needs, through the
exposition of existing and envisaged propertiethefbusiness application domain.

To define the VIDE requirements, we first consither software product from the perspective
of a range of users, their activities and work ea&nt This is followed by an indicative
selection of application scenarios and use casasilthstrate potential VIDE development
contexts in further detail. A theoretical and techhunderpinning is subsequently presented
that provides a research foundation for the engingealisciplines and methodologies to be
undertaken during the development of VIDE. Furttedinement of this basis is provided in a
description of the formal standards and langualgaswill be adopted by the project and its
implications for the overall architectural view. [lBwving this, an examination of existing
tools that support the development of businessi@dins within this context is provided.
Having identified the provision of tool-based a&mise for business application designers at
the MDA computation independent modelling (CIM) amDA platform independent
modelling (PIM) conceptual level, a critical anatysf contemporary software libraries that
will support the implementation VIDE modelling tsak discussed. These findings are then
set in the context of the VIDE partner software poment inventory and, based on a selection
of these technologies, a project development enwent is selected.

2.1 Defining Users — a VIDE Perspective

It is widely recognised that understanding who yasers are is vitally important in the
development of the software product (Preece, Roglead. 2002). To actually identify those
people that may have requirements for any systdmat (s, to determine who are the
stakeholders) is far from trivial. In fact, staké&ters can be identified as anyone that could be
materially affected by the implementation of a neystem or outcome (Leffingwell and
Widrig 2003). This is a much more general defimtihan specifying users and reflects the
Information Systems community views that stakehaldeave a much broader effect on
systems development than just users. For the VIRkeg, identification of the people that
may have requirements is particularly complex,hattthe partners all have different world
views of the type of people that they believe wik the system - perhaps the most common
single mistake in development efforts is to leaweessential person out of the process (Gause
and Weinberg 1989). The connection between thegelsblders can be seen in Figlre

Project supported by the European Commission withirSixth Framework Programme
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

System Y

Business X stakeholder:

Employees Business Analyst
V 4

VIDE Users

Supplllers Programmers
Customers System ¥ SW Architects
\ users

Investors Usability Engineers

\
Etc Requirements

Engineers
Etc

Figure 1: Business and VIDE user roles

Traditionally, the customer and user would be thdy goeople identified as having a
requirement on the system. However, it is a mistakelass users as a homogenous group.
Two broader groups, containing a selection of r@éssidentified by (Avison and Fitzgerald
2006)) are involved in any system development.tliyirpeople on the development side,
including: programmers, systems analysts, busiae@sdysts, project managers, senior IT
management and the chief information officer. Sdbgnthere are those people from a
business for whom the system is required. Furteénitions in (Avison and Fitzgerald 2006)
classify these users as individuals that utilisgpouor outcomes of an interaction with the
system. These will include business users, busimeasagement and business strategy
management. In addition, there may be externalsusdno are outside the boundary of the
company, which the system will serve. For exampglestomers or potential customers,
information users, trusted external users, shadehslor other sponsors (even the society at
large), that are affected by the system.

2.2 Defining VIDE Users

An added complication from our perspective is 8iate the VIDE toolset may be identifying
business processes it would involve a number @rmmédiaries between a business and the
toolset itself. Work carried out by (Avison, A.T.\&dkd-Harper et al. 1998) when looking at the
Mulitview2 framework, suggests that the role of fystems analyst is vital in such scenarios.
In this case, the analyst of a system is a roledbtiald be filled by an IS professional, the end-
user, or a business consultant. Individuals futfijlthis role are referred to as ‘change agents’
in IS development (Avison and Fitzgerald 2006), arelrepresented thus:

-11 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

P S

r \
4 Multiple pers \Ectivas.: A
i

= Technical (T}
Would-be l?- . Ergar-iz.?ﬁgﬁal I:Oj,:'_j
developers b~ Persanal ()
of an 12 g

o 0 &
i

1

LiEisiisis Interprative scheme

Crgarizasional J_ rcrmation
anaysls ; system
e ""'\' madelng

{ Meciation |

1
1
1
1
1
1
'
1
= !
1
1
1
1
1

./IS Dl cpr"nz-ﬁ
History J methodelogy H Scclmchnl\‘:l‘;T“' - Soltmane
.:EmergantM analysls I davelopmint
S

Situation

Figure 2: The Multiview2 framework (Avison et.al.198)

Supporting this role might be seen to be a pridiatythe VIDE project. Given this, special
consideration should be given to addressing thesieé the analyst, who acts as a conduit
between developer and client groups. As a liaisstwéen customers and other stakeholders,
analysts produce an elaborate documentation ofsndd®E must integrate these with the
development issues that pertain to traditionalvefé development where compilation of
source code, and the testing of compiled code & deithin one integrated development
environment (IDE).

A further dimension to be considered is that ofrthétiplicity of user experience and varying
technical knowledge that must be reconciled withinoherent VIDE development process.
Other discriminating stakeholder factors includeeruskill sets and level of domain

knowledge and IT aptitudes; this might be partidyleelevant for VIDE, where a breadth of

experience is likely (see Section 3.1.2). The athge of adopting a wider perspective,
although perhaps a risk too, is that it is more raabée to rigorous, real-world validation. As a
consequence, the training time for VIDE users wittarget experience and capability could
then be defined.

Contemporary elicitation methods lean heavily onpeital investigation in which data
describing a user’'s domain knowledge, IT skill, wenvironment and context, task execution
and roles in business processes (to name just p fevgathered. In the absence of any
existing understanding of the target user baseerapirical approach that employs these
techniques can be critical to the success of tlgegrr However, such methods are time
consuming and expensive. For more mature projectshich developers have considerable
experience of the domain and its users, it hamtBckeen suggested that a rigorous, ‘activity
centred’ approach to design be adopted (Norman)2®@ére, the development of software
that clearly communicates its functional role for thes@stial core activities that affect the
successful outcome of domain goakould be the main focus for developers. More
particularly, it may be considered harmful to tivemall effectiveness of the software solution
if too much emphasis is placed on the demandspairacular user group whose expectations
of the tool are not coherent with the actual attiebjectives of the application.

-12 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

In pursuit of capturing the core activities that MIDE tool will support, we have adopted an
approach that frames the partner’'s knowledge oeipected activities of specific users who
would use the tool to support their tasks of depiglg (often) data rich business applications.

-13 -
© Copyright by VIDE Consortium

3 Users
3.1 Stakeholders and Requirements Engineering (BU)

Much of the software engineering literature recegsi that the requirements phase is
particularly important to a successful project onte and that inadequate determination of
requirements is the biggest single factor in pitofadure. For example, (Glass 1998) notes
that many software projects fail due to poor or-e@istent requirements processes, and (Hall,
S. Beecham et al. 2002) report that 48% of devetpirproblems are in the requirements
phase. Research in the area agrees that one waptove the requirements process is to
increase the involvement of stakeholders (NuseildenKramer et al. 2003) in both the

elicitation of requirements and the validation pésifications.

Indeed, the software engineering community has |amglerstood the importance of
stakeholder involvement in validation of requirenseand specifications (see (Sutcliffe and
Maiden 1993; Leonhardt 1995; Pfleeger 2005)), amdesenlightened authors go so far as to
explicitly define requirements as “the effects thi@keholders wish to be brought about in the
problem domain” (Jackson 1995; Bray 2002).

There is significant work in requirements enginegr(and related fields), over many years
which supports this view. For example, the CORE reagh (Easterbrook 1991) to
requirements engineering specifically attemptechtdke explicit the multiple perspectives of
differing individuals (stakeholders). Similarly, €tkland’s Soft Systems approach
(Checkland 1999) (and its extension by (Avison Anb.Wood-Harper 1990)), has at is core
the idea that different stakeholders will have casting worldviews and perspective. In
recent years such arguments have been a major factioe development of scenario-based
approaches to requirements engineering. That esintiportance of stakeholder involvement
has shifted the emphasis away from their capaaty férmal verification towards the
comprehensibility of the notation (Phalp and Cof20 (Phalp and Cox 2002).

3.1.1 User requirements analysis

Hence, in addressing the classes of business sssrequirements) to whom the VIDE tool
must be accessible one must actually consider thadth of stakeholders who would be
involved. Gathering user-oriented requirements p®i@ntially time-consuming and intensive
process; fifteen methods are identified by (Roloert2001) that specifically relate to
understanding user needs. Of these, half requisebstantial investment in time directly
engaging end users. Since the VIDE project can flieinem the significant expertise and
experience of its partners’ knowledge of busingsglieations development, three of the
approaches described in (Robertson 2001) have lbksmified as most likely to yield
productive results within the constraints of theject.

These approaches are:
Use case descriptions

The case studies presented in Chapter 5 of thigndewt provide illustrations of what are
referred to adusinessandproductuse cases (Robertson 2001). The former assedsiafor

Project supported by the European Commission withirSixth Framework Programme
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

the description of system behaviour based on bssiredated activities. Exemplar cases have
been provided to illustrate conceptual componemas will be required to be expressed by
end users of VIDE in their description of the besis problem domain. In the product use
case examples, such descriptions refer to theaictiens with the solution software itself.
Here, the requirements of the VIDE toolset will ibbormed by the anticipated modelling
activities of its users.

Requirements re-use

Use cases and scenarios are a rich and versatileesof information that can inform
stakeholders with different perspectives of the aptpof user requirements on the system
design (Go and Carroll 2004). The analysis of seesaand use cases have shown to be
productive across the software engineering prodesisiding i) product strategic planning, ii)
interaction design, iii) requirements engineering &) OOA/OOD (Robertson 2001).

By examining historical or indicative examples aisiness simulations (see Section 5.1) the
design of the VIDE product can be further inform8gpecific examples of such simulations
also engender the exploration of how VIDE userdctcaefine CIM and PIM models. The
specification of use cases based on the activityedrsimulation of typical VIDE use may
then generate additional, model-based requiremfemtshe technical underpinning of the
VIDE software architecture (see Chapter 9).

Viewpoints
In gathering requirements, it is inevitable thaaksholders of the project will express

different points of view. The VIDE partner collalation is a composition of distinctive
perspectives that are inclusive of business prooesdelling; human-computer interaction;
software engineering and enterprise system devedopnfPartner views on the VIDE user
requirements are therefore wide-ranging and hawm leflected in the definition of user
roles, goals, activities and skills (see Sectiat).3.

3.1.2 Non-functional User Requirements

In addition to specifying the domain-based, funwdilorequirements of projected VIDE users,
a case for non-functional aspects of the VIDE t@lalso considered here. A broad
characterisation of the general qualities of typ\d®E stakeholders, working at the levels of
CIM, PIM and PSM is presented below. They are diesdrin terms of the levels of system
engagement specified by (Faulkner 2000) (handatoryanddiscretionarytypesanddirect;
indirect, remote supportcontact) and technical expertiseyice intermediateandexper).

CIM PIM PSM

Engagement Discretionary Mandatory Mandatory direct
indirect/remote direct/indirect

Examples Business end-users, | System Software
business analysts/architects, developer/engineer

consultants/analysts. | usability engineers,
VIDE programmers

Expertise Novice Novice/lntermediate Expert

Characteristics | Low levels of | Low to medium | High levels of
experience with | technical experience | technical expertise
computers; but high | but have expertise in | but with typically
business domain | mapping business or | no direct

expertise that is only | user requirements to | experience of (or

-15 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007
easily expressed in | high-level, system | access to) the
terms of business | oriented models. problem domain.

goals rather than
system requirements.

Table 1 Stakeholders on modelling levels

Novice system users require robust systems thatlgleepresent their work domain, using
visual cues and help to allow them to successfudisform their activities through interaction
with the computer (Faulkner 2000). Indeed, VIDEkstelders contributing at the CIM level
are unlikely to be able to express their needs tiechnical sense and may not even directly
engage with the tool but instead enlist the helmgiroxy (perhaps another CIM or PIM
stakeholder).

3.1.2.1 REQ - Accessibility at the CIM Level

REQ — NonFunc 1 | Accessibility at the CIM level | SHOULD
The VIDE environment should provide non-technibalsiness domain descriptions.
Description: Non-technical users working at the Aével should be able to input, retrieve
and understand their business domain descriptiores motation that is non-technical and
accessible. a‘

3.1.2.2 REQ - CIM level Collaboration

REQ — NonFunc 2 | CIM level collaboration | MAY
The VIDE environment MAY offer collaboration mechsms.

Description: It may be possible for CIM or PIM uséo collaboratively work on a shared
CIM view through a communication mechanism (suclslasred notes or links to shared
views between stakeholders).

Those individuals who engage in PIM-level modelliragtivities are likely to be
heterogeneous both in terms of their engagemeht tivé VIDE tool and also their technical
expertise. As ‘bridge builders’ between the disgakaews of CIM and PSM, this group may
contain stakeholders who are predisposed to eitleeCIM or the PSM perspective but are
capable of expressing these concepts to some dagtee PIM level. For this reason, users at
this level are likely to require support in theiarisformation activities, in particular direct
access to on-line help and a clear view of thedewpaspects of the VIDE architecture.

3.1.2.3 REQ - On-line Support for at least CIM/PIM Users

REQ — NonFunc 3 | On-line support for CIM/PIM users | SHOULD
Requirement predicate

Description: Users working at the CIM/PIM level siieb have immediate access to on-
line/in-system, context sensitive help that dessibow transformations between CIM, P|M
and PSM levels are specified and used in the maodedictivities supported by VIDE. Help
should be expressed in non-technical terms wheg&a&sible.

Lastly, it is anticipated that PSM contributors dikeely to have high levels of technical
expertise and harbour expectations of the systatmtlatches their own experience of system
software construction. As a consequence, theses wgérrequire visual representations of
their modelling and development activities to hawgnificant parallels with contemporary

-16 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

notations, such as the UML (see requirement REQser2: Reuse of existing UML
Standards, Section 3.5).

Irrespective of the modelling abstractitevel at which activity is undertaken by VIDE
stakeholders, the importance of the clarity ofptsposeandrole within the overall VIDE
business application development process must eatvierlooked. Clearly delineating the
artefacts of a domaianalysisand its subsequent interpretation and transfoomatito a
distinct solution desigmmodel is not well practised within the industryéf@va, Valiente et
al. 2005). This criticism of existing practice &téhe misuse of use cases, PIMs and PSMs
where aspects of the problem domain analysis agpéntly confused with the design of the
system solution. Specifically, the assumption thatsymbolic notation (for example, a UML
class diagram) used by one stakeholder cohortinvitike the same interpretation of meaning
by another group is regarded as a serious threptdject success (Génova, Valiente et al.
2005).

3.1.2.4 REQ - Clear and Unambiguous Notation

REQ — NonFunc/Semantics 4 Clear and unambiguous notation | SHOULD
VIDE should have has clear, comprehensible and bigaraus semantic description suited
to the users of the VIDE tools
Description: The VIDE environment should use notatihat has clear, comprehensible and
unambiguous semantics suited for the user workingha CIM, PIM or PSM level,
Therefore, VIDE must offer model views to the ud®at do not confound the concerns|of
one level with another (for example, CIM businesscpss description with a PSM sequence
model).

Appropriately crafted visual representations fochedevel of abstraction therefore is an
important, non-functional requirement for the VIPEoject. In order for the system to offer
clear representations that are also communicateterden project stakeholders, base-line
agreements on communicative dimensions (Hundau€¥i)2such assaliency typeset
fidelity, story contentmodifiability, controllability and referencability should be set. These
dimensions suggest certain non-functional requirgséor VIDE at CIM, PIM and PSM
levels. For example, identifying and only represensalient aspects of the business problem
at the CIM level (rather than cluttering the usgeiface with PIM and PSM notation) will
support novice users during their interaction itk VIDE toolset.

3.1.2.5 REQ — Model View Saliency

REQ — NonFunc 5 | Model view saliency | SHOULD
VIDE models views must be user-oriented

Description: Views on CIM, PIM and PSM must be cohéble depending on specific user
interactions with the VIDE environment. It shoulé possible for users to dynamically
control the scope and technical content of thesewwsi depending on thejr
specification/comprehension needs. For example,ser working on transformations
between CIM and PIM models should be able to woithiw a view that includes both
levels; other, non-technical users should be ablade such views, or reduce their domain-
specific or technical content appropriately.

The fidelity of the typeset may have an impact dejpgg on the formality of the model being
presented by the system; a high quality, text-basedentation will be expected by expert
PSM developers whilst the presentation of infornhalnd-crafted artefacts is more likely to

-17 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

be compatible at the CIM level. For similar reasatery or metaphor-based descriptions of
the problem space have been shown to stimulatedibeussion and development of
conceptual issues (Hundausen 2001).

3.1.2.6 REQ — Appropriate Textual/Graphical Fidelity

REQ — NonFunc 6 | Appropriate textual/graphical fidelity | SHOULD
VIDE must provide appropriate textual and graphmabalities for its users

Description: Users should be able to work with t@ktor graphical notations that offer the
most effective expressiveness for CIM, PIM and P8bhcerns. For example, VIDE
programmers should expect to be provided with astlea textual editing system that
conforms to their previous experience with softM@Es; CIM level users should expect|to
be able to use a variety of non-technical, posgyoaphically rich imagery to describe their
business knowledge.

Modifiability, and its impact on a user’s timelytémpretation and evaluation of their work
(see (Green and Petre 1996) for the original prtipasof the cognitive dimensions
framework) will have an impact at all VIDE levelsgnificant changes of one aspect of the
solution specification must be communicated to Her the purposes of debugging and
traceability.

3.1.2.7 REQ - Timely Feedback and Constraints
REQ — NonFunc 7 | Timely feedback and constraints | SHOULD
The VIDE environment should provide feedback orr as@ions at all modelling levels.

Description: Multiple users working on the same ¥lDproject should receive rapid
feedback on their attempted actions within the VIBivironment. Such feedback should
indicate their success or failure to complete atioacor task; its impact on their local
modelling level; its potential impact on other mitidg levels; and any constraints that may
impact on the success of their intended actiorihif ‘ideal’ requirement turns out to be
unrealistic as a whole in the course of the VIDEI tdevelopment, it can be partially
skipped.

During the course of validating the behaviour &f thusiness application, as specified by the
VIDE toolset, stakeholders may expect to have keghkls of control over the executable parts
of the model — simulations of processes or systate dransitions should therefore be

repeatable or time-shifted.

3.1.2.8 REQ — Runnable and Testable VIDE Prototypes

REQ — NonFunc 8 | Runnable and testable VIDE prototypes | SHOULD
The VIDE environment should allow execution of rable models.

Description: VIDE users should be able to validateny time (where possible) the models
that can be automatically transformed into an etedate form. Where possible, executigns
should be controllable such that users can ingpegproperties or states of their model gn a
step-by-step basis.

Finally, it must be possible to easily recognise itlentity or properties of an entity, and
specify its relationship to others within the swyste(by providing high levels of

-18 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

‘referencability’) through simple gesture. For CB¥hkeholders in particular, who may have
low computer literacy, the ability to express relaships through pointing will enhance their
overall interactive experience.

3.2 VIDE User Roles

This section details typical user roles for the ¥libols. As described in the section above
the different user roles may work only on a sped#vel of abstraction with the VIDE tools.
The user roles are based on roles in an MDA prodefised by the OMG (Mellor and
Watson 2006) and applied to the domain of busisefiw/are.

A distribution of user roles to the various levetsnodel abstraction and the main stakeholder
addressed by the VIDE project is shown in the figoelow.

Domain User
(Customer)

v

Business analyst
Maintainer (Requirements Analyst)

CIM

\ 4
Analyst/Designer

v

Analyst/VIDE
Programmer

PIM

Tester

CODE Test Cases

Figure 2 User Roles

The figure depicts the transitional model basecetigment process. Starting from (informal)
requirements from domain users the behavioural ingdextended in each step and by the
specific role until it can be transformed into aagli The user roles are described in more
detail in the next sections. The roles “Tester” dnthintainer” are less important for the
VIDE project which focuses on the creation of nedtware and are therefore omitted from
the detailed roles definition.

3.2.1 Domain User (Customer)

3.2.1.1 Description

The domain user is the end user of the construstétivare solution. He works for the
customer and is an expert in his special domain.eikample, an insurance salesman knows
about his company’s offers and legal regulationd a&nsupported by software solutions
without knowledge of technical realisation.

-19 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

3.2.1.2 Goals

The domain user normally has no knowledge abounbss modelling but he can draft the
requirements for a software application that shooéd realised with the VIDE tool. In
combination with a business consultant the CIM llew®dels can be constructed. The
language and the graphical representation shoukhbg to understand so domain users can
validate the correctness of the models. Since domsers typically use specific vocabulary,
all tools should support translations into the dmmspecific language. The domain user
serves as a software tester for acceptance testseviews whether a simulated model will
perform the expected tasks.

3.2.1.3 Skills

A domain user has special skills in his field ofrlucHe will know about business economics
and enterprise management but has normally onlgeofipplication skills. Experience in
modelling of business processes can not be assumed.

3.2.2 Business Analyst

3.2.2.1 Description
Business Analysts advise enterprises on analysisception and implementation of IT
solutions. They constitute the connection betwedes tustomer and the associated IT
specialist and need technical as well as sociapetemces. Possible fields of applications are:

» Acquisition and realisation of IT consultancy pige

* Technical and economic evaluation of IT systems

* Change management

» Planning and monitoring of client specific soluson

» Organization of efficient process flow

» Assembly of project teams, leadership and motivatonflict management
* Planning of manpower requirements and qualification

3.2.2.2 Goals

A business analyst is one of the main user typeshef VIDE tool. They accomplish
interviews with domain users and analyse and mibeeeproposed solution on the CIM level.
Since they have knowledge in modelling of busingsscesses as well as technical
architectures it should be easy for them to usedble

3.2.2.3 Skills

Business analysts should have a variety of difteséills to fulfil their diverse tasks. They
should have knowledge about business processegllingdand controlling, IT concepts and
technologies, procedural models, project managemghtousiness economics. Beyond these
technical skills, social competences such as Ishger team organisation, partner
management or knowledge in legal regulations acpired. Typical tools used by the
business analyst are business rule managemeninsyatel business process modelling tools.

-20 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

3.2.3 Analyst/ Designer

3.2.3.1 Description

Analysts/Designers are responsible for the cone¢ptwdel of business entities and the high
level business logic. They use the design artefants models produced by the business
analyst and transform them into a design. The so#wdesigner is also responsible for
deciding if predefined components may be reuseddocsed or if they need to be re-

implemented. The roles of the software designer AmRE developer are often combined

especially in smaller development projects and rusgdions.

3.2.3.2 Goals

The software designer is a PIM level expert withsteong background in conceptual
modelling and UML class diagrams. The software gtesi uses the VIDE language and tools
to define the first level of behaviour, but leatles details to the VIDE developer. For reusing
or composing new applications from pre-existing poments the designer uses the VIDE
language (preferring a graphical representationunderstand the business logic that is
implemented by a component or to define how mudtipbmponents may be composed.
Generally the software designers prefer the grapmodelling tools of UML and VIDE for
the conceptual and behavioural model.

3.2.3.3 Skills

The software designer is a PIM level expert witiorsg background in conceptual modelling
(i.e. UML class diagrams) and VIDE. Understandif@tM level artefacts, i.e. the business
process model, is also required. Typical toolsaf@oftware designer are graphical modelling
tools

3.2.4 Analyst/VIDE Programmer

3.2.4.1 Description

The Analyst/VIDE Programmer is responsible for doenpleting the behavioural modelling
that will allow model simulation (i.e. for testinghd the transformation of the models into
code.

3.2.4.2 Goals

The Analyst/VIDE Programmer is a PIM level experithwa strong background in

behavioural modelling. The Analyst is one of themrmasers of the VIDE language and tools
for detailed behavioural modelling. The Analystsigiee format that is most appropriate for
that task. Therefore, the Analyst will make uséhef textual VIDE languages when it is more
efficient than the graphical representation. An@imogrammers will also implement
components defined by software designers. Therefiene will model the behaviour/business
logic of the interfaces that have been designedasnl provide the documentation for the
components. Analysts will use the graphical antui@xVIDE tools.

3.2.4.3 Skills

The VIDE developer is also a PIM level expert wdhstrong background in modelling
especially behavioural models using the VIDE lamguand its graphical tools.

-21 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

3.2.5 Architect

3.2.5.1 Description

The Architect is responsible for building the trfmmations of the behavioural models
described using VIDE and the conceptual modelsptatiorm specific codings. The architect
is an expert in the target platform (for exampleus) and the programming language (for
example, Java) but also has a good understandibig/iof and VIDE to be able to define the

transformation. An Architect works in applicationsystem development.

3.25.2 Goals

The Architect is the expert for the PSM level aras la good understanding of VIDE. The
Architect needs to understand VIDE to define thandgformations. However an Architect
typically does not modify VIDE codings.

3.2.5.3 Skills

The Architect should have knowledge of differentge@ platforms and programming

languages. Experience in technical system spetditand implementation of the proposed
solution is mandatory as well as knowledge aboogm@mming concepts like software testing
methods for quality assurance.

3.3 Functional User Requirements

The VIDE language allows the specification of bebaw at the model level and thus
decreases the need to program. However, user® ¢aniguage and tools (for example bank,
insurance, telecom and aerospace customers) oéen $pecific configurations of targeted
languages (C#, Java, C++, C, Fortran, etc.), fraonesWJ2EE, CORBA, ...) and development
tool chains in place that should be enhanced byib& language and tools. Therefore, both
the language and its tools need to be open andyhigieroperable to allow working within
different frameworks and environments.

3.4 REQ - Flexibility and Interoperability of VIDE lang uage and tools

REQ — User 1 Flexibility and interoperability of VIDHE SHOULD
language and tools
The VIDE language and tools SHOULD have flexibiligd be interoperable with existing
tools

Description:
Industrial development projects utilize differembgramming languages, frameworks and
development tools. Usually users have a complekeioosystem at work. It is unrealistic [to
make VIDE replace existing tools. VIDE should tlemoothly integrate with other tools,
i.e., read data produced by other tools and prodéada readable by other tools.
The VIDE language and tools SHOULD have flexibiléywd be interoperable with the
programming languages, frameworks and developmawis tcurrently used in industrial
development projects.

In addition to the above requirements, end uservary sensitive to UML standards that are
available and partially adapted to the current 2danhdscape. Therefore reusing existing
concepts from UML standard (i.e. existing diagraets,) in the VIDE language is required.
A corresponding gap analysis is performed in S&2t1.8.2.

-22 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

3.5 REQ — Reuse of Existing UML Standards

REQ — User 2 | Reuse of UML Standard | SHOULD
The VIDE tools for certain user groups SHOULD bfimed by existing tools for the user
groups

Description:
End users are very sensitive to using standardkejyAaspect is that the VIDE Iangua‘ge

reuses as much as possible the UML standard.

We see a particularly important need in the areth@®fmodelling of the logical architectural
level. This is necessary because the definitionthaf different software systems and
components should be expressed in a form whichotspnematurely dependent on the
software implementation commitments (framework tfptans, language, etc.). In order to
have a complete and validated logical architectine behaviour must be defined as much as
possible, and validated as much as possible. Atstiage, the VIDE modelling language can
provide the most suitable way to cover the abovetimeed needs. Execution of VIDE model
will validate the logical architecture, and partk tbe results can be directly reused for
implementation purposes.

-23-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

4 Assessment of SME Requirements

The scope of this chapter is to indicate, defing assess requirements of small and medium-
sized enterprises (SMESs) for the adoption of MDanieworks and methodologies in order to
leverage their developments and improve their prbdty qualitatively and quantitively
while decreasing cost and effort. The selectionhef requirements aims to set the goals in
order for the VIDE project to be applicable to sierakoftware vendors that have a specific
focus and market.

4.1 Model Driven Development in SMEs

We identify two main types of SMEs regarding thdevelopments and products. The
differentiation occurs where the SME is either setler of larger vendor products or develops
its own products. In both cases, MDA should inceetaeir performance. However, it is more
likely that in the first case the vendor providesls and support in order to facilitate and
automate the customization of its products. Theesfa the reseller case, the SME has a
predefined MDA methodology, supported by some toaldich will facilitate their
development methods.

4.2 Defining and Measuring the Requirements for the Adption of MDA
by SMEs

During the research for the identification of tleguirements for MDA, we have identified

two different types of requirements that indicdte success of the utilization of MDA from

SMEs. First, the adoption of MDA requires additibeapenses from small companies that
can not afford long term investments. Second, & wraportant issue is the limited range of
application that a SME develops or customizes.

Thus the requirements are divided in two groupsdhathe following:

» Cost related requirement®equirements that define the real cost of thgptoin
of the MDA by the SMEs

» Utility related requirementsRequirements that indicate the utility for theption
of MDA compared to former development methods.

These requirements are defined in the followindises.

4.2.1 Cost Related Requirements

Vogel and Mattel (2006) have defined the cost efddoption as a set of quantitative metrics
that enable the quantification of the improvemehtio SME after the adoption of MDA.
According to Vogel and Mattel (2005) the cost ikated to a set of factors that enable the
measurement of the direct cost as well as theaotloost. The latter is based on the quality of
tools provided and the company personnel’s competen

-24 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Based on this approach, and because of the linnésdurces of an SME, we identify the
following requirements:

> Direct cost requirements

a. Effort The reduction of the effort needed for the cormpie of an
implementation project is the most important reguient. Effort identifies the
success and the improvement that MDA introducesMé&s.

b. Cost The cost also includes the daily cost of the qamgl (expenses) used for
the development of a project. If the MDA adoptiequires only highly trained
personnel, the cost of the implementation increases

c. Duration: The flexibility criterium for the SMEs is related the capability of
the SME to complete implementations in short peabtime in order to be
competitive.

> Indirect cost requirements related to tool and metbdology efficiency

a. Tools Maturity Tools offering a complete solution in all thegsta of the
development cycle, and facilitate and automategs®es, lead to reduction of
the cost of the development.

b. Learning CurveThe capability of the tools to offer a user fdgnworking
environment that does not require very special kadge, and can be used by
non senior staff.

c. Perceived value of using MDAhe new capabilities and limitations that the
MDA tool introduces compared to other developmentd.

» Indirect cost requirements related the SME’s personel’ competencies

a. Job descriptionThe type of the personnel required to work indegelopment
team of the SME that has adopted MDA

b. Personnel's Experiencdhe experience of the employee required for
undertaking a role in the development team

c. Personnel’s£ducation:The education required of the employee required fo
undertaking a role in the development team

Following the metrics of Vogel and Mattel, this easch will utilize these metrics
qualitatively in order to identify the requiremenisportance regarding the cost of MDA
adoption for SMEs.

4.2.2 Utility Related Requirements

Apart from requirements related to cost, this regeaas identified some requirements related
to the utility of the MDA for SMEs. Reduction of €fois not a sufficient argument for an SME

to change its development methodology. Thus dutiig research we have identified some
very important requirements for the adoption of Mhi2A.

These requirements, which mainly focus on the guafithe developments of the SMEs, are
the following:

» Adaptation to the core businesEhe limited scope of a SME requires that the MDA
tools can be very easily adapted to the core bssioéthe SME. Generic solutions
may cover a large vector of developments howeveESEre not interested in generic
solutions since they have specific targets.

» Reusability The capability of reusing older projects’ devetamnts.

-25.
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

> Portability: Portability covers the reusability of older prdjetevelopments to new
environment (hardware or software requirements).

» Modifiability: The capability to efficiently extend and customader development
adding or altering existing functionality.

» Maintainability: The capability to maintain and support developseas well as
assign them to a new development team

> Interoperability: The capability to extend the developments in ortker offer
functionality that enables integration with othpphcations.

» Testability: The capability to perform testing during and aftevelopment.

The adoption of MDA aims to improve efficiently tabove requirements and thus the quality
of the software delivered by the SMEs.

4.3 SMEs Requirements Assessment

After the identification of the type of the SMEsdatte requirements, this research will assess
the importance of these requirements based orypleeof SMES.

An evaluation matrix will be used in order to pmesand assess the requirements according to
the above categorization. In the table there acedifferent types of SMEs (based on Section
4.1) that are the following:

1. SME reseller SME that resells and customizes orlfygarty software.
2. SME vendarSME that develops software

Each requirement is assessed based on import@nhcedry important® : important,O not
important) and also it is ranked based on its ingrae (1 : essential to 19 : least important).

SME (reseller) SME (vendor)
Importance | Ranking | Importance | Ranking

Direct cost requirements

> Effort

» Cost

» Duration
Indirect cost requirements
related to tool and

methodology efficiency

» Tools Maturity

» Learning Curve

» Perceived value of using
MDA

Indirect cost requirements
related the SME’s personnel’
competencies

» Job description

» Personnel’s Experience

» Personnel’'s Education

Utility related requirements

» Adaptation to the core
business

-26 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Reusability

Portability

Modifiability

Maintainability

Interoperability

V|V|V|IV|V|V

Testability

Table 2: Requirements assessment table

4.4 Conclusions

The assessment of the requirements will be doree later stage of the VIDE project, with
SMEs completing the assessment table. The reaplést from identifying the most important
requirements for SMEs, will also help to evaludtie VIDE tool and how it meets such
requirements, during the evaluation phase of tH2B/project.

-27 -
© Copyright by VIDE Consortium

5 Application Scenarios and Use Cases

This section describes the usage scenarios of sowigpated applications of VIDE to the
development of data intense business applicatlarst, we describe two typical scenarios for
business applications. They serve as a common fsdiscussing detailed Use Cases for
behavioural modelling and the VIDE language andstoothe later sections.

5.1 Business Application Scenarios

5.1.1 Sales Management Scenario

Sales management systems are used in businessagenall kinds of sales activities in order
to increase productivity. Considering this rathegé domain of applications quickly points to
many different issues that could be treated in sarclexample. Examples for only some of
these issues are Product Life Cycle Management {PBMpply Chain Management (SCM)

or Supplier Relationship Management (SRM).

Thus we focus on one specific part of sales managgnthe Customer Relationship
Management (CRM) and even more on specific CRMspegtevant and meaningful for

behavioural modelling. The example described iethas examples found in (Buck-Emden
and Zencke 2004) and within this document caBatks Scenario

The core concept is the acquisition and exploitatibbusiness process data (i.e., the holistic
management). It is irrelevant for our purposes, tiredata is only stored and the system
provides only a user interface for 1/0O, or if othemmunication channels are used to
communicate directly or indirectly with other pagiinvolved in a business process (printing
invoices, quotations, etc., is considered indioechmunication in this regard).

The Sales Scenario focuses on sales processesegbreses selling one or more products. It
involves different aspects, ranging from opportymitanagement to quotations to customers,
sales order processing and invoice processing.

From a customers point of view the functionality tbe Sales Scenario is described as
follows:

1. A field representative of a manufacturer of compit@dware receives a message on
his PDA, telling him thatompanyX is planning to replace its complete system in the
next quarter. The company has budgeted substaii@hcial resources for the
replacement.

2. He immediately enters this information in the sgstée., master data of the potential
customer, including budget estimation, descriptbsales opportunity, sales volume,
and timeframe of the opportunity.

3. TheOpportunity object is created in the system and evolved byssggned employee
until it reaches a go/no go decision by sales mamagt.

4. Another employee of the sales office creates aaraffing theQuotation module,
which automatically generates a quotation temgdated on the sales opportunity.

5. Based on the categorisation of the prospect in stdtuer Group, estimated sales
volume, and sales probability, thedividual Prices module is used to calculate a
discount for the customer, which is included in do@tation.

Project supported by the European Commission withirSixth Framework Programme
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

6.

10.

11.

12.

After the sales office has contacted the customerraceived an order, the system
automatically converts the quotation into an ongigon mouse click using the module
Sales Processing

To check the creditworthiness of the customegredit Checkis performed during
sales processing by interacting with Beymentmodule.

An (optional)Availability Checkis performed to check warehouse stock for required
capacities.

The availability-to-promise check requires intelactwith warehouse management
(StocK. In case ofMultiple Stocksonly those warehouses sufficiently close to the
shipping address are included.

In cooperation with th®elivery module, the order is split into separate ordere&zh
involved warehouse, which have to be scheduledogpiately.

If Paymentis to be integrated into the process, it wouldabBvated automatically

upon creating a binding sales order. Dependinghenriethod of payment offered by
the system and selected by the customer, an automabit transfer from the

customer’s account can be trigger€&ayment Carg, an invoicing document can be
attached to the deliveryCésh On Delivery, or Invoicing is activated for later

settlement.

The order status is set to “completed” by an engdogs soon as it is delivered to the
customer.

All the described process steps which involve cetecdocuments are influenced by available
communication channels. This determines, e.g., gnetn invoice is created separately using

Word,

printed from the system, or automatically tseia e-mail. The following business

components could be tackled in more detail:

Opportunity: This Opportunity module manages thel@ion from an initial customer
contact (in the example for replacing the compagastem) towards a decision to send
a Quotation to the customer. This includes vargieps of customer engagement (e.qg.
mail, appointments...) that should evolve Opportun#ly a decision by sales
management is possible. Typically behaviour forGpportunity is for example the
evolution of the opportunity state (active, stallddiled) and calculation on the
predicted value.

Payment. This module manages the payment procetbsfds incoming and outgoing
payments. It manages for example receipts, remagadeulation. It is possibly
integrated with the banking system for instanctigger money transfers and
interacts with invoicing.

Customer Group. Customer groups influence Pricind affered product portfolio
(Product Management). Competitors, for instance either not offered certain
articles at all or at special rates only.

Product Management. This includes the managemeahegiroduct portfolio, possibly
as one or more product lines. Products are regibter the system and augmented
with meta-data such as name, identifiers, unitdegmay, manufacturer, taxes,
certificates, minimum, maximum and actual “on stogklues, pricing, alternative
products and more. The management of aggregateigsos possible with or without
warehouse management, i.e., stock of certain ptedisc composed of stock of

-29.
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

included products (e.g., product bundles as spedfi@rs or even real complex
products consisting of parts, cf. computer hardvséuap)

» Stock. A stock manages product inventories in ongeveral warehouses. It has a
direct relation to inventory/capacity of producesdribed in Product Management. It
contains additional information on storage locat{arsle, shelf, etc.) of individual
products.

» Customer Order Management manages processinges saelers from customers, it
thus includes accepting orders, shipping of sales.

Both behaviour modelling and the VIDE language vii# used described the business
logic/business behaviour implemented by the syst&msexample, in Invoice Processing the
system must guarantee that the invoice will noidseed to a customer unless all products
with the required number are in stock. Action seticanenables the specification of those
actions on PIM level. However some issues (e.ga dat stored persistently or should be
executed within a transactional framing) requirecsfcations in the platform-independent

VIDE language accessible for users with little orlh background.

5.1.2 Warehouse Administration Scenario

5.1.21 Summary

This scenario covers a simple warehouse admin@mtradol and the business process that
should be supported by this tool.

5.1.2.2 Detailed Description

In this use case the data intensive administratioa warehouse should be supported by
application software. The software should be usedéveral warehouses. Therefore different
storage capacities have to be taken into accouthdégoftware. The following figure shows
the event driven process chain (EPC) of the opmrati the CIM level.

After a delivery has arrived its invoice is checkddhe invoice is not correct the delivery is
sent back. In any case the result of this chedtdsed. After storing the result, the master
data for each good of the delivery are checked ewritg availability and correctness. If
necessary these data are created or corrected tid@goods are put in the warehouse storage
and added to the list of stored goods of the awtcgrstorage space.

-30 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Delivery
arrived

Check
invoice

Move goods tc
storage

Invoice

Goods has
been moved tc
storages

Add goods to
list of store
goods

Goods are
storec

Storage date

Send back
delivery

Delivery has
been sent
back

Store result of

invoice check

Result storec
Invoice

__ Check master

data for each
gooc

Invoice

Master data
recorc

J\

Date are not
correct

Data are
correct

CreatesModify
master data

Master data
recorc

Master data
createc)
modified

Figure 3: An EPC model describing the warehouse spario

Additionally to the process description the follogirequirements have to be fulfilled:
1. A master data record for every good
2. Storage places
3. Invoices can be

a. created
b. edited
c. deleted

The following data are required:

-31-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0

Date 08.01.2007

* For each master data record

O O0OO0OO0OO0O0O0

Name of the good

Unique identification number
Price

Weight per unit

Packing type (box, pallet, barrel)
Due date

Frozen (Boolean)

* For each storage

(0]

o

o OO

Name

Coordinates into the warehouse
= Row and column

Packing type the can be stored

Capacity

List of stores goods

* For each invoice

o O 0o

0]
0]
0]

Unique invoice number, which contains the actual ys the beginning
Date (formatted DD:MM:YYYY)
Address of sender
List of goods, with
= Price and
= Amount for each good
Price total
Correct delivery (Boolean)
Comments

The scenario can (and is in reality) extended Bovis:
* In addition to what is described above, receivimpaect delivery requires
notifications to accounting and to processing gfmpants.
* Moreover storing must be operationalised by coetyedtarting site logistics
processes.
* Finally, the checking of the quality of the deliyeran be incorporated.

52 Use Cases

This section describes use cases for users ussg/HDE tools when implementing the
Business Application Scenarios described aboveh kEse case is described in a separate
section. Each of the use cases contains information

» the target user group in compliance to the usesrmlentified in Section 3.2,

* asummary of the use case,

» the (detailed) use case description, and

» the required VIDE tool support for the use casetaedargeted user group.

-32-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

5.2.1 Model Simulation

5.2.1.1 Target User Groups

Business analyst
Analyst/Designer
(Analyst/VIDE Programmer)

5.2.1.2 Summary
Execute the model of an application in order tadade its logical behaviour.

5.2.1.3 Description

The VIDE language is used for model simulation avalidation, before software
implementation takes place. The typical customdr mat immediately replace a traditional
programming approach by a completely model-drivepreach. The main reason is that he
needs to trust the generated code, and to feeldemfthat he masters the development
process. Therefore, the start is to model the legsidevel with CIM models, to define a
complete behavioural modelling on the PIM level dndvalidate it using a VIDE code
generation in order to simulate its future behawxitruthe logical modelling, technical aspects
such as transactional issues, safety and secdatg, storage optimization, usage of specific
platforms, etc., are usually not considered. Ohby lbgic of the system is to be considered.
This use case can take any usual business applicatich as sales management systems, or
delivery management systems, and define its lognadel. Put briefly, the scenario is: define
the logical business model, then generate the andesimulate that model.

5.2.1.4 Required VIDE Tool Support

The VIDE tool should support modelling the logibaisiness level (CIM), generating models
on the PIM level, and simulating the model on tkaél.

-33-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

5.2.2 Provide a Final Implementation

5.2.2.1 Target User Group

Analyst/VIDE Programmer
Architect

5.2.2.2 Summary
Use VIDE to provide a final implementation on al teaget.

5.2.2.3 Use Case Description

Connect the VIDE model and its generated code ftloenprevious use case to an existing
platform (such as J2EE), and implement the appdicatreusing as much as possible the
generated code, adapting the model to obtain acaledi PSM and having a better suited
regenerated code.

5.2.2.4 Required VIDE Tool Support

The VIDE tool provides modelling facilities, integed in a state-of-the-art IDE, and code
generation.

-34 -

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

5.2.3 Construction of Business Software Applications

5.2.3.1 Target User Group

Analyst/Designer
Analyst/VIDE Programmer
Architect

5.2.3.2 Summary
Model and implement the scenario in an existingrimss software architecture

5.2.3.3 Use Case Description

We are considering the following simplified arclitere of business software:

 Business objects are real world entities modelledkgectd; they have specific types
comparable to classes in OO.

» Business objects can be changed by invoking at@®igices; services consist of
several service operatidhs

» Business objects are hierarchically structuredesestconsisting of a root and items.

* Business objects are contained in process companBnbcess Components group
business objects that are semantically relatedy Téygresent the software realization
of a business process.

» Business objects in different process componentsyaanicate via message exchange.
In the case that a message must be sent from anpoc@nt to the next there is a
special infrastructure (process agent frameworkeash component which decides
whether a message should be sent and whether amimg message should be
accepted and processed.

The components which realise the functions requioedhe application scenario described
above follow this architecture. For instance, ire twarehouse scenario, “Invoice” is a
business object, as well as “IncomingDelivery”. $tebusiness objects are contained in
different process components and communicate vesage exchange.

5.2.3.4 Required VIDE Tool Support

» Support for modelling the described flow from a ibhess perspective in a CIM
accessible to business experts (like in Figure 3).
* A model on the CIM level is transformed into a Pihddel.

3

http://help.sap.com/saphelp_webas610/helpdata/Ee5984488f11d189490000e829fbbd/fr
ameset.htm

4
http://www.sap.com/platform/netweaver/pdf/WP_Entesg Services_Architecture_Intro.pdf

-35-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

» Given a concrete static structure, which dividesdbmain into process components
and business object, a PIM model is generated fhenCIM model. The PIM model
is enriched by additional behavioural information.

» Simulation of the behaviour of the process compboarthe CIM and the PIM level
as in the Use Case described in Sect. 5.2.1.

» The enriched PIM model is transformed into a PSik&llenodel which is compliant to
the architecture described above (optional)

* generate executable code or code skeletons (ofjtesan Sect. 5.2.2.

The use case could as well prove how flexible VIDED take care of crosscutting variations.
For instance it might be possible to support “apgimg notification”, which adds
functionality at several places in the processhsag when the delivery arrives, when it is
accepted, etc. Maybe this variation can be modelidd aspects.

Further use cases build on the architecture destabove.

-36 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

5.2.4 Extend an Existing Application

5.2.41 Target User Group

Business Analyst
Analyst/Designer
Users of this use case are at the same time addptrrole of a maintainer.

5.2.4.2 Summary
Use VIDE to in conjunction with an existing applice which model is known.

5.2.4.3 Use Case Description

Most use cases do not build new systems from d$gratg extend existing applications. We
start from an existing application, where the madeknown. We extend the model of the
application using VIDE. The VIDE model is used tmglate the logical model, with pieces
connected to the existing application.

5.2.4.4 Required VIDE Tool Support

VIDE supports the users while modelling, by intég@g new models with the system to be
extended. Simulation of the system using VIDE gatest models and subsequent code
generation facilities (that include the extant qocamplete this level of support.

-37-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

5.2.5 Process Extensibility

5.2.5.1 Target User Group

Business Analyst
Analyst/Designer
Users of this use case are at the same time addptrrole of a maintainer.

5.2.5.2 Summary

Referring to the system architecture described. 2135 additional process steps are added on
the CIM level and realised with tool support asecod

5.2.5.3 Description

With standard business software, often special tatlaps have to be made for specific
customer needs, without changing the integrityhaf original system. As an example, the
warehouse scenario, could be modified for a custasadollows. When a wrong delivery is
sent back, a special process component and busagigsst is notified which maintains
relations to suppliers and which in particular ntaims a repository of problems with a certain
supplier. This repository may be a source of paémhanges in the policy towards this
supplier. Again this new functionality must map ttee business software architecture as
described in Sect. 5.2.3.

5.2.5.4 Required VIDE Tool Support

The VIDE tool should help the business expert lvigling a graphical modelling interface,
and by offering a graphical simulation environmertie special issue in this scenario is to
bridge the gap between models on the technical ohoifpdatform independent models —
PIMs) and models on the business level (computatidependent models — CIMs), denoting
business processes or workflows. This mappingmsyar challenge in this scenario.

The adaptation should as much as possible be cwluon the CIM level. That is, the
business expert models the new additional procasgpaonent, specifies its business objects,
models additional process agents of the existinggss component, generates adaptations of
the models of the existing components. The new corapt is then modelled with the VIDE
action language and relevant models and code aerajed.

-38 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

5.2.6 Modernise Existing Applications
This VIDE use case is optional.

5.2.6.1 Target User Group

Business analyst
Analyst/Designer
Analyst/VIDE Programmer
Architect

5.2.6.2 Summary
Modernize existing applications using VIDE.

5.2.6.3 Use Case Description
In this case, the model of the application is n@lviknown, or not up to date with the
application. (Which sadly is by far the most freguease within organizations).
An existing application can be reversed into UMb,arder to redevelop some pieces. One
first action might be to ‘componentise’ the reverseodel, in order to isolate unchanged parts
from regenerated parts. Then, the code is genefategtie modernized parts, and connected
to the existing application.

5.2.6.4 Required VIDE Tool Support
VIDE integrates into a UML case tool with reversgi@eering facilities.

-39 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

6 Academic Research Base

6.1 Model Driven Software Development

Since its announcement by the OMG in 2001 (Objeandement Group 2001), MDA is
viewed as an important subject of research (Atkirsod Kiihne 2003; Bézivin, Hammoudi et
al. 2004; Gasevic, Djuric et al. 2005) (Wegmann Breiss 2003; Kovse and Harder 2004) as
an emerging standard for application developmeatided on PIMs. The central idea is to
utilise software models to drive development. Tisatrather than being a passive overhead,
models will be the key development tool, offerintpigh level of abstraction and significant
productivity gains. The latter depends on the cetepless of PIMs and on the extent to
which their transition towards the PSMs of any @msmplementation platform can be
performed automatically. These features lead ttstulate of ‘executable software models’.
Note that similar promises were formulated but nedlised back in 1980s, with both
executable specification and enactable CASE todl#h today’'s mature and uniform
modelling standards together with the evolutioneather than “all or nothing” nature of
MDA, the main obstacles are removed and a cerés@l lof productivity improvement seems
to be guaranteed. The momentum currently observétei MDA field will make it one of the
dominant technologies in the near future. Recepbnteof Gartner Group positions Model-
Driven Architectures among the technologies inrike phase (Gartner 2006). As with most
technologies in the IT-industry, the internal andeenal quality of the models is of great
importance for maintenance and reliability. SucltdddDA is expected to make the models
the main development artefacts, replacing todagogiamming languages. This is analogous
to the way high level programming languages haewipusly replaced assembly languages
(Mellor, S. J. and K. Scott, et al. 2004).

The way to produce executable PIMs, called ExedataML (Mellor and Balcer 2002), has
its roots in the Shlaer-Mellor methodology (Shlaed Mellor 1991; Mellor and Balcer 2002)
and in various approaches from the technical soéveand real time fields, such as SDL
(Berry and Gonthier 1992; Selic, Gullekson et &92; International Communication Union
2002), ROOM (Selic, Gullekson et al. 1992) andgtstechart (Harel 1987) approaches. The
authors of the Executable UML concepts (Mellor &adicer 2002), previously applied to the
OMG with their proposal for the action semanticdc@del, I. Logix et al. 2001) which was
finally adopted in UML 1.4 (Object Management Gr&{®?2).

In (Mellor and Balcer 2002) action language codased to specify application logic. In this
pioneering work on executable UML, the authors astion language code solely to specify
actions which happen after an object changesats $b a different one. This is a surprising
limitation which most be overcome by VIDE, sincatstmachines are sufficient to cover only
some part of real-life situations. This first actieemantics standard resulting from
compromises between different modelling approadiees been integrated into the existing
UML framework. Within the UML 2.0 standard (Objedanagement Group 2004), an effort
has been made to better integrate the action sasaanhd to provide a global consistency
with the dynamic models of UML (state, activity amderaction). Further standardization
efforts needed to realise model execution have leigated (Object Management Group
2005). Efforts are currently underway to providsupport for a high level query language
within the OMG, partially based on the OCL standardoth in the MDA field with the

Query-View-Transformations (QVT) standard (Objecardgement Group 2005), and in the

- 40 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

business area fields with business rules relatmtards. However, there is still the need for
higher level query languages, accessible to end.use

The multitude of tasks outlined for model-drivervelepment necessitates the cooperation of
a number of specialized MDA-aware tools. This gate=r the need for precise metadata
exchange. The MOF (Object Management Group 2002edDiManagement Group 2004)
based XMI standard (Object Management Group 20@8jesses this need, although there
are currently implementation differences among wesd which may undermine
interoperability. The MODELWARE project (Millot 2@) gives special attention to those
issues with its Model Bus architecture (Blanc 2008) addition to sorting out the XMI
compliance for model exchange, an API style comeation was proposed for finer
granularity metadata movements. Another key rekeantl standardization area of MDA is
the development of uniform and efficient means afdel querying and transformation
(Gardner, Griffin et al. 2003).

Some exploratory research in the area of platfordependent AOP and the use of AOP in a
MDA has been performed (Eichberg 2002; Kulkarni &Reddy 2003; Wampler 2003;
Barbosa, Contreras et al. 2005). The domains oaspect and the model community overlap
(Stein, Hanenberg et al. 2004; Han, Kniesel e2@05; Volter 2005). Initial research is on
going, but no conclusions on how to best merge ADB MDA have been drawn. Some
sample tool implementations exist which implemer®FAin an MDA setting (Barbosa,
Contreras et al. 2005). It is likely that the fguwill merge AOP and MDA into a new
paradigm, or will extend the MDA paradigm to cragtiag concern semantics (Mezini and
Ostermann 2005). Both are powerful methodologidschvsolve existing problems in current
mainstream paradigms like OO.

6.2 Human Computer Interaction and Visual Programming Tools

The concept of VIDE as a fully visual language dpplication building is also underpinned
by other research fields, frequently addresseddoypus researchers in recent years, such as:

* human-computer interaction (McCrickard, Czerwinski et al. 2003) (CzerwinsKiQ2;
B. Shneiderman 2003),

 visual user interfaces (Braubach, Pokahr et al. 2002; Kang, PlaisanteR@03;
Marcus, Feng et al. 2003)

* visual programming (Gordon, Biddle et al. 2003; Blackwell, Burnetiaét2004;
Guibert, Girard et al. 2004; Ko, Myers et al. 20Bé;sson, Ballin et al.
2004, Carlisle, Wilson et al. 2005; Lawrance, Céaekt al. 2005).

Each of these large, interdisciplinary research @omhave the potential to inform the VIDE
development process throughout its lifetime. Whilsére are a wide range of human-
computer interaction considerations that the VIDd&tmership could consider, a primary
concern is that of appropriate graphical notatifumsts end users. Recent research (Hendry
2004) suggests that graphical design represensagi@very important for ‘boundary objects’
(project artifacts that are discussed by stakemsldeith differing domain expertise).
Boundary objects are said to be focal points fa ¢harification of system design issues,
particularly during elicitation; problem and sobrtiframing; solution evaluation; and system
documentation. Critically, (Hendry 2004) finds thetekeholders do not necessarily use a
single, synthetic language but choose to use ‘apparpose’ (domain oriented) notations to
exchange knowledge between discipline boundaries.VIDE, this indicates that the user

-4] -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

interface must support a rich, and to some degustomizable (or at least include the facility
to annotate) visual notation.

As previously discussed (see Section 3.1.2.4) tigeuser notation should be communicative
and exhibit qualitative properties appropriate e tiser and the levels of abstraction they
specify within the VIDE framework. For the non-teatal VIDE stakeholders, sketching an
informal expression of needs is likely to be a niibgdawithin which they are most
comfortable. Here, visual metaphors have been stiovee effective not only for usability in

a broader context (for example see (Ark, Dryerlef@98)) but more specifically, metaphor
is consistently used as a means of expressingagabstsmputational processes (Hendry 2006).

Graphical presentations of computable algorithnes aansidered more formally within the
visual programming languages paradigm. This pamdggan emerging area of research that
addresses a significant part of the overall sowamgineering process. Results have been
mixed; in (Catarci, T. 2000) there is a significamiticism about the usefulness of visual
interfaces for querying by non-IT professionals.eTtonclusions of this paper should be
considered and thoroughly investigated. It showddstressed, however, that the paper deals
with visual query languages and visual interfacesdufor specifying queries which display
their results immediately after the queries arenfdated. VIDE utilizes query languages for a
different purpose. There is a lot of research comng visual query languages(Blau,
Immelman et al. 2002; Leopold, Heimovics et al. 208mith and King 2002; Stolte, Tang et
al. 2002; Abraham 2003; Barclay, Griffiths et ad03; Erwin 2003; Kules and Shneiderman
2003; Trzaska and Subieta 2004). Such researcleirgg undertaken also in European
projects, such as the ICONS project (IST-2001-32429 VIDE, we create, edit and
document action code for an application and do deal with an immediate visual
representation of query results, but in visual @spntation of action code. This also means a
different target user group — one for whom metaphoay be more appropriate (these have
been shown to enhance so called ‘end-user progmagiynsee (Ko, Myers et al. 2004)).

The termvisual programming is tightly connected tend-user programming According to
(Mayers, Ko et al. 2006) end-user programmers ample who write programs, but not as
their primary job function. They develop (small)péipations because they want to perform
some business tasks (from their primary job poinview) such as accounting, insurance,
stock analysis, etc. Usually those people prefeuali languages rather then fully-fledged
programming languages like Java, C# or C++. TheE/lIanguage will be an ideal solution
for such workers. As stated in (B. G. Ryder 2008pal programming properties could be
achieved by using special environments or by intooty domain-specific visual
programming languages. VIDE belongs to both theaseigs: we are going to develop a
special Integrated Development Environment (IDERjo will be syntax-directed for both
textual and graphical expressions. In additioneaheitl be the VIDE language itself which is
dedicated to defining both business logic and darspecific applications. Moreover, VIDE
could be extended to cover domain specific needs.

Another aspect of VIDE isode-less programming(Mezini and Ostermann 2005) enabling
the creation of applications without hand coding, replacing hand coding by some other
activities involving moreinteractive communication with the computer. In addition,
individual groups have attempted to build enactabledels of parts of the UML, e.qg.,
(K.T.Phalp and Cox 2003; Kanyaru and Phalp 2005}Hese efforts have tended to focus on
the requirements phase, rather than providing sapip@ugh to development.

-42 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

The industrial Rapid Application Development (RADYP!I Magic Developéris an example
of a programming environment in which code operpton databases is specified in an
interactive way without a text-based language. itlea of Magic can be stated as follows:
“Generalize the typical code working on a datab@sa very general loop, which can be
parameterized to deliver particular cases of tbde€. The code in Magic is held and edited
in a big number of windows (this makes an overatrgiew of the code difficult). Editing
entries in these windows is performed in an int&racway — this means that the editor
always displays a set of choices the developerspickm. This makes the coding easier and
reduces the number of errors which can appear glwwoding (strong type- and context-
checking). The VIDE editor will have a similar adwage. Contrary to VIDE, Magic does not
have neither a textual nor a visual version of cddereover, Magic is neither object-
oriented, nor embedded into UML. Nevertheless, shecessful use of Magic for rapid
development of business critical database appbieatishows that a fully interactive code
editor capable of creating database-intense apiplisawithout any need of hand coding is a
reality.

Modern user interface design techniques and toaednwell defined requirements
formalization as the basis for the developmentnoddel based’ architectures for specifying
interactive systems. Model-based specificatiorypsctlly graphical in nature, and addresses
stakeholder concerns such as workflow (Stavness Simoeider 2004), task modelling
(Luyten, Clerckx et al. 2003) and human-computatagjues (Traetteberg 2003) (Griffiths,
Barclay et al. 2001). As such, contemporary modekeld approaches to user interface design
seek to integrate usability concerns within theabdey framework of MDA, they promote
abstraction, automation and platform independendbe design and implementation of user
interfaces. Developments in this area indicateftiere directions for visual representations
of complex, interactive systems. The need to p@wusible interfaces is clearly vital, and this
requires an understanding of the metaphors emplbyexdich approaches (Crowle 2004).

A lot of research has been done and is under wélyeirfield of human computer interaction,
visual querying and visual programming. The VIDBjpct will be based upon this research.
In the current research, however, the fully visdavelopment of the logic of data-intense
business applications is missing. The proposedegtrois intended to fill this gap and

contribute to software development standardizatitorts.

6.3 Aspect-Oriented Programming and Modelling

6.3.1 Introduction

Within the VIDE project aspect-oriented modulanaat concepts, suitable for platform
independent modelling and composition, will be gnéged into a model-driven development
tooling. The overall goals are to select the mestsonable aspect-oriented composition
mechanisms, define a suitable semantics of aspedtles for platform independent models
and identify expressions in UML action language&gggring aspect-oriented adaptations.

In this project we neither develop a new methodplag tool support for identifying,
specifying or documenting aspectual requirementy, @pect mining, nor invent a new
methodology or process for aspect-oriented (AOigmesn the focus of this project are

® http:// www.magicsoftware.com

-43 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

» visual representation of AO language constructieaign level, i.e. explicit
connectors, crosscutting interfaces, join points et

» specification of elements of design aspects, sacttabutes, methods, advices,
pointcuts, inter-type declarations etc.

» selection of join points within structural and beitoairal models

* integration of aspect-oriented composition intoriedel-driven development process

This section describes the research base of FréemRtRST which will be extended in the
VIDE research project. It introduces general teroase concepts, semantics and mechanisms
of aspect-oriented programming at a conceptuall.léugthermore an overview of existing
approaches to aspect-oriented modelling and asgpectted composition at design level is
given.

A more detailed analysis of aspect-oriented maakglivill be conducted in the course of
Work Package 3.

6.3.2 Core Terms and Concepts

In Aspect Oriented Programming (AOP) a huge varietytechniques and concepts is
employed to achieve aspect-oriented modularizatdften similar terms denote different
concepts. This section introduces general termscandepts of aspect-oriented composition
at a conceptual level.

6.3.2.1 Core Terms

Four terms form the basis of any description ofeaspriented modularization concepts. In
this section the basic understanding of aspect,goint, pointcut and advice is defined. Most
definitions are derived from the definitions in &k van den Berg 2005)

6.3.2.2 Aspect

An aspect is an unit for modularizing an otherwdsasscutting concern (Klaas van den Berg
2005). It defines structural or behavioural enhameats that are attached to another unit.
Most often, an aspect module provides new featwes) as pointcut and advice, to define
those enhancements.
The aspect module may influence the AO compositidihree different ways (Schauerhuber,
Schwinger et al.). An aspect:

* may act as base themselves,

* might be specialized into several sub-aspects, and

* may introduce adaptations that cause conflict.

6.3.2.3 Join Point

In AOP join points are considered as well-definpditits in the execution of the program”
(Xerox) where aspects can interact with other pairthe program. The execution of models
requires an adequate definition and considers meldetents rather than program elements.
Similar to executable program elements, such demsents or expressions, every structural
and behaviour model element that appears in theuéra of the model can act as a join
point. Elements of a structural diagram may repreagoin point shadow, specifying where
an aspect adaptation can be introduced. A joint@biadow with no further restriction acts as
join point in every model execution. Model elememts behavioural diagrams directly

-44 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

represent specifiable join points. They depictdkecution of model elements within a certain
scenario. Both kinds of elements are used to faatewdn AO adaptation.
A join point model defines all elements that cahaacjoin points during model execution.

6.3.2.4 Pointcut

A pointcut is a predicate that matches join poiftkaas van den Berg 2005). Since, join
points are points in the execution, they compritsics (structure related) and dynamic
(execution related) properties. Two kinds of paigéccan be distinguished: (i) pointcut that
select join points by specifying their static prdms, i.e., properties of their join point
shadows, and (ii) pointcuts that refer to dynamuniime) properties, i.e., properties of an
specific join point shadow execution.

A pointcut is often a member of aspect modules.

6.3.2.5 Advice

An advice is an artifact that augments or constsatoncerns at join points, (Klaas van den
Berg 2005) or IOW an advice is the actual behaviowrxecute before, after or around a join
point (Filman).

An advice is very much like a method. It definelsshof parameters and contains a block of
statements that are executed when the advice iskémv However, in several AOP
approaches advices don't have a name and alsdunp values. An advice is often a member
of aspect modules.

6.3.3 Core Concepts

Aspect-oriented composition is generally achievgdcbmbining two model elements. The
resulting model element comprises the structurelaidviour of all the elements with which
it was composed. In which way the structure or beha of a particular model element is
adapted, i.e., augmented, modified or replacedpexified by the composition. In general,
two specific model compositions can be distinguisheaerge of different module structures
and the adaptation of a module's behaviour.

6.3.3.1 Structural Composition

The structure of the resulting elements is produbgdmerging the structures of two
(equivalent) model elements. This symmetric contpmsiallows the introduction of new
members and declaration of new module relationshipsontrast to the programming level,
also relationships between model elements can bgeaas first-class entities.

6.3.3.2 Behavioral Adaptation

An aspect adapts the behaviour of a model elentemspecified join point. This asymmetric
composition is specified by a pointcut and bindsadwice to a set of join points. The pointcut
specifies at which join points the aspect modifiles existing behaviour, and the advice
defines the additional behaviour that is executetbrie, after or around the join point.
Behavioural adaptations are in general only navegabm the aspect's side.

In AOP the actual composition is called weavingjohlhcan either by static (at design time)
or dynamic (at runtime).

- 45 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

6.3.4 Aspect-oriented Modelling

Currently aspects are used on a programming lamgleagl. With the advent of model driven
development and the increasing focus on modellegeral research groups tried to move
aspects to the model level. With Aspect-Orientedd®liing (AOM) aspects are integrated in
model driven development methodologies.

6.3.4.1 Kinds of Models

Several approaches exist to AOM. The first appraoacto model a specific programming

language aspect framework like AspectJ with UML r{Hiéniesel et al. 2005). This results in

AspectJ typical artifacts and thinking. The secapgroach is to abstract aspect-oriented
development and move it to a conceptually higheelldChavez and Lucena; Clarke and
Walker). After this, the aspect model, compositoodel, advice model, execution semantics
and aspect interactions are expressed in a frankeimdependent way and modelled too
(Schauerhuber, Schwinger et al.).

6.3.4.2 Notations

Aspects can be modelled with different notationse Thost common way is to use a visual
notation. This is achieved by extending and custorgi UML with UML meta-models and
profiles (Fuentes and Sanchez). For easier togh@u@nd better user acceptance for most
people this is the preferred approach. If UML ahd UML extension mechanisms are not
flexible enough, aspects can be modelled visualih & special custom notation. Most
current approaches only use class diagrams for Afaelling (Zhang 2005) and therefore
only model structural not behavioural AOP.

6.3.4.3 Modelling Level

As mentioned, aspects are currently used on thgrgmaming language level. When pulling
them up to a model level, they can be modelled oamaputation independent model (CIM),
platform independent model (PIM) or on the platfospecific level (PSM). Each level has
different constraints on the modelling of aspectd aeeds different artefacts and probably
different visual notations. Beside structural AOBdelling (especially the CIM level) needs
behavioural AOP modelling, for example AOP annatatse cases.

6.3.4.4 Pointcut Languages

Pointcuts connect join points in the target modihwaspects. Those connections are crucial
in AOM (Stein, Hanenberg et al. 2004; Rashid, Gas al. 2006). On the programming

language level pointcuts are described with textehoample with regular expressions for

matching join points (Jackson and Clarke 2006). Mg\o a model level, pointcuts can also

be modelled visually. There do exist several viq@htcut languages, which either directly

associate join points with aspects or provide aaliguerying language for join points (Stein,

Hanenberg et al. 2004; Zhang 2005), which then ectsnthe visual query description with

aspects. Another idea for expressing join pointssiag colours for each pointcut and aspect
combination, underlying join points with colours.

6.3.4.5 Location of Aspects

Aspects and especially pointcuts can be eitherttdalcim the aspect package, which models a
domain, or in a separate package joining two inddeet domain packages. The later

- 46 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

approach enables the switching to different poinérd aspect models and allows developers
and modellers to model their domains without knalgke of aspects (Groher and Schulze).

6.3.4.6 Cross Cutting Concern Visualization

Aspect-oriented programming and modelling is alBndapsulation crosscutting concerns. A
visual modelling framework and visual language pgmgseeds to give visual feedbacks on
which join points are adapted with aspects. Otheitiis hard for the modeller to debug and
correctly model specific pointcuts.

6.3.5 Aspect-Oriented Composition in Model Driven Develoment

Enabling the use of Aspect-Oriented Modelling (AOiN A model driven setting includes the
definition of formal semantics for aspect compaositias the created (aspect) models have to
be processed by automated model transformationst IOM approaches define concepts
for decomposition, but lack a corresponding contpmsisemantics (Chitchyan, Rashid et al.
2005). The modelling of aspects and their compmsitian take place at each abstraction layer
in an MDA stack, i.e. CIM, PIM, PSM or code (Wamp&903). Many approaches that deal
with aspect model composition propose a compositwnthe level where aspects are
introduced, i.e. mostly at PIM or PSM level. Theheiques used for model composition are
sometimes called ‘model merging’ and/or ‘model wegv In our terminology,model
mergingrealises a symmetric composition of models andlt®& a composed model which
constitutes a union of all model elements fromitipait models.

It is a symmetric composition because of the faet there is no particular ‘primary’ (or
‘core’) input model, but all input models are equalso, all input models as well as the
merged model are instances of the same meta-miBldehents from different input models
that are matched based on an implicit or explic#tahing rule (e.g. by name or meta-
attributes) get merged as one element in the outmdel. Following the terminology of
AOP, we seemodel weavingas the asymmetric variant of model compositiorcabse it
defines one input model as the primary model, wheladapted by one or more aspect
models. The meta-model of the resulting model &edprimary model (typically not aspect-
aware) are the same, while the aspect model caraded on a different (typically aspect-
aware) meta-model. Model weaving also introduceantjfication, which allows for 1:n
matching of model elements and thus weaving of etgmof an aspect model into multiple
elements of the primary input model.

Conceptually, model merging and model weaving peziglizations of model transformation
and can therefore be realised through standard Inrasisformation techniques. In contrast to
model transformations as used in an MDA contextdeh@omposition generally does not
switch abstraction levels or meta-models of th@iwed models.

A completely different approach beside model trammsftion is the concept of partial views
on one common model repository. This approach usdoin most UML-Tools, where each
diagram depicts only a part of the model. In thése; no explicit composition step is
necessary, because the complete and consistent ma@ad@ays present in the repository. In
this approach, the modularization and separatiocoaterns would become an issue of the
modelling tool that would have to integrate theeswviews dynamically.

We identified 4 variables that describe propemiedifferent model composition approaches:
* ‘Where’ - Where are aspects defined and/or composed?
Possible locations are CIMs, PIMs and PSMs as agethe source code. Most AOM

-47 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

approaches fit into PIM or PSM level, because #reyextensions of the UML. AOM
languages representing concepts of a concrete Aa®nn should be considered
platform-specific, because the underlying aspestpmsition semantics is dependent
on this particular platform.

* ‘When’ - When is the composition performed?
Composition can be performed in a horizontal oedieal transformation step.
Horizontal composition means that the compositakes place at either PIM, PSM or
Code level. The composed model stays at the sasteation level and acts as a
source for the next transformation steps. A velrtoaposition takes place at the
transition from one abstraction level to the nextarete one, i.e. during a
transformation from PIM to PSM or PSM to Code. Whandel composition can be
performed directly at the level where the aspe@svadelled or can be delayed to a
later point, i.e. a more platform specific level.

* ‘What' - What gets composed?
Symmetric approaches allow the definition of moduleat are self-contained and
independent of each other. These modules constitatkels consisting of structure
and behaviour describing one concern. On the dthied, in asymmetric approaches it
is often crosscutting behaviour that needs to tegnated in one or more elements of
other models. The introduction of additional stawetto existing model elements is
also possible.

* ‘How' - How does the model composition work?
In the first place, model composition is about rhatg and integrating structures
("static" model elements) and behaviours ("dynamaotel elements). These are
typically identified by name patterns, explicitagbnships or meta-data and in the
case of behaviours based on control flow, staevents. For asymmetric model
composition, the bindings of primary model elemeataspects have to be defined.
These bindings can be part of the aspect modaltside of the models. Other
possible configuration artefacts for model compositan be constraints and
composition directives. The former can furtherniestdentification and matching of
elements from different models, the latter defiddi@onal rules for the integration of
model elements.

6.4 Quality Assurance in Model-driven Software Developrant

6.4.1 Introduction

The software industry has a reputation for prodyogxpensive, low-quality software as
software systems have reached a level of complekay puts them beyond our ability to
evolve and maintain them easily. This increases nbed for software organizations to
develop or rework existing systems with high qualit

To improve the quality of their software produatsganizations often use quality assurance
activities such as refactoring of the source camdatkle defects that reduce internal or
external quality aspects of the software. Thgsality defects(i.e., smells, anti-patterns,
flaws, bug patterns, pitfalls, etc.) can be diagwaosn the code level but also exist as threats
to the quality of earlier abstractions of the safitevsystem such as software models.

The techniques to diagnose quality defects (iedecsmells, anti-patterns, design flaws, etc.)
are based upon research from the fiekiftware refactoring(Fowler 1999; Simon,
Steinbruckner et al. 2001; van Emden and Mooner220@hvildari, Kontogiannis et al.
2003; Mantyla, Vanhanen et al. 2004; Mens and Teu2004) to diagnose and remove
quality defectssoftware inspectionfAurum, Petersson et al. 2002; Ciolkowski, Laiterger

- 48 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

et al. 2002; Wohlin, Aurum et al. 2002) to manuatlgtect and analyze ambiguities in
analysis or coding phasesurce code analysig-enton and Neil 1999; Fenton and Ohlsson
2000) to quantify code characteristics for quafitgasurement and assurance, soffware
testing(Liggesmeyer 2003) to detect functional defectsramplementation.

While some techniques for the diagnosis of qualéfects in source code are already known,
the diagnosis of quality defects based on architattinformation used in model-driven
software development (MDSD) and especially platfamaependent models (PIMs) from
early software development phases are not wellrstmzd and open to further investigation.
Furthermore, with the rise of MDSD the need forhhggality and maintainable software
models will increase. When moving to a completelgdel based software development
approach, the quality of the models from which dpgplications are generated becomes very
important.

In VIDE, quality assurance knowledge for platfomaependent models will be researched to
increase their quality and ease the development raaimhtenance of these models. This
knowledge will be used to enrich the visualizatimnthe models in order to inform the
designers and maintainers about potential threatsodel quality.

The remainder of this section describes the acadessearch base of quality assurance for
MDSD with a focus on quality defect diagnosis tisaheeded in the VIDE research project
(especially in WP4). It gives an overview about ttge concepts of quality defects and
guality defect diagnosis.

A more detailed description of the state of theaad practice for quality assurance in MDSD
will be developed in WP4.1.

6.4.2 Quality Defects and Quality Defect Diagnosis

The main concern of software quality assurance (S@@Athe efficient and effective
development of large, reliable, and high-qualitytware systems. While verification and
validation efforts in industry typically focus omrfctional aspects, using techniques such as
testing or inspection, other quality aspects ateroheglected. However, the non-functional
qguality of a software product is crucial for itsolwtion and maintenance by the same or
another software developer. Other techniques dwa product analysis and measurement
are either used to measure software systems agwbiiet their quality based on a previously
defined quality model or to predict project chaeaistics based on experiences from past
measurements. From the deficits found by intempgetihe quality characteristics (e.g.,
software metrics), further actions are derived anabstract level to improve the software
quality.

Another approach in SQA is the diagnosis of exiiiaefined defects such as anti-patterns,
design flaws, or code smells that represent syatelgpendent defects with a negative effect
on a quality such as maintainability. Individuala&orings are used to remove these defects
and improve the defective parts without changiadunctionality.

The techniques to diagnose quality defects (iraglls, antipatterns, flaws, etc.) are mainly
based upon research from the field of softwarectefang that is very active and beginning to
address formalisms, processes, methods, and toolmake refactoring more consistent,
planable, scaleable, and flexible (Mens and Tou?@@4). As Bennett and Rajlich state in
their roadmap paper, the central research prob¢ethe inability to change software easily
and quickly. Current research issues are beingeaddd by gathering more empirical
information about the nature of software mainteeandhe removal of unnecessary
complexity is sought through the preservation armhagement of knowledge for future
software maintenance and restructuring of coderiBeerand Rajlich 2000).

- 49 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

6.4.3 Quality Defect Models

Publications including description formabf quality defects are given for collections ofleo
smells (Fowler 1999) (Mantyla, Vanhanen et al. 20@®ti-patterns (Brown 1998), design
flaws (Riel 1996), design characteristics (Whitmir@97), or bug patterns (Allen 2002) as
well as reengineering patterns (Demeyer, Ducasak 2003). They all define proprietary and
different formats for the description of qualityfelets that are not compatible among each
other and neglect information about affected safwgualities. There is no comprehensive
taxonomy, ontology, or model that helps to classifild distinguish quality defects, their
symptoms, and treatments in a uniform way (i.emilar to the taxonomies in medicine or
biology).

Defect classification scheméBreimut 2001) like ODC are not designed to déscquality
defects in a formal, consistent, and complete Wéney are designed to support the defect
documentation and management and help in the regoabout the software quality, the
planning and tailoring of future quality improvenectivities (e.g., test planning), and the
initiation of preventive measures in early develeptphases.

6.4.4 Automated Quality Defect Diagnosis Techniques

Currently, several tools were being developed thatomatically support parts of the
refactoring process. Some of these tools automate réalization of refactorings (e.qg.,
“Extract Method”) — but the detection of places whéo apply the refactoring (i.e., quality
defects) is still a manual process. Several teclesgvere developed for code clone detection
(Bruntink, van et al. 2004), obsolete parametelisa@ppropriate interfaces (Tourwe and Mens
2003), and the general processing of source cadeffdiagnosis and visualization of code
smells (van Emden and Moonen 2002).

While some techniques for the diagnosis of qualéfects are already known (e.g., the “long
method” code smell or several “architectural snidallsthe Sotograph tool) techniques for
several other quality defects are currently unknoWms is especially true for quality defects
that are only diagnosable by analyzing severali@essfrom a software repository.

6.4.5 Software Quality Improvement Techniques

Software Inspectionsand especially code inspections, are concernéd the process of
manually inspecting software products in orderinal fpotential ambiguities, functional, and
non-functional problems (Brykczynski 1999). Whitetspecific evaluation of code fragments
is probably more precise than automated technidbesffort for the inspection is higher, the
completeness of an inspection regarding the whgdtem is smaller, and the number of
quality defects looked after is smaller.

Software Testingand debugging is concerned with the diagnosisedéals regarding the
functionality and reliability as defined in a sgezation or unit test case in static and dynamic
environments.

Software product metricare used in software analysis to measure the @xityl cohesion,
coupling, or other characteristics of the softwgreduct that are further analyzed and
interpreted to estimate the effort of developmeantooevaluate the quality of the software
product. Tools for software analysis in existermgaly are used to monitor dynamic or static
aspects of software systems in order to manualbntify potential problems in the
architecture or sources for negative effects omgtradity (e.g., the M-System, ZD-MIS, or the
Sotograph). The automated tool-based detectiopexdific anomalies affecting the quality in
software products is relatively rare, to non-existeMost of these tools (like Checkstyle,
FindBugs, Hammurapi, or PMD) analyze the sourceecofl software systems to find
violations against project-specific programming dglines, missing or overcomplicated

-850 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

expressions, as well as potential language-spedificctional defects or bug patterns.
Nowadays, the Sotograph can identify architectsimalls that are based on metrics regarding
size or coupling (Roock and Lippert 2004).

6.4.6 Quality Defect Handling Methods

In addition, thehandling of quality defects and removal activitieshe lifecycle of a software
product are not well treated in the literature. Egample, the ODC process consists of an
opening and closing process for the defect detedhiat uses information about the target for
further removal activities. Typically, removal agties are executed but changes, decisions,
and experiences are not documented at all — eXoemall informal comments when the
software system is checked into a software repgsito

Software annotation languagessed in source code such as JavaDoc or Doxygerbean
applied to document the functionality and structofé¢he software system at the code level.
They are tailored for the automated generation Bfi Aocuments based on a machine-
readable syntax. The handling of potential qualg#fects is not addressed such that accepted
quality defects are not presented over and ovenagal decisions are preserved. Language
extensions or mechanisms for machine-readablengtasf information about symptoms,
defects, or treatments (change history) have nen lpablished.

6.4.7 Beyond the State of the Art

Major parts of this part of VIDE contribute to tlields of refactoring, maintenance, and
guality engineering for model-driven software deyshent. The primary contributions to the
practice and theory will be:

« A catalogue of existing and the definition of nexehniques for quality defect diagnosis.
This includes techniques for the extraction, transftion, and integration of information
from VIDE-based models to enable model-based quadifect diagnosis techniques.

« A formal model of quality defects on the PIM lewbkat describes quality defects, their
structure, symptoms, affected qualities, and aasedi refactorings as well as their
interrelations and dependencies. The model willigable to classify new quality defects,
diagnose quality defects based on identified symptoand to configure an optimal
treatment (i.e., refactoring) plan.

« An extension of the VIDE platform (based on thepsd-IDE) for the analysis of software
models. It will consists of a plug-in based arcttibee that is easily extended and adaptable
to other modelling languages (with respect to VIIBguage extensions), abstraction
layers (e.g., other models in MDSD as the CIM)ye@nsioning systems.

6.5 Semantics of Programming Languages from the VIDE Hepective

6.5.1 General Remarks

Semantics determines the meaning of syntactic ngoist that is, the relationship between
syntactic constructs and elements of some univarseeanings. This usually understood as
referring to the human understanding of meaningiaridis case it can be expressed in terms
of a natural language. Such semantics we can seany popular languages, including Basic,
C, C++, Java, UML, etc., whose syntactic construts explained through more or less

-51 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

understandable phrases in our everyday expressiorisy relationships with other (also
informal) constructs. Such semantics, howeverpartheir own insufficient for a machine, as
it is too ambiguous and may contain a lot of ungget; or poorly specified or inconsistent
details. The machine uses algorithmically precemantics, which in many cases is hard to
express using natural language. Such formal seosaate expressed in formal abstract terms,
in particular, as mathematical definitions or asoas of a well-defined abstract machine.

The definition of machine-oriented semantics is apteasy because it requires the formal
definition of the mentioned universe of meaningd tre definition of mappings of the syntax
into the universe of meanings. In VIDE we have dket the point of view of application
programmers as well as compiler or interpretergiesis. The latter point of view requires
from us to be precise in specification and sersitie small machine-oriented semantic
details.

The formal actions of the machine and informal us@ading of the semantics by application
programmers must coincide. A lack of the coinciderscreferred to asemantic reeflt is a
property of the language that most frequently causggplication programmers errors due to
improper informal understanding of the formal maehbehaviour. There are well-known
examples of semantic reefs introduced in varionguages, for instance, null valuesgooup
byin SQL (Date 1986; C.J. Date 1992).

The common impression among many professionalsaisdpecification of semantics that is
done by people from commercial communities is niftigently precise. A logical flaw of
such specification is recognized ¬um per ignotumi.e. specification of new concepts
via undefined concepts (including ‘cyclic’ defimtis). To a great extent, this observation
concerns UML, MDA and action semantics/behaviow.avoid this flaw, there should be
clear assumptions which concepts are atomic (unaletiz) and how more complex concepts
are to be built from the atomic ones. There are@gghes in literature that solve this problem
of meta circularities (Baar 2003).

The open question concerns if, and to what extbetVIDE language is to be supported by

formal semantics. The discussion below preseniswsmaspects of semantics, pros and cons
concerning particular semantic description methaa$ conclusion concerning some related

issues.

6.5.2 What the Description of Semantics is for?

Obviously, users of a language should understaademantics of language constructs to be
aware how to use them in programs and to predet tiesults. Description of semantics is
also necessary for developers and implementeitsedihguage. In general, the description of
semantics can pursuit the following goals:

1. Establishing a precise communication channel antbaglesigners and between the
designers and implementors of the language.

2. Explaining the meaning and consequences of lan¢giageastructs for its users (i.e.
programmers, students, etc.). Semantics should sieoag and clear element of the
didactic methods concerning the language.

3. Establishing a system of notions that allows oneetson on possible drawbacks,
extensions, improvements and new inventions ofahguage.

4. Formal reasoning on the properties of the langsaggests various pragmatic goals:
no contradictions, no redundancy, the introductainnew functionalities, query
optimization, strong typing, etc.

-52.-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

5.

Reasoning on properties and qualities of progrdmas dre manufactured through the
language.

Standardization: precise, possibly formal spedifica of semantics is a must.
Otherwise standards will be half-standards (asukaty observed), which are more
or less compatible concerning concepts and leartivg language, but totally
incompatible concerning implementation on differglatforms.

Portability and interoperability: the language magrk on different platforms and

may access foreign resources. High-level abstractastics is necessary as a
common, platform independent denominator that aldoev predict the behaviour of

the language constructs on foreign machines owsaodt platforms.

At this stage of the VIDE development, the firsbtgoals of the semantic description are the
most important and directly stem from the VIDE'stiad description. First, we should find
some method of internal communication among VID&eqmt partners concerning semantics
of particular VIDE constructs that we intend to eiep. Second, and most importantly, at the
end of the project we should prepare a comprehemsanual which presents all aspects of
the VIDE use, in particular, its semantics.

6.5.3

1.

2
3.
4. Future designers who would like to improve, charge extend the language

5.

Who is the Addressee of the Semantics?
Designers of the language, for internal communicatiuring the design.
Implementers and testers of the language compilirterpreter.
Future programmers that will use the language;esttedthat will learn the language.

functionality (compiler, interpreter), to developnse interoperability facilities,
including external data, services, libraries, etc.

Various research and development staff, includitagdardization bodies, academic
researchers, and so on.

As before, for the VIDE language, the most impdr&e the designers and implementers of
the language, as well as future programmers thétuse the language. This supports
requirement REQ — NonFunc/Semantics 4:

REQ — NonFunc/Semantics 4 Clear and unambiguous notation | SHOULD

VIDE should have clear, comprehensible and unanduigisemantic description suited|to
the users of the VIDE tools

Description: The VIDE environment should use notatihat has clear, comprehensible and

unambiguous semantics suited for the user workinghea CIM, PIM or PSM level,

Therefore, VIDE must offer model views to the ud&at do not confound the concerns
one level with another (for example, CIM businesscpss description with a PS

of
M

sequence model).

-B53 -

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

REQ — Semantics 1 | Semantics of VIDE Internal Communicatio]; SHOULD
Moreover a precise description of the semanticsnéeded sufficient for interna
communication purposes within implementation stak#drs in the development of the
VIDE tool.

This Requirement extends REQ — NonFunc/Semantics 4

6.5.4 Semantics of Various Features of a Language and it$ Environment

Looking at the various functionalities and featunés programming language/environment it
is hard to expect that all of them could be desdiby the same semantic method. Data
structures, procedural abstractions, types, clasgesy languages, concurrency, exceptions,
transactions, etc. may require different approacbhesemantic specification. Below we list
particular features of programming languages as@trivironment that could be relevant for
VIDE and present some remarks concerning semaascrightion.

» Data structures. Any programming language, including VIDE, mustasly and precisely
determine data structures that have to be servethdyanguage constructs. A precise
view on data structures is a prerequisite for tBscdption of semantic of any retrieval
and manipulation capabilities that act on thesactires. This also concerns object-
oriented data models. The term ‘object’ can be tstded in myriads of ways, especially
concerning how objects, relationships between d¢hjeobject hierarchy, object
encapsulation have to be represented as machungwsts. The specification of VIDE
data structures should make clear the attitude j@ctoriented models with static
(multiple-) inheritance, with dynamic inheritancedyfamic object roles), with
encapsulation, with kinds of collections, with sestructured data (XML), with methods
of representing UML associations as data structetes A frequent mistake concerning
the semantic model of data structures is that geophsider only retrieval, forgetting or
neglecting updating, creating, deleting, and otiprations on state (which are inevitable
for any data structures). On the PIM level, datacstires have to be represented in a
platform independent way, i.e. without referringatty data storage media. Since VIDE is
mainly focussing on UML, data structures are gibgra UML class diagram.

» Persistence of data structuresThe semantic properties and specifications avsety
related to the VIDE attitude to persistence andh® assumed application architecture
(Atkinson and Buneman 1987). The typical solutisrihat persistent data is on a shared
(database) server, while application logic is alient. There are a lot of other solutions,
in particular, where majority of application (busss) logic is on a server. Another
dimension for semantic considerations concernsqtiestion if persistent data/objects
have the same semantic properties as volatile @ties is known as orthogonal
persistence (Atkinson and Morrison 1995). While hsumification makes semantic
description much easier, it is not popular in comuia solutions. Persistent data is
usually relational and served by SQL, while voatlata is determined by types of some
popular (object-oriented) programming language. hSacsolution inevitably leads to
impedance mismatch concerning many syntactic, seenand pragmatic features of a
language. Concerning the PIM level of the VIDE laage, the issue of orthogonal
persistence seems to be hard, but the decision brigaken soon, because it may
influence the entire project. On the other hant ibsue should not influence too much

-54 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

the design of the PIM level which is by definitiglatform independent, and thus
independent of concrete persistence techniques.

» Expressions and queriesExpressions, such as 2+2, x.sal, A[n+1], sin€x},, occur in
many programming languages. Expressions usuallgisoaf literals, references to data
structures (e.g. variable names), function named huilt-in operators. Semantic
description of expressions depends on the intratide¢a structures, allowed literal types
and the operators. For instance, complex objentsys collections, pointer links require
special syntax of expressions, which (in case dftatk expressions) presents some
problem with the semantic description. Expressiofms particular) follow the
correspondence principlevhich requires that once some data structuresnén@duced,
there must be complete capabilities of expressititnserve any operation on the
structures. In typical programming languages exgoes usually do not return bulk
output. Such a feature is assigned to query laregid@ueries are generalized expressions,
but the open question is if VIDE should unify botbncepts. Semantics of query
languages, especially for object-oriented languaigenot a trivial problem and follows
various theories, schools and approaches. Promagpgaches to defining semantics of
guery languages more formally include the stacletagpproach (K.Subieta, Kambayashi
et al. 1995; Subieta, Beeri et al. 1995; K.Subif@4; K.Subieta 2006), with which the
PJIIT VIDE team is the most familiar and the mogberienced with, or the definition of
the OMG’s OCL via set-theoretic operations (Richt2002.; Object Management Group
2003) or meta-modelling techniques (Baar 2003).

* Imperative program control statements Essentially, the MDA action semantics
(behaviour) and action language deal precisely whik issue. In the development of
VIDE there are the following functional and semansisues: (1) expressing as much as
possible the behaviour through declarative statésn@a reduce physical programming
overhead, to conceptualize programs, and to makm tfadically shorter); (2) rising the
level of programming granularity through introdugimacroscopic statements (acting on
collections rather than on individual entities).tBa@aspects lead to nesting queries within
imperative and control statements. Consequencethéfanguage semantics which are
triggered by this requirement must be investigated.

* Procedural abstractions and parameter passingAs any programming language, VIDE
should implemenproceduresandfunctions with no limitations concerning nested calls
and with no limitations concerning recursion. Objegented counterparts of procedural
abstractions are known asethods The essential difference of methods concernst a bi
different name binding policy and encapsulationocedural abstractions are usually
implemented together with the possibility to deelawn local data, which follows the
same type system as the entire language. The semahprocedural abstractions is well-
understood and can be easily expressed in terrapavhtions on a stack-based machine.
Procedural abstractions are usually parameterizdtere are several well-known
parameter passing methods, such ca#l-by-value strict-call-by-value and call-by-
reference with operational semantics that is also well-usti®d. Actual arguments
replacing formal parameters are determined by espas. If all of these or further
passing methods are needed remains to be investigat

* Types and strong static type checkingA type system and a strong (compile time and —
where possible — edition time) type checking ardd¢oan important feature of VIDE.
Types are usually determined by classes/interfat@scorresponding UML schema, but
this could be not enough for typing local (cliefdey data or objects. Types are intended
as constraints on the construction and behaviowangf program entities (in particular,

-55 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

modules, objects, values, links, procedures, etand constraints on the
guery/programming context in which these entitiesx de used. Types are usually
considered second-class citizens. Semantics ofstypeconsidered a hard problem
(Cardelli and Wegner 1985), especially in caseadh dtructures involving object-oriented
notions, collections and some irregularities (egrdinality constraints). Roles of the
typing system are the following (Stencel 2006): pdeitime type checking of
expressions/queries, imperative constructs, praesgduunctions, methods, views and
modules; user-friendly, context dependent reportingype errors; resolving ambiguities
with automatic type coercions, ellipses, derefegsnditerals and binding irregular data
structures; shifting type checks to run-time, iisiimpossible to do them during compile
time; restoring a type checking process after @ &wor, to discover more than one type
error in one run; preparing information for quemtimization by properly decorating a
qguery syntax tree. (M.Lentner, Stencel et al. 208&ncel 2006) report on this issue
concerning object-oriented and semi-structured diat@onments.

» Classes, interfaces, encapsulation, schemas and aatodels In the database
community, there are several views on these coaaegt (Zdonik and Maier 1990; Cattel
1994; Cattel and Ed 2000; Melton, Simon et al. 20@hile in the object-oriented
software-engineering and formal methods communities view is quite settled (see
Section 6.5.6). From the point of view of databasesattempt to clarify these concepts
must be made by assigning pragmatic roles to th€rasses are source code units
(second-class citizens) that contain implementa#dter compilation they may disappear
from the code, or may became special kind of objestployed by the stack-based
machine. Interfaces are external specificationsacfess to objects; they contain no
implementation. Types are determined by interfates, types can also exist without
interfaces. Encapsulation means a special poliogeming scoping, binding and typing,
well-known from the object-oriented literature. Solas are external (application
programmer oriented) specifications of a databasdeat and are inevitable pragmatic
part of a query/programming languages. A meta-maldtom the database perspective,
an internal representation of a schema,; it is imatky used by the database management
system and externally for generic programming wiflection. The above concepts
present a definitional knot (especially due to mthece, dynamic roles, late binding,
polymorphism, collections, etc.), having source eodhcarnation and internal
representation. The functionality and semanticsheise notions is not obvious, thus
should be carefully designed and specified.

* Exceptions and exception handling, events and evedtiven programming.
Exceptions and events are important abstractiolesvialg to decompose the program
control into main and exceptional parts or to degose the program according to the
event-driven programming paradigm. There are séW@national (thus semantic) models
concerning exceptions and events, for instanceCIORBA model (Object Management
Group 2002). Probably, the best strategy for VIBEoi adopt one of them (e.g. the model
of Java), together with all the syntactic and semamnsequences.

» Database abstractions The most known database abstractions are vidadhbase
(updateable) views, materialized views and triggérem the point of view of semantics,
the most challenging (but the most useful) areusirtviews for object-oriented models
(Kozankiewicz, Leszczylowski et al. 2003). An opquestion concerns if the VIDE
project should involve such advanced notions. Harelack of them will much decrease
the scope of applications of the VIDE language. H®IT VIDE team has proper
knowledge and implementation experience concemirtgal updateable object-oriented
views.

-56 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

» Concurrency, parallelism and transaction processingThe functionality and semantics
of concurrent (parallel) processes/threads impleéetenn different languages is well
understood and presented in many sources. Congebnisiness processes that are to be
built on top of VIDE applications, the feature seemo be important. The problem
concerns special syntax for parallel processesesapproach to re-entrant procedures that
are required by such processes, synchronizatipamaiilel processes, and issues related to
execution of parallel processes on different maehifprotocols). The traditional database
approach to parallel processes is known as transaptrocessing in the client-server
architecture. This feature also requires specialtasy and has many semantic and
implementation peculiarities.

» Aspect-oriented decomposition{G.Kiczales, Lamping et al. 1997). It is a key teatfor
creating a truly user—friendly application devela@mn environment that could be
acceptable for business-oriented programmers. Mdiffycult features of business
applications, such as user logins, security, pyivéi@nsactions, administration, etc. can
be implemented as aspects that allow to separatk specialise the application
development among many different types of programlmm#/eaving aspects with the
main code requires some new functionalities (eognes ontology on top of the source
program structure) and clear semantic descriptidheoweaving processes.

* Business process abstractiong his kind of abstractions requires expressindiegions

in terms of workflows, tasks, resource definitimxsumption, business rules (perhaps

declarative), monitoring population of executedgasses, and so on. Semantics of these
abstractions requires to build a meta-model ofreefiand executed business processes,
together with resources such as workflow partidipaprocessed documents and access to
external services. Next, it requires some actioguage, perhaps with nested declarative

gueries. Defining such functionality on the PIMdéwmay present a challenge, especially

if VIDE is to be compatible with some business sses standards.

» Access to external resourcesBecause VIDE is to be a generic and open language
(although devoted to particular applications), ¢hehould be a clear methodology and
functionality of how to connect VIDE to particulexternal resources (including resources
being under the control of a particular operatiggtesm). At this stage we can consider
several candidates, including CORBA, Web Servicesl aedicated wrappers (to
relational databases, to XML, etc.). This featuwrquires some predefined programming
utilities, which semantics should be clearly spedif VIDE could also follow the service-
oriented architecture (SOA) that is postulatechem®MG standardization activity.

The above list of features and semantic descrippavblems can be redundant and/or
incomplete, thus will be verified during the furtrstages of the VIDE project.

6.5.5 Alternatives for Specifying Language Semantics

There are quite a number of approaches used ineatadand practice to describe the
semantics of languages. Here we list these appesadh the next section we match them to
the needs of VIDE and conclude requirements fomthg semantics is defined for the VIDE

language.

6.5.5.1 Semantics through Precise Natural Language Descrijgins

A very pragmatic approach to language semantity idefining each language construct in
natural language. A popular example for this apghnoia the Java Language Specification
(JLS)(Gosling, Joy et al. 2000), which preciselgades the meaning of the Java language.

-57 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Investigations (Stark, Schmid et al. 2001) havewshthat there were initially surprisingly
few flaws in that document, considering the sizetlo# document, which have in the
meantime been corrected. This example shows tlcahitot be excluded that there are flaws
in the document nor that the document is compleitese natural language is not formal
enough to be understood by formal reasoning systelmever it presents by far the most
comprehensible approach and is most suited to (sergrammers) of the language.

Everything which can be expressed with some formadiel can, more or less precisely, be
described by natural language. Important intermialctures such as stacks, object stores,
meta-models, strong typing rules, event registets,, which are necessary to specify
precisely the implications of particular languagmstructs, can all be explained in terms of
natural language as the JLS demonstrates. The ch@eglgsion is just a matter of discipline.

6.5.5.2 Semantics through Pragmatics

Pragmatics of a language determines its functianteraction between humans or between a
human and a machine. Pragmatics describes howettheslanguage in practical situations,
what are the reasons for the use and what goalbeachieved. Pragmatics requires learning
how to match expressions of the language to comcesl-life situations, what will be the
response from the machine and how we have to meterfhe response. Any computer
language should be pragmatically efficient, i.ee fanguage must have the potential to
accomplish some important practical goals.

Pragmatics cannot be formalized. It can be expdessehe natural language by general
explanations of syntax and semantics, showing sosge cases, examples, patterns, anti-
patterns, best practices, wrong practices, etcogjof user textbooks and documentations
of languages are devoted to their pragmatics. Hewethe only way to teach and learn
pragmatics is to use the language for concretdipshsituations.

Pragmatics is the most important aspect of anyuagg. Syntax and semantics are important,
but only if serve the pragmatic goals of the largguuaActually, the description of pragmatics
is an inevitable method for specification of sennfor future users of the language. Thus,
the basic form of explaining semantics should BARE programmer manual, where all the
VIDE functionalities will be explained in the na&litanguage and supported by examples and
use cases.

6.5.5.3 Semantics through Implementation

Implementation fully determines semantics. In gaittr, one can assume that the universe of
the meanings is the set of all the sequences ttistns of the Java virtual machine (JVM).
The definition of semantics means that all the legg expressions are mapped into the set of
sequences of instructions of JVM. Such definitibrs@mantics assumes that the meaning of
JVM instructions is non-definable or definable loyre other—simpler—means.

In this way the definition of the semantics is diayethe designers of a compiler or interpreter
of the language. This method of semantic definjtlmwever, has disadvantages:

e It must be supported by some informal definition sgmantics for application
programmers, who rarely understands actions ofléva virtual machine or another
assembler-like language.

« Some pragmatic goals of the semantic specificapijgsented in 6.5.2 cannot be
achieved. In particular such a semantic descriptias no meaning in understanding

- 58 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

some basic principles that govern the languagelldigs reasoning on the language
features (e.g. redundancy, consistency, optimigagatensions, etc.) and promotes ad
hoc solutions that could be immature, limited, medant and inconsistent.

* The semantic specification is dependent on a phatferoviding that JVM (however
hardware and operating system independent) istiptatoo.

Hence, although implementation will ultimately detene the semantics, the VIDE language
must be supported by more abstract, platform-indeget semantic specification.

6.5.5.4 Semantics through Abstract Implementation

Abstract implementation is a kind of the operatiocse@mantics where we have to determine
precisely, on the abstract level, all the datacstmes that participate in query/program

processing. Subsequently the semantics of allahguage’s constructs are defined in terms
of some abstract machine acting on these structiree essential feature of abstract
implementation is that it does not refer to anyior of computer platforms, but can be

mapped on a 1:1 basis (in a non-optimized versitn)a concrete implementation using any
programming language, e.g. Java or C++. Abstrapiamentation shows all the semantic

details that are necessary for implementation dimvs for deep reasoning concerning

various features, including optimizations, non-medlancy, completeness, strong typing, etc.
Abstract implementation uses some simple mathealatancepts (sets, functions, relations,
tuples, etc.) but does not assume the mathematietiiod: it appeals to human imagination
rather than strives to produce some theorems antafgroofs. An example of the successful
application of this method is SQL, where almostoglerations (joins, selections, projections,
group by) are explained by simple transformatiohabstract tables (modelled sometimes as
mathematical relations). Concerning database glagryuages, the abstract implementation
method does not need to refer to any mathematieadries such as relational algebras or
calculi — all semantic properties can be preciseplained on introduced abstract data
structures.

The Stack-Based Approach (SBA) to object-orientath dhtensive environments exemplifies
this approach (Subieta, Beeri et al. 1995; Subi€tanbayashi et al. 1995; Subieta 2004;
Subieta 2006). Because it deals with full prograngrenvironment, abstract implementation
of a corresponding query/programming language isentmmplex and introduces more
notions than e.g. relational algebra. In the basision, to specify run-time operations, it
introduces three basic abstract data structuréstbavell-known in the specification of PLs:

* Object store;
* Environment stack (thus the stack-based approach);

* Query/expression result stack.

These structures are fundamental for precise séndascription of everything that may
happen in database query/programming languageparicular, classical query operators,
such as selection, projection, join and quantifieemn be generally and precisely specified
using the above three abstract structures, witheference to the classical database theories
such as the relational/object algebras. Moreoveese structures are also sufficient for
explaining the semantics of procedures, functionsl anethods, including nested and
recursive calls, local environment, side effectd a&arious parameter passing methods. The
same structures are sufficient to define such datbbstractions as virtual views.

Types and strong type checking can also be exmtéisserms of abstract implementation. To
this end, the following abstract data structuresracessary (Stencel 2006):

-59 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

» Metamodel (a compile time counterpart of objectestoit is a compiled version of a
data schema;

» Static environment stack (a compile time countdrprthe environment stack); it
stores signatures of run time entities for paréicgdrogramming environments (e.g. a
user session, a database, a currently compileceguoe, a currently analyzed object,
etc.);

» Static query/expression result stack (a compile taounterpart of the result stack); it
stores type signatures of results that are cugramihlyzed;

» Decision tables storing type inference rules.

Other functionalities presented in Section 6.5.4 memuire other abstract data structures and
other abstract machines to process them. For exangpbcessing of exceptions/events
requires an abstract event register, aspect odedézomposition may require structures
storing the ontology of the application environmestc.

The method is very successful for understandingthef semantics by developers of

guery/programming languages. It can be sensitiveantodetail of a data model that we want
to consider and to any operation that we would tixentroduce. The method is also very

efficient for query optimization, strong typingasoning on new language’s properties, etc. It
was successfully applied as a didactic methodXpdaén the behaviour of particular semantic

mechanisms; as well as allowing for fast and pamlenplementations) and as semantic
specification in many projects.

6.5.5.5 Semantics through Mathematical Description

The success of a particular formal semantic sptiin method is not measured by the fact
that somebody has specified formally the langulgeby the fact that this specification was

efficient: it has achieved pragmatic goals (preseémh Section 6.5.2) that cannot be achieved
otherwise.

There are many approaches to true formal, thatathematically based, semantics; these
approaches belong to three major classes (Gung®; F&ynolds 1998).

» Denotational semantics, whereby each phrase ilatiygiage is translated into a
denotationi.e. a phrase in some other language; more gigcene is defining a
function from each programming language exprestiavalue. For real-world
languages, this approach turned out not to scale-up

» Operational semantics, whereby the execution ofahguage is described directly by
describing effects on some notion of state (ratien by translation);

» Axiomatic semantics, whereby one gives meaningngliage constructs by
describing thdogical axiomsthat apply to them; that is, the axioms refingylzage
constructs iteratively into simpler, and eventuallgmic ones.

Research on formal semantics of programming langgidtas made a lot of progress in recent
years and has achieved those goals in Section\6tbich are suited to be tackled with formal
language semantics. To give just a few examples floe area on research on the Java
programming language (which has received a lotttehtion because of its wide-spread use
in industry, as well as its relative clean defiori):

* There are a number of other approaches for fornakfining and extending the Java
type system, such as in work by (Muller and Podi#deffter 2000) and many more

- 60 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

on alias control systems. These approaches coopepy 3 of the success criteria
outlined in Section 6.5.2.

o (Stark, Schmid et al. 2001) define the Java semsriirmally using abstract state
machines (ASMs), a widely acknowledged formal dipeation method (Bérger and
Stark 2003). They prove formally th&any well-formed and well-typed Java
program, when correctly compiled, passes the wrdind is executed on the JVM. It
executes without violating any run-time checks, andorrect with respect to the
expected behaviour as defined by the Java machinb€ technique thus satisfies
property 4 of success as outlined Section 6.5.2.

* (Ahrendt, Baar et al. 2005) specify an axiomatimaseticsJava Dynamic Logiof
Java/JavaCard. With it and an automated theorerepimplemented around it, Java
programs can be efficiently formally verified asndenstrated at non-trivial case
studies. This technique thus satisfies property the success criteria as outlined in
Section 6.5.2.

These formal approaches have obtained a lot oftaitealso from big players in software
industry. To mention just an example, Microsoft masoduced AsmL/SpecExplorer (Barnett,
Leino et al. 2005; Campbell, Grieskamp et al. 2088yevich, Rossman et al. 2005), an
executable specification language to describe bethawhich has a semantics founded on
abstract state machines.

6.5.6 On the Semantics of the VIDE Language

The VIDE language manipulates instances of UML slasagrams. More precisely, it
transfers one instance of a UML class diagram, adferred to here as a snapshot, into
another snapshot. Instances of class diagramsnagmshots - are logically nothing else than a
typed first-order structure, where each class ipped to a type, each association is mapped
to a relation, each attribute is mapped to a uhargtion (Kim and Carrington 1999; Schmitt
2001; Roe, Broda et al. 2003). A side-effect frapression of VIDE is equivalent to an
expression in a typed first-order logic. It is mptieeted in that structure according to traditional
first-order logic.

Structures derived from UML class diagrams are igp@tthe sense that they rely heavily on
the abstract data types set, bag, and sequensgehdiwever, standard to have these data types
included in first-order logic. Basically, interpieg expressions on class diagrams thus
reduces to basic set theory. OCL expressions angagnt to first-order terms and formulas
with abstract data types Set, Bag, and Sequence.

An action language adds to such a side-effectlfreguage transitions from one structure to
another, or equivalently from one snapshot to theero First-order structures are thus
identified with states. Put differently, the intextations of the predicates and functions may
change though the transition from one state to dtieer. More precisely, only some
distinguished functions and predicates may chamigegretation, the so called non-rigid ones,
while others, the rigid ones, like mathematical rap@'s, have fixed interpretations in all
states. This is the fundamental idea of Kripke citmes. This basic idea underpins all
established precise modelling notations.

In its most pure form this idea is manifested istedct state machines (ASMs)(Boérger and
Stark 2003), which introduce explicit means to nfypdstructures. ASMs are widely
acknowledged as an instrument for precise formadisaof behaviour. If it turns out that
VIDE needs formal semantics, ASMs could be a goaddilate; because of their good
understandability, yet formality, ASMs are increagy being adopted by industry (see
above).

-61 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

6.5.7 Concluding Requirements on Language Semantics fohé VIDE Language

The central goal of VIDE (on the level of modellitghguages) is to develop a concrete
syntax of an action language suitable to a certear group. Since defining a formal
semantics is not a central part of the project,dmwe aim at any formal reasoning on the
language or the language artefacts, we follow @mpedic approach: We try to define the
semantics using natural language (much like inJti®) as precisely as possible. As soon as it
turns out that this is insufficient for any reaseve make use of another well-established
method. Which one this is, will be chosen basedhenevaluation above as well as on the
needs which arise in that situation. This is matéd in the following two requirements:

REQ — Semantics 2 | Simple VIDE semantics | SHOULD

Keep it simple! As a consequence of Requirement RERonFunc/Semantics 4 (VIDE
users are the main target of VIDE language sensuéscription), after a first analysis
seems sufficient that the semantics of VIDE is dbed in natural language

If it turns out that language constructs must béndd more formally because we want|to
apply formal reasoning of any kind in the coursale¥eloping the VIDE tool, one should
choose a formal method which is well established state-of-the-artis described above.
The method must prove to be as expressible andstaddable as abstract state machines.

t

-62 -
© Copyright by VIDE Consortium

7 Standards and Languages

7.1 Introduction

7.1.1 Standards within VIDE

The standards relevant to the project can be assigrwo the following categories:

1. Core modelling standards assumed as a foundation dhe VIDE language and
platform. The VIDE language is expected to be based oretstandards. As such, the
suitability and completeness of the standards wé$pect to VIDE features will be
carefully investigated. Research performed dutmggproject may result in the proposal of
extensions or improvements for those specificatiofisus, a high level of external
compliance with established standards assumed & M@ strong priority.

2. Related standards that may inspire the solutions o¥/IDE language and tool Other
modelling standards, dealing with domains not cedeby VIDE, or representing an
approach different from the chosen standard bas®y mspire solutions of VIDE
language.

3. Standards to be applied in VIDE because of tool ietroperability needs or because of
the productivity offered by their infrastructure. The motivation for following
particular standards in VIDE software developmelatfprm may be twofold. On one
hand, software development tools complementary t®EV may require particular
standardized API and / or data exchange formatsth@rother hand, tool development
may benefit from existing standard-based toolsfeardeworks.

4. Platform standards to be supported by model compils. The precise set of those
standards will be determined by the scope of exbteitplatform mappings chosen to be
realised during the project. Apart from this strafgrward requirement, analysis of those
standardized platforms may allow further conclusioagarding software features that
should be abstractly represented on the PIM level.

7.1.2 Technical Requirements

The VIDE project will rely heavily on modelling tesology, which is under constant
development and set industrially recognised statsd&turther, there exist implementations of
these standards, which can be used by the prayextelling tools are normally being built
upon a modelling infrastructure. This infrastruetyrovides the substrate, containing basic
services like persistency, transactions and commartte services provided by the modelling
infrastructure are not necessarily limited to bascvices, but can also contain services like
model transformations and frameworks for graphmcatielling.

This chapter provides a survey of requirementsttie/IDE project posses on the modelling
infrastructure. These requirements are not neabsdawund to, or solved by, a single
standard. Nevertheless, it is not VIDE project gmabuild a modelling infrastructure from
the ground up. Therefore, existing standards shbaldsed where possible, providing these
do not endanger the overall project goal. Utiliaatof common standards provides manifold
benefits for the project. First, the adoption amkemination of project's results is easier, if
the compatibility to common standards is presengetond, the project itself can benefit
from usage of common industrial tools by adheringcommon standards. By following
standards (at least for the first argument) it doesnecessarily mean adherence to formal

Project supported by the European Commission withirSixth Framework Programme
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

compliance. The compatibility can be preserved &§gge of standard's concept in the large,
while deviating from it in the details.

Technical requirements are addressed in this chapt&ection 7.3. There we provide an
overview of features required by the VIDE projestregard to basic modelling infrastructure.
Furthermore, this section provides an overviewhef éxisting modelling standards. Section
7.4 provides the requirements of the project onehtrdnsformation standards and describes
the state of the art model transformation techrsqusection 7.5, describes the need for a
graphical modelling framework and concludes witle thverview of Eclipse foundation’s
GMF framework.

7.1.3 Requirements of Modelling Technique on CIM-Level

The models on CIM level can be used as requirenazfiaition. They serve as interface to
the users of software which should be developedréfbre the domain user has to understand
the CIM models. This means he must at least betablalidate them. According to this, the
modelling technique to be developed within the VIpgject has to take the business view of
domain users into account.

As VIDE follows the MDA approach, at least some tbé CIM level models must be
transformable into PIM level. Additionally, someMPlevel models must be transferable back
into CIM level models. This is necessary as chamgesode level should be propagated back
to the levels above, which is required for the ansiof the project to enable software
development on code and model level.

For testing and validation purposes, it should deudhented how the developed software will
be used in a business process, because this leelgvdal requirements for the software
development and makes it easier for the domain asdrthe developers to validate the
software.

As one of the major ideas of VIDE is rapid applicatdevelopment (RAD), that includes
many feedback cycles with potential users. Thiseiptlly reduces costs of development
failures because later changes to the softwargui@se more expensive. This has to be taken
into account in the development of the VIDE proaeduodel for software development.

7.1.4 Enterprise Frameworks and Architectures

This section gives an overview of three commonlgdusodelling frameworks. Modelling
frameworks usually consists of several perspectigesl can be used in a software
development process on different levels, from thel eisers view right up to the
implementation level. This division of the modelladefacts in different perspectives and the
different languages (which are used for each pets@@ gives an idea of what subjects have
to be considered in the development of the VIDEjlege, especially on CIM level.

We define a framework as a fundamental structurelwhllows the definition of the main
sets of concepts that support the modelling ane@ldpment of an enterprise. The dominant
enterprise modelling frameworks and architectureg are being pursued by industry and
interest organisations are:

1. The Zachman Framework
2. ARIS (Architecture of Integrated Information Syss&m
3. The CIMOSA Framework

-64 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

The Zachman Framework has been used by the Can&ba&ernment to design their
enterprise architecture approach, and as a refereategorisation structure for enterprise
knowledge repositories.

ARIS (Architecture of Integrated Information Sys®mhas strong, top-down process
modelling and integration capabilities, but lackpressiveness for other aspects and the big
picture created by a holistic approach.

The CIMOSA Framework is a good reference framewdnlt lacks expressiveness for
multiple dependencies between types of view, falang concepts, contents and capabilities
and for capturing context.

Common to all of these is that they are descriptimeneworks, defining enterprise domains
and their views and contents.

7.1.4.1 The Zachman Framework for Enterprise Architecture

The Framework (Zachman 1987; Sowa and Zachman 1893) applies to enterprises is
simply a logical structure for classifying and angang the descriptive representations of an
enterprise that are significant to the managemdnthe enterprise as well as to the
development of the enterprise’s systems. Moreoveoffers the basic structure for the
organisation, access, integration, interpretatiagevelopment and change of the
representations of objects within an enterprise.

ENTERPRISE ARCHITECTURE: ZIFA| Ik
A FRAMEWORK "

WHAT HOw

BSCOPE List of Things Important fo the List m e
Bus forms

{contextual} b {contextual}

ssssss = Clssof e = MajorBusness People = Major el g Mo
Planner ot o Un ou S Plannen

BUSINESS MODEL &g i L it & £ " - an BUSINESS MODEL
{conceptual} > 1 X {conceptual}

Entity = Business Eniy
Relatio

o = Busi oS it
- usiness | Wor n Owner

SYSTEM MODEL g, ogicl Data Mol eg, Humn Interfce e, Procesing Srucure % SYSTEM MODEL

{logical} BEE - a &2 {logical}
m ‘- n
g s

Entity = Data Entty ‘np o People = Role n
Designer Relationship = Data Relationship 110 — g L Wolkgl)ellvemhle (vde on(esslng(y:le [l ion Designer

TECHNOLOGY MODEL e, Physical Data Model eg, System Design g, Tedmology Ardiecure g, Presenation Achitecue &g, Control Structure e n TECHNOLOGY MODEL
{physical} - {physical}

L] /

Entity = Segment/Table/efc. Node = Hew/Sstem Softre] n
Builder Relationship = Pointer/Key/efc. Link = Line Speciications jor e e n Builder

DETAILED REPRESENTATIONS . 51 Definition eg, Program e, Network Architecure e, Securty Achitecure eg, ition e, Rle Specication DETAILED REPRESENTATIONS
{out-of-context} {out-of-context}

rocess atement Node = Address People = Identity T "
Subcontractor el ress / loc Link = Protocol Work = Job el lachine Cycle leans = Step Subcontractor

FUNCTIONING ENTERPRISE B e.g.: FUNCTION e.g.: NETWORK ©.9.: ORGANIZATION e.g.: SCHEDULE e.g.: STRATEGY FUNCTIONING ENTERPRISE

A N\ N N\ AV AV o o A zachman
THE ZACHMAN FRAMEWORK FOR ENTERPRISE ARCHITECTURE

Figure 4: The Zachman Framework (http://www.zifa.can/framework.pdf)

The figure above shows that the framework is degigas a matrix. On the horizontal axis six
different views are presented. To each of this si@v'W”-question is assigned. The views
are:

Data (What)

Function (How)

Network (Where)

People (Who)

PwbdPE

- 65 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

5. Time (When)

6. Motivation (Why)
The vertical axis is defined by five different lageand the organizational roles of the people
working on that layer. The layers are

1. Scope

2. Business Model

3. System Model

4. Technology Model

5. Detailed Representations
The roles that are assigned to these five layers f6cope to Detailed Representations are
Planer, Owner, Designer, Builder and Subcontrackar.by both axes 30 different model
types are distinguished.
In general the Zachman Framework is domain indepeindt has less the character of a
procedure model than more the character of anum&nt for project management, that
ensures all important aspects of an enterprisecavered. The framework doesn’t provide
specific languages for the representations. Thexets not very much formalized, which
decreases the ability of IT support.

7.1.4.2 ARIS (Architecture of Integrated Information Systems)

ARIS has been developed by Scheer at the Univeo$ityaarbruecken (Scheer 1999). The
conceptual design of the Architecture of integratgdrmation Systems (ARIS) is based on
an integration concept which is derived from a s$tadi analysis of business processes. The
first step in creating the architecture calls foe tdevelopment of a model for business
processes which contains all basic features focri®sg business processes. The result is a
highly complex model which is divided into individu views in order to reduce its
complexity. The enterprise modelling approach oflI&dRScheer 1999) divides enterprise
models into five individual views as shown in Fg.

» Data View

* Function View

* Organisational View

* Output View

« Control View

While the data, functional, organisational and autpiew represent an isolated aspect the
control view integrates these four other views. Thatrol view represents the steps of a
business process and the control flow between themth includes sequences, forks and
joins.

The integration of the other views is done by aatiog objects of the other views to parts of
the control flow. For example an entity type frohe tdata view and an organisational unit
from the organisational view can be related toracfion in the control view, to express that
this function is carried out by the organisationalt assigned and accessing the data object
represented by the entity type. The most commogulage which is used in the control view
of ARIS is the Event Driven Process Chain (EPC)ictvis regarded in section 7.2.3.1.

- 66 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0
equirements
definition

Design specification

Work Package 1 — Deliverable D1.1
Date 08.01.2007

_ >

—

Implementation

I

Organisational view

Requirements
definition

Requirements
definition

Requirements
definition

Design specification

Design specification

Design specification

Implementation

Implementation

Implementation

Data view

Control view

Function view

Requirements definition

Design specification

Implementation

Output view

Figure 5: View concept of ARIS

Due to this division, the contents of the individuigws can be described by special methods
which are suitable for this view without havinggay attention to the numerous relationships
and interrelationships with the other views. Aftards, the relationships between the views
are incorporated and combined to form an overadllysms of process chains without any
redundancies. A second approach that also redbeesotnplexity is the analysis of different
descriptive levels:

e Requirements definition
« Design specification
e Implementation

Following the concept of a lifecycle model the wvas description methods for information
systems are differentiated according to their proti to information technology. This
ensures a consistent description from business geament-related problems all the way
down to their technical implementation. Thus, tHeI8 architecture forms the framework for
the development and optimisation of integratedrmfation systems as well as a description
of their implementation. In this context, stressihg subject-related descriptive levels results
in the ARIS concept being used as a model for icrgaanalysing, and evaluating business
management related process chains.

The ARIS concept was designed at the applicatidapendent meta level (the different levels
are: instance level, type level, meta level andafietvel) and is based on a process-oriented
approach. Due to the fact that terms permissiblthiatlevel are also valid for underlying
application types and instances, the ARIS conceputomatically applied to underlying
modelling levels as well.

-67 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.1.43 CIMOSA

CIMOSA (Computer Integrated Manufacturing open 8ystArchitecture) was developed as
an architecture for describing CIM systems by sav&U projects within the ESPRIT
framework. It aims at offering an architecture ameéthods for creating common CIM
modules which can be plugged together to form a, messtomer-oriented application system.
The framework is based on the so-called CIMOSA ¢cshewed in the figure below.

> INSTANTIATION ™
| J
Generic Partial Particular

Organization/ Organizatio|
_ View/ View
Resource Resource

/ _ View __ View / View
Information / Information / Information |
/ _ View __ View/ View I |
F Function Function Function /
N View View View | g4
Generic ! m
Requi " Requirements Partial Particular (3 |
equirements quirer i Requirementfp Requirements l <
Definition Definition finii finit >l
Modeling Level Building Definition Definition 4
Models Model @)
Blocks | I| = 4
Generic)) VRl
Design Design Part_lal Partlc_ular |
Specification | Specification| _ P€SI9N. Design | |
Modeling Level Building Specification| Specification
Blocks Models Model \
Generic Partial Particul |
Implementation Implementaticr? artial articuiar
o - mplementatignmplementatio
Description Description D ot D it
Modeling Level Building escription escripiion
Models Model
Blocks
\ /7 \ /
\/ N/
Reference Particular
Architecture Architecture

Figure 6: The CIMOSA cube (Vernadat 1996)

The three axes of the cube describe the three diomen of CIMOSA, the “Stepwise
Derivation”, the “Stepwise Instantiation” and “Stépe Generation”. The vertical direction
derivation defines three conceptual layers begmmniith the requirements definition level
over the design specification modelling level t@ thoint of implementation description
modelling level. The horizontal arrow instantiatishows the refinement of fundamental
requirements of a system to industry branch speoifies and ends with company specific
concerns. The third dimension “Stepwise generatifndgments the perception of an
information system into different views. There &var views that compose this dimension,
the “Function View”, the “Information View”, the “@source View” and the “Organisation
View”. They are used to describe different modellaspects like activities, events, processes,
data definitions, production related resourcesagdnizational structures.

The CIMOSA architecture was designed the offer esystic ways to include reference
models into the description of information systarpgo software generation processes.

- 68 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.2 Modelling Standards

7.21 UML?2

REQ -Lang 1 Usage of UML2 Behaviour (“Actiof SHOULD
Semantics”)
VIDE should use the behavioural model elements MLP (earlier known as “UML Action
Semantics”), unless proven insufficient.

Description:

As decided by partners and as consequence of REEQg-4.

7.2.1.1 Introduction

The current version of UML (UML 2.0) brought a siijrant reorganisation of the
specification. The document has been divided into tcomplementary specifications: UML
2.0 Infrastructure (Object Management Group 200%) BIML 2.0 Superstructure (Object
Management Group 2004). The former groups the foneddal notions of the language (most
of them considered abstract) that are intendednm fa universal common base not only for
different parts of UML or their specialisations,ttalso for meta-models of different object-
oriented modelling languages. This allowed the neahof redundancy and alignment among
the modelling languages already specified by OMGthgt time: UML, CWM (Common
Warehouse Meta-model) and MOF (Meta Object Fatilitg¥hen the development of a
completely new language is considered, the advantafgthe application of the core
constructs is twofold. First, they may be suitaleleadopt unchanged as a core of the meta-
model of such a language, and second, a similasfssinstructs are available as a means of
the meta-model definition. Further discussion @ tsue is placed in the section devoted to
MOF.
Such architecture promotes extensibility, reusghbilcustomizability and evolvability and
makes it easier do develop standard compliant toatsthe same time however, the
compliance criteria may become fine-grained, ag thay refer to particular parts and levels
of the specification. For example, one of thoséeda distinguishes the following levels of
compliance:

o abstract syntax compliance,

0 concrete syntax compliance,

0 abstract syntax with concrete syntax compliance,

0 abstract syntax with concrete syntax and diagraerchange compliance.
Another characteristic of the new version is a mgbdularity of its specification. To achieve
it, the pre-existing notion of package was exteng@ll a new kind of relationship — namely
package merge. Previously, reuse of common core-metlel constructs was possible
through stereotyping or by subclassing. When ugiagkage merge, the merging package
may define classes of the same name as the ckxgséag in the package being merged. The
result is a merging package with classes, whoseifgg@ion combines base and newly
created features in an analogous way as in casahbaiassing. Different merges of a given
package do not affect its contents, thus thereoignterference among packages created as
separate merges. This style of meta-model defirgtis accompanied with extensive use of
derived features — especially through subsettirmuamions among association ends across the
inheritance hierarchy. This offers a significameixibility and simplifies particular views of the
language (shallower meta-class hierarchies). Howévalso makes it more difficult to grasp
a whole meta-model. Now, apart from knowing a narha given UML meta-class we are
interested in, it is necessary to choose amongraeversions of its definition created by
package merges.

- 069 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

From the MDA point of view, it is important to notlee improvements in the means of profile
definition. This should be helpful especially foaseéer specification of platform-specific
model (PSM) profiles.

7.2.1.2 UML for Behavioural Specifications

One of the key areas of the analysis of the UMInd#ad is behaviour specification. Since
UML 1.4, the high level behavioural constructs €litate machines, interactions, use cases)
are accompanied with ‘action semantics’ allowingafic and precise computational steps.
Actions which significantly contribute to the overall rmanhodel size deal with atomic tasks
including the following manipulations:

0 behaviour invocations,

0 parameter passing,

0 object creation / deletion,

o link manipulation creation / deletion (includingpgort for links instantiating n-ary or

gualified associations or association classes),

0 reading extent and object reclassification,

o0 Vvariable manipulation.
Writing objects into durable storage is also exficepresented. The actions are elementary
in terms of UML elements processed — thus theirpderity may vary (e.g. an assignment of
primitive value vs. link object creation).
To pass data between actions, a notion of (inpuiubput) pin was introduced. A pin is a
typed element that may be assigned a value.
Actions can be included within activities, whiclopide e.g. control structures (conditionals,
loops) and data flows. Activities in turn are geliged intoBehaviorthat can be attached to
various higher level UML behavioural constructs. particular, it can serve as an
implementation of aéBehavioral Featureowned by aClassifier (which covers e.g. class-
defined object operations).

In the following, we give a brief overview of tharcently standardised UML notions capable

of handling executable modelling of business appibims, with the focus on those of them

that cover the core notions known from popular progning languages. Its purpose is to

provide a starting point for the definition of tendardised base of the VIDE project, which

is intended to:

e guarantee a proper level of abstraction for expmgsdata manipulations and mapping
them onto the implementation platform, and

* provide a common representation, which would restaedardized solutions at the model
compiler side and allow for developing various (gempatible) syntactical solutions for
the platform independent model.

7.21.2.1 Actions as a Part of UML Behaviour Model

The UML 2 notions serving for behaviour modellinge aorganized basically into the
following four units, each defining the elementwuuriding one of the main behaviour
modelling UML diagrams:

o Actions

0 Interactions

o StateMachines

0 UseCases
The constructs reusable among those models arpeptonto the package CommonBehavior.
To support modelling of the details of behaviourpther package Actions was added, whose
contents is directly related to the notions of Ao#ivities package.

-70 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Action nodes, control nodes and object nodes ard {8 activity specification.

The specification (Object Management Group 2004Is oaction the fundamental unit of
behaviour and states thé&ctions are contained in behaviours, which provitieir context.”
Actions include operation calls, signal sends,dib®haviour invocations. It also states:

“A primitive action either carries out a computatiaor accesses object memory, but never
both.

A surface action language would encompass both ifiven actions and the control
mechanisms provided by behaviours. In additionudiase language may map higher-level
constructs to the actions.

However, in the execution of actions the lower iplidity bound is ignored and no error or
undefined semantics is implied. (Otherwise it ipassible to use actions to pass through the
intermediate configurations necessary to constretfect configurations that satisfy
multiplicity constraints.)”

Due to their central role, we present a completedi UML 2 actions, grouping them into
several groups based on their purpose.

7.2.1.2.2 Action Hierarchy Overview

The classes described in the Actions chapter oUté Superstructure are enumerated here
to show their generalization hierarchy and growgrthaccording to their purpose (the indents
and arrows depict the generalization-specializatationship among Action classes).

Invocation actions:
InvocationAction
< (CallAction
< CallBehaviorAction,
< CallOperationAction),
< SendSignalAction,
< BroadcastSignalAction,
< SendObjectAction)
StartClassifierBehaviorAction

Object actions:
CreateObjectAction, DestroyObjectAction, Testldmtction, ReadSelfAction

Structural feature actions:
StructuralFeatureAction
< ReadStructuralFeatureAction,
< (WriteStructuralFeatureAction
< AddStructuralFeatureAction,
< RemoveStructuralFeatureAction,
< ClearStructuralFeatureAction)

Link actions:
LinkAction
< ReadLinkAction,
< (WriteLinkAction
< (CreateLink
< CreateLinkObject),
< DestroyLink),

-71 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

ClearAssociation

Value processing actions:
ValueSpecificationAction
ReduceAction

EventActions:
AcceptEventAction

< AcceptCallAction
ReplyAction
UnmarshallAction
RaiseException

Classifier-related actions:
ReadExtentAction
ReclassifyObjectAction
ReadIsClassifiedObjectAction

Variable actions:
VariableAction
< ReadVariable,
< (WriteVariable
< AddVariableValue,
< RemoveVariableValue),
< ClearVariable

7.2.1.2.3 Common Elements of the Actions Unit

Below short descriptions of the Action meta-clasbased on the UML Superstructure
specification are provided. Where it is needed karifg a given action’s purpose, the
description mentions the attributes or associatspeified for that action meta-class.

721231 Action

The execution of an action represents some tramstiwn or processing in the modelled
system, be it a computer system or otherwise.

7.2.1.2.3.2 Pin

A pin is a typed element and multiplicity elemett provides values to actions and accept
result values from them.

7.2.1.2.3.3 InputPin

An action cannot start execution if an input pirs fiewer values than the lower multiplicity.
The upper multiplicity determines how many values eonsumed by a single execution of
the action.

7.21.2.3.4 ActionlnputPin

An action input pin is a kind of pin that execuésaction to determine the values to input to
another. It indicates the action used to providaes Cf. InputPin.

ActionlnputPin is introduced to pass values betwaetions in expressions without using
flows.

-72 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.2.1.2.3.5 OutputPin
Holds output values produced by an action.

7.2.1.2.3.6 ValuePin

It provides a value by evaluating a value spedifice ValuePin specifies the value using
ValueSpecification metaobject.
It is introduced to provide the most basic way @fiding inputs to actions.

7.2.1.2.3.7 ValueSpecificationAction
It evaluates value specification.

7.2.1.2.3.8 OpaqueAction

This class serves for representing an action witpléementation-specific semantics (the
classes of similar nature are also OpaqueExpressiofOpaqueBehavior).
The body of opaque action and the language usiéia specified as two string attributes.

7.2.1.2.3.9 ReduceAction

The behaviour is invoked repeatedly on pairs amelets in the input collection. Each time it
is invoked, it produces one output that is put backn intermediate version of the collection.
This repeats until the collection is reduced tangls value, which is the output of the action.
The ordering of that processing can be enforcel thi¢ attribute isOrdered.

7.21.2.4 Invocation actions

721241 InvocationAction

(abstract) InvocationAction covers various actiongking behaviour. It specifies arguments
to be used in the invocation.

7.2.1.2.4.2 BroadcastSignalAction
It broadcasts asynchronous message (using a Sibjeait).

7.2.1.2.4.3 CallAction

(abstract) CallAction covers actions that invokédgour and receive return values. It can be
declared as synchronous — by default, or asyncluriiso specifies the call result.

7.2.1.2.4.4 CallBehavior

It specializes CallAction. Represents a call actlwat invokes behaviour directly rather than
invoking a behavioural feature (e.g. Operation},tiraturn, results in the invocation of that
behaviour.

7.2.1.2.4.5 CallOperationAction

It specializes CallAction. Represents an action ttensmits an operation call request to the
target object, where it may cause the invocatioassbciated behaviour.

7.2.1.2.4.6 RaiseExceptionAction
It causes an exception to occur. The input valueimes the exception object.

7.2.1.2.4.7 SendObjectAction

With this action, a request object is being seghelsronously to the specified recipient.

-73 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.2.1.2.4.8 SendSignalAction

Signal is being sent asynchronously to the spetreipient.

Creates a signal instance from its inputs, andsiréis it to the target object, where it may
cause the firing of a state machine transitiorherexecution of an activity.

It requires specification of the type of the sigimatonstruct and of the target object.

7.2.1.2.49 StartClassifierBehavior

Specifies an explicit initiation of the classifieehaviour. The behaviour object is provided as
input.

7.2.1.2.5 Object actions

7.2.1.25.1 CreateObjectAction

Performs just a creation of a new object of a gielassifier.

In particular, no behaviours are executed, noahgixpressions are evaluated, and no state
machine transitions are triggered. The new objeat ho structural feature values and
participates in no links.

7.2.1.25.2 DestroyObjectAction

It denotes object destruction. Optionally can iatkcthe destruction of object links and
owned objects (by default — false).

7.2.1.25.3 TestldentityAction
Compares two objects and returns the result of thentity comparison.

7.2.1.2.6 Structural feature actions

7.2.1.26.1 StructuralFeatureAction

(abstract) StructuralFeatureAction provides detaisnmon for various manipulations of
object structural features. It specifies the obgxd its feature to be manipulated.

7.2.1.26.2 ReadStructuralFeatureAction
It retrieves the value of a structural feature.

7.2.1.2.6.3 WriteStructuralFeatureAction

(abstract) WriteStructuralFeatureAction modifiesteuctural feature by applying the value
provided. It specifies the value to be added oronesd.

7.2.1.2.6.4 AddStructuralFeatureAction
Adds (and potentially replaces) feature value givan object.

7.2.1.26.5 ClearStructuralFeatureAction
Removes all values of a structural feature.

7.2.1.2.6.6 RemoveStructuralFeatureValueAction

It removes a value of a structural feature. To dath the value to be removed specifies
removeAt and isRemoveDuplicates attributes.

-74 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.2.1.2.7 Link actions

7.2.1.2.7.1 LinkAction
(abstract) It represents a link manipulation.

7.2.1.2.7.2 ReadLinkAction

It returns linked objects at the end not specibgdhe inputs (for this purpose the information
as specified in the LinkAction is provided).

7.2.1.2.7.3 ReadLinkObjectEndAction
Given a link object and link end, retrieves theeabjat that end.

7.21.2.7.4 ReadLinkObjectEndQualifierAction
Retrieves qualifier value at the given end of theeg link object.

7.21.2.7.5 WriteLinkAction
(abstract) Creates or destroys links.

7.2.1.2.7.6 CreateLinkAction

CreateLinkAction creates a link or a link objedtsprovides no return data. Supports also
ordered associations. The objects of LinkEndCre&tada are used as the input.

7.21.2.7.7 CreateLinkObjectAction
Specialization used for instances of associatiagss.

7.21.2.7.8 DestroyLinkAction
Destroys links or link objecs. The objects of LimdbestructionData are used as the input.

7.2.1.2.79 ClearAssociationAction

Destroys all links of an association in which atigatar object participates.
ClearAssociationAction is introduced to remove lalks from an association in which an
object participates in a single action, with noemtediate states where only some of the
existing links are present.

7.2.1.2.7.10 LinkEndData

It identifies one end of a link to be read or verittoy the children of LinkAction.

The purpose of this element is described in theiBpation in the following way:

“A link cannot be passed as a runtime value toront an action. Instead, a link is identified
by its end objects and qualifier values, if anyisTiequires more than one piece of data,
namely, the statically-specified end in the useda@hathe object on the end, and the qualifier
values for that end, if any. These pieces are bnowggether around LinkEndData. Each
association end is identified separately with astamce of the LinkEndData class.”

As can be seen, this approach to link identificat®oa consequence of the decisions made for
the UML data model: the lack of a link’'s own idéptand the support for n-ary associations
and links.

LinkEndData specifies the end Property and theablbge the given end.

7.2.1.2.7.11 LinkEndCreationData
As inherited, plus isReplaceAll, insertAt providetlink placement details.

-75 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.2.1.2.7.12 LinkEndDestructionData
As inherited, plus isDestroyDuplicates, destroyAivide the link destruction details.

7.2.1.2.7.13 QualifiervValue
QualifiedValue is used to specify actions on liokgualified associations.

7.2.1.2.8 Accept event actions

7.2.1.2.8.1 AcceptEventAction

It waits for the occurrence of an event meetinggigel condition.
It serves for handling asynchronous messages @ueet, change event, signal event).

7.2.1.2.8.2 AcceptCallAction

It Denotes the receipt of a synchronous call refques

In addition to the normal operation parameters,atigon produces an output that is needed
later to supply the information to the ReplyActiprecessary to return control to the caller).
This action is for synchronous calls. If it is ugechandle an asynchronous call, execution of
the subsequent reply action will complete immedlyatgth no effects.

The return information value is opaque and may belyised by ReplyAction.

7.2.1.2.8.3 ReplyAction

ReplyAction specifies: returninformation, replyValureplyToCall (the latter is the instance
of Trigger class).

The execution of a reply action completes the etx@cuf a call that was initiated by a
previous AcceptCallAction. The two are connectedhmsy returninformation value, which is
produced by the AcceptCallAction and consumed bByRbplyAction.

7.2.1.28.4 UnmarshallAction

It breaks an object of a known type into outputsheaf which is equal to a value from a
structural feature of the object. It has been ohiced to read all the structural features of an
object at once.

7.2.1.29 Classifier Actions

721291 ReadExtentAction

It retrieves the current existing instances ofassifier.

In the description of this element again we findimportant remark on the store model of
UML objects.

“It is not generally practical to require that reagj the extent produce all the instances of the
classifier that exist in the entire universe. Ratlag execution engine typically manages only
a limited subset of the total set of instances y alassifier and may manage multiple
distributed extents for any one classifier. It & formally specified which managed extent is
actually read by a ReadExtentAction.”

7.2.1.29.2 ReadIsClassifiedObjectAction

It determines whether a runtime object is classibig a given classifier.
(Also specifies whether the classification is direc

-76 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.2.1.2.9.3 ReadSelfAction
It retrieves the host object of an action.

7.2.1.29.4 ReclassifyObjectAction

For the object indicated in the instance of thifoa¢ one or more of its classifiers are
changed.

7.2.1.2.10 Variable actions

7.2.1.2.10.1 VariableAction

(abstract) VariableAction generalizes actions daeghvith statically specified variables. It
specifies the variable to be accessed.

7.2.1.2.10.2 ReadVariableAction
It retrieves variable value.

7.2.1.2.10.3 WriteVariableAction
It modifies variable by applying the value provided

7.2.1.2.10.4 RemoveVariableValueAction

It removes one variable value. Specifies the wayrémoval should be performed: removeAt
and isRemoveDuplicates determine the detailed tedfieibis action.

7.2.1.2.10.5 ClearVariableAction
ClearVariableAction is a variable action that rem®wall values of a variable.

7.2.1.2.10.6 AddVariableValueAction

It supports multi-valued and optionally orderediabies.

“AddVariableValueAction is introduced to add varlalvalues. isReplaceAll is introduced to
replace and add in a single action, with no intedia¢e states of the variable where only
some of the existing values are present.”

7.2.1.3 Common behaviours

The package defines common and generalized elemsets in various behaviour models.
Several characteristic elements of that unit thay fme important for VIDE are enumerated
here.

7.2.1.3.1 OpaqueBehavior

Its semantics is determined by implementation. @pBghavior may be specified in one or
more languages as indicated by its attributes:

* body — String attribute specifying the behaviouone or more languages.

* language — String attribute specifying the larggsathe body (in the same order as the body
strings).

7.2.1.3.2 FunctionBehavior

(specializes OpagueBehavior) It represents an apduplnaviour that does not access or
modify any objects or other external data. The ijgation says: “Specific primitive
functions are not defined in the UML, but would d&fined in domain-specific extensions.
Typical primitive functions would include arithmgtBoolean, and string functions.”

-77 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.2.1.3.3 OpaqueExpression

Expression defined by Behavior, which is requi@deturn exactly one result (single value or
single set of values).

7.2.1.3.4 Trigger

A trigger specifies an event that may cause thewdian of an associated behaviour.

It may also specify one or more ports (Port is iyeadded meta-class of UML 2) for an event
which implies that the event triggers the executdran associated behaviour only if the
event was received via one of the specified ports.

7.2.1.4 UML Activities vs. Data-oriented Applications

Together with the Actions unit, the Activities form foundation for executable model

behaviour specification.

This package needs thus to be investigated in dadessess if the current shape of UML

Behavior (with its direct support focused around tore notions of a typical programming

language) allows pure UML models using it to contglieand adequately specify database-

based applications on the platform independent.leve

The activity modelling elements were designed (gadtitioned into appropriate sub-

packages) to support two main styles of behavipacidication:

» flow-based (useful e.g. for process modelling), iehéhe sequence of activities and
actions is restricted by data flow dependenciegs ftiechanism of execution can be
characterized as push style)

» structured (useful for software modelling), typiéat traditional programming languages,
including loops, control flows, variable access aratlitional conditional instructions
(allowing for rather pull-style specification).

While the latter seems to be the most straightfaivwa be used by VIDE, the flow-based

style also remains useful, e.g. due to its impadaior business process modelling area and

because of its looser approach to action sequencing

Moreover, UML allows for combining those solutiansa single model.

7.2.1.5 Core Notions of the Activity model

Apart from the main behaviour units: Actions andtites, the following notions were
introduced to describe the behaviour logic and Hatalling.

ObjectNodecontains value at runtime. It realises object flavan activity.
Object Node represents an instance of particukssdier available at a particular point in
activity.
The following kinds of object nodes occur:
Pin, Activity Parameter, Central Buffer, Data Store

Although it is not defined as a specialization MiiltiplicityElement, it assumes storing
multiple instances and specifies their allowed nemhb another way (with anpperBound
attribute). It also allows to specify a selectiom ardering logic for instances outgoing to be
consumed by subsequent activities. The selectibaveur cannot have side effects.

The instances/values stored in@bjectNodeare called tokens.

Dealing with many tokens oDbjectNodein the same activity is distinguished from the
situation where the tokens appear in the conteatdifferent execution of a given activity.
The selection behaviour can be overridden by tHecsen behaviour specified for an
outgoing edge (b®bjectFlow.

-78 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Pin — input / output node for an action (provides ealand accepts results).
It specifies type and multiplicity of values to pecessed by actions.

ActivityParameterNode- input /output node for activities. It containB@ameterinstance.

Parametes (as defined in the Kernel package) are extende@amplete Activities with
streaming, exceptions and parameter sets.

Variable serves for passing data between actions indirectly
It is local to a structured activity group.

CentralBufferNodeis described as an object not tied (in contrasttheer object nodes) to
action (likePin is) or activity (likeActivityParameterNodes) but passing data flows between
them and supports flows from multiple sources asstidations. It serves as a buffer for
multiple in-flows and out-flows.

CentralBufferNode give additional support for queuing and compmtitbetween flowing
objects.

DataStoreNodeis a specialization ofCentralBufferNodewhich keeps incoming tokens
persistently (that is, tokens moving downstreamcapged rather than removed).

Data kept inDataStoreNodas persistent and used when needed in contragate from a
regularCentralBufferNodeavhich is volatile and used when available.

This seems to be the only place where UML spediGoaexplicitly refers to persistent
storage. However, the specification of the Dataode notion reveals that only some of its
properties are common with the analogous notiomftike database technology area and that
this is thus not suitable as the base of databasegement modelling.

DataStoreNode specializes CentralBufferNode, wichurn specialize©bjectNode This
means that DataStoreNode is just a constituenbjeicoflow and as such owned by particular
instance of activity execution (and therefore lastly within its lifetime).

Thus, as commented in (Bock 2004ML data store nodes are still active and trandien
however, and do not completely capture pull semariti

Moreover, a number of further platform neutral s seem necessary to describe an
application dealing with a persistent data sourtbe related issues that need to be
investigated in the context of such a model includkgta identification, access privileges,
transactional constraints, expressing higher Ida& manipulation statements and other.

The relations among the key meta-classes relatddtiae Activities elements discussed here
can be summarized in the following simplified digr.

-79 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Behavior

+incoming

ActivityEdge ZT
ObjectFlow ControlFlow Activity
* +outgoing
‘ +target
+source
TypedElement ActivityNode| * ’ +activity
MultiplicityElement ObjectNode ControlNode ExecutableNode
él{ \ |
Variable Pin CentralBufferNode ActivityParameterNode Action StructuredActivityNode

i

DataStoreNode

Figure 7 Simplified Meta-classes related with UML Ativities

Selection and transformation behaviours can beegph edges coming out of data

store nodes to retrieve information from the sta®if a query were being performed. The
ObjectFlow element from CompleteActivities is désed in the specification as follows
(Object Management Group 2004):

“If a transformation behaviour is specified, theach token offered to the edge is passed to
the behaviour, and the output of the behaviourivem to the target node for consideration
instead of the token that was input to the trameftion behaviour. Because the behaviour is
used while offering tokens to the target node,ayrbe run many times on the same token
before the token is accepted by the target nodes Mieans the behaviour cannot have side
effects. It may not modify objects, but it mayelommple, navigate from one object to another,
get an attribute value from an object, or replacéata value with another. Transformation
behaviours with an output parameter with multigiicgreater than 1 may replace one token
with many.”

7.2.1.6 Structured Activity Model

There are kinds of activity nodes callsttuctured activity nodeswith specializations for
sequencing, conditionals, loops, and expansiomnsgior operating on collections.

That part of the UML Activity model seems espegiatlevant for UML compliant, platform-
independent database application specificationss. i§tbecause, in contrast to activity models
based on flows, it closely follows the style ofitygd programming languages.

7.2.1.6.1.1 StructuredActivityNode

- 80 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

This is a kind of ExecutableNode. It representsractired portion of the activity that is not
shared with any other structured node, exceptdsting.

7.2.1.6.1.2 ExpansionRegion

This is a kind of StructuredActivityNode. Executeslltiple times corresponding to elements
of an input collection. It may be described as fafar aforeach collection processing
instruction known from several programming langusadgecause of its collection processing
capability, ExpansionRegion may be frequently ajgtile do describing data processing.

7.2.1.6.1.3 LoopNode

A kind of StructuredActivityNode. Covers the furartality of iterative instructions likéor,
while anddo..while It allows to define the use of variables durihg toop setup and iteration.
It may return output as a whole and this way sewe part of data flow-based behaviour
specification.

7.2.1.6.1.4 ControlFlow

It represents an activity edge enforcing the segugnof activities without resorting to data
flow dependency.

7.2.1.6.1.5 ConditionalNode

This denotes a multiple-choice decision elemenerves as a structured counterpart of the
flow-based DecisionNode.

This class is very universal, however, for the mgjoof applications, seems to be overly
complex. It refers to a condition and a result, ther connected via output pin to the
condition. Constructing a concrete syntax for astautct which supports a result which is not
equivalent to the evaluation of the condition isremely difficult and of no use for a VIDE
user. VIDE should thus use a different meta-modetivassumes that the result upon which
the branching is decided is always equal to thduatian of the condition. However this
simplified meta-model can always be covered by UL meta-model, such that there is
always a transformation into the UML meta-model.

7.2.1.7 Conclusions on the UML Actions and Activities

Expressing the VIDE code in terms of standardisdl&lements (including the details of
behaviour model) is of significant importance fae tinteroperability among tools and for
opening the way for applying VIDE for various asiseaf UML models (e.g. wherever the
standardized UML behaviour elements apply). Whares&ing the suitability of the current
UML specification as a base of the VIDE languag& main concerns need to be resolved:
» Selection of the UML subset to be covered by thBE/language.

» Suitability of existing notions from the data insenapplications point of view.

The former issue raises the questions on the daggport of some complex UML notions:
e.g. whether the non-binary associations, assonialiasses or qualified associations should
be covered with VIDE. Another problem is the absentthe standardized set of operators
and functions (e.g. mathematical) in the UML.

The latter issue reveals the need for seamlesgraiien into the UML Activities of the

higher level operators known from query languagdtile the OCL (Object Constraint
Language) (Object Management Group 2003) could tmpgsed for this purpose, this
application of the OCL is currently not adequatalpported in the UML meta-model. More
detailed discussion of this topic is included irct® 7.6.1.

-81-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007

REQ — Lang 2 Simplified UML meta-model MAY

If it turns out that

« the UML meta-model is unnecessarily complex in & wet it blocks the creation of
sensible concrete syntax (see remarks on CondiNoda),

* not all of the UML meta-model can be covered

* elements are missing which are located in anoteeded language (like OCL)

it may be changed. A model transformation fromrtiaified meta-model to the unmodifie
one must always be possible. This weakens REQ g #an

a

xd

7.2.1.8 Requirements for UML-based Action Language

7.2.1.8.1 The Concrete Syntax(es) of the VIDE Language

The main focus of VIDE is to design concrete syatagwo or more), both graphical and
textual (and possible mixtures), which are weltexiito the specific user groups which are

addressed by VIDE. Designing the VIDE language wedcessitates a careful collection
requirements on the language.

of

REQ — Lang 3 | User Language & Concepts | SHOULD

The VIDE language and VIDE tools presented to ageuser groups SHOULD employ t
language that is understood by the user group.

Description:

The requirement refers to the generic requirem&® R NonFunc 6 but focuses on spec
languages that are known to the user groups. Fampbe the use of business language
user group Business Analyst. As a further examibdey models are well understood |
these users; concepts known from these modelsdheupresented to the users in a sim

fic
for
Dy
ilar

way.

REQ — Lang 4 | Compliance with Standards | SHOULD

The VIDE language should be compliant with existingdelling standards.

Description: VIDE should not compete with existirapgopted modelling standarg
especially those adopted by the OMG, such as UMBRKN. The use of UML (REQ -
User 2) is a particular instance thereof.

S,

REQ — Lang 5 | Deviation from Standards | MAY

Deviating from REQ — Lang 4 and according to REQser 1, VIDE may deviate in par
from existing standards, if a standard-conformaay v provided as well and if there &

ts
\re

good reasons with respect to the overall user remuants.

-82-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Description: Domain specific languages can make éfsier for users which want [to
continue to model using their own business languaigeonjunction with REQ — Lang 5,
this requirement allows to replace standard-condmtmparts with special non-standard
domain specific languages which seem more appteptia ensure suitability for the
respective VIDE user groups.

REQ - Lang 6 Modularisation and extensibility SHOULD
The VIDE language should be modular and extensible.

Description:
It should be possible to replace parts of the lagguwith different artefacts and agdd
additional language constructs for special busirgsscific patterns. This requires the
language to be structured in modules.

Finally it is important to consider user needslesaaly described in REQ — User 1:

REQ — User 1 Flexibility and interoperability of VIDE SHOULD
language and tools

The VIDE language and tools SHOULD be flexible améroperable with existing tools

Description:

Industrial development projects utilize differembgramming languages, frameworks and
development tools. Usually users have a complexeomsystem at work. It is unrealistic to
make VIDE replace existing tools. VIDE should tramoothly integrate with other tools,
I.e., read data produced by other tools and prod&da readable by other tools.

The VIDE language and tools SHOULD be flexible enaperable and integrated in the
programming languages, frameworks and developnis tcurrently used in industrial
development projects.

7.2.1.8.2 Gap Analysis: Where the OMG modelling landscape nels VIDE

The declared purpose of VIDE, as described in teguiRRements (REQ — Lang 4), is to
comply with existing standards, especially in tbatext of OMG’s modelling standards. This
entails that the VIDE language on the PIM levet{ien language’) should not aim to replace
or modify existing OMG standards.

The following table reveals where the gaps of exgsstandardised concrete syntaxes are.

Visual Notation Textual Notation

Structural / Type Definition UML Structure Diagrams N/A
(Vocabulary of Business
Rules)

Control Flow BPMN Gap: Potential for
UML Activity Diagrams VIDE

State Changes / Data Flow Gap: Potential for VIDE Gap: Potential for
VIDE

Side-effect free Expressions | Gap: Potential for VIDE OCL

-83-
© Copyright by VIDE Consortium

Work Package 1 — Deliverable D1.1
Date 08.01.2007

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

| / Queries | | |
This analysis has direct consequences for the nedithe VIDE language on PIM level. To
name just a few:

1. Representation of if-then-else. This control floenstruct is already present in UML
activity diagrams or BPMN and represented by a fm#te with outgoing arrows to
the different branches. VIDE should (as requiredRBQ — Lang #follow this
notation for compliance and for not confusing useigch are used to these tried and
true notations for quite a long time.

2. Representation of state changes. Though thereagm®d graphical standard here,
one could borrow notations from instance diagramisch depict snapshots of the
running modelled system.

3. OCL is a good candidate for the subset of the Vi&tguage dealing with side-effect
free expressions.

7.2.1.8.3 Language Architecture

Pragmatically (see REQ — Lang 5), compliance todsieds is not necessarily always the best
way to g§: Users might be happier with a dedicated domagrifip language which suits
their needs better than a general, though proélalahguage as UML. Fortunately, VIDE’s
modelling infrastructure is highly adaptable byeoiihg two means of adaptation:

1. Changes to the mapping between graphical/textaeal@hts and the abstract syntax;
this allows for slight changes, such as to denotitional nodes by nested boxes
instead of by boxes with connecting arrows.

2. Changes to the meta-model (“abstract syntax”) eansformations from an instance
of the old meta-model to an instance of the modibee; this allows for heavy-weight
changes such as replacing the OCL part of the MdDBuage with a different
language for expressing logical conditions.

Replacing parts of the VIDE language with new onesld be leveraged by modularising the
VIDE language according to a scheme similar tafolewing:

VIDE Y
Languag ["~~.<cmerge>>

. ™ v Tl -

- ' S < -

<<merge>>"" H “xg<merge>> “~~./Types

\
N

<<merge>> <<merge>> N

I AN N

. ' \ ~

e [A ~

-] AN ~

Logical State Control .
. Declarations
Expression Change Flow
‘\‘\ ,
BN <<import>>

p
.
SOsel - ,/<<import>>
R .
.

® on the M2 level. Compliance to the agreed standardvi3 level is of course always
mandatory.

-84 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

A possible realisation of the LogicalExpressionkaae would be OCL, another one could
represent Java Boolean expressions. Exchanging thvesrealisations could be supported by
the VIDE tool, dealing with the exception that thder expression language cannot cover all
the details of the other.

7.2.1.84 Bottom-up Analysis of Necessary Language Constructs

Here we describe typical pattern that can be faorahd are typical for business applications
on the implementation / business object level. Eaattern is classified, described and an
example for an implementation of the pattern i®giv

Note: The section focuses on behavioural pattern sgefafi business applications. Generic
behavioural pattern (i.e. loops, cases...) are nedugadot explicitly listed here.

7.21.84.1 Requirement — “Initialize from constant” Pattern 7
Priority: High
Class: Initialization
Initialize an attribute from the constant. A cheisk performed if an attribute has been
initialized before. If that is the case (the atitibis not in its initial state) the attribute rensga
as is, if not the attribute is set to a constarltevaor a list of constants (i.e. Consistent,
Inconsistent).
Sample code:
ABAP:

IF me_status IS INITIAL .

me_status = ‘open’.

ENDIF.
JAVA:

if (this.status == null)

this.status = Status.OPEN;

7.2.1.8.4.2 Requirement — Initialize from customizing Pattern
Priority: High
Class: Initialization
Initialize an attribute using customisation. A ckas performed if an attribute has been
initialized before. If that is the case (the atitibis not in its initial state) the attribute rensa
as is, if not the attribute is set to a value tisatiependent on the specific instance of the
system. The customizing value is directly retrieyigam a system configuration (usually a
customizing table) or customizing method is catleat calculates the customizing value.
Sample code:
ABAP:

IF me_status IS INITIAL .

me_status = “intial_status”.

ENDIF.
JAVA:

if (this.status == null)

this.status =

customzing.getValueFromTable(“intial_status”);

7.2.1.8.4.3 Requirement — Static Consistency Pattern
Priority: High
Class: Consistency

-85 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Static rules that state which attributes/relatiares (under all circumstances) mandatory, static
checks (i.e. type checks) and value checks (iat Biate is smaller or equal to End Date)
Sample code:
ABAP:

IF startDate < endDate.

ENDIF.
JAVA:
if (startDate < endDate)

7.21.84.4 Requirement — Dynamic Consistency Pattern
Priority: High
Class: Consistency
Consistency checks depending on the current asmple: “The status of an opportunity is
“pending” if it is nether “Lost” nor “Won” or all arrencies in a sales document must be the
same,
Sample code:
ABAP:
IF opportunity_result == “won” ORopportunity_result ==
“lost”.
opportunity_status = “pending”
ENDIF.
JAVA:
if (opportunity.result == opportunity.won [l
opportunity.result == opportunity.lost)
opportunity.status = opportunity.pending;

7.2.1.8.4.5 Requirement — Suggestion Pattern
Priority: Low
Note: There is uncertainty whether this behavidwat tshould be modelled as an isolated
behavioural pattern or if the behaviour of suggestishould be modelled using ‘normal’
behaviour models.
Class: User Aid
Suggestions for data entries (on Ul level) areegumportant to improve the usability of
applications. The content of the suggestions cdioms various sources for example master
data. Examples of such suggestions are

» Responsible employee determination

» Determination of a sales unit party

» Document currency

7.2.1.8.4.6 Requirement — Arithmetic Pattern
Priority: High
Class: Arithmetic
Calculation of an arithmetic value, such as salescast, the sum of sales items, discount etc.
Sample code:
ABAP:
me_weightedValue = me_value * me_weight
JAVA:

- 86 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

this.weightedValue = this.value * this.weight

7.2.1.8.4.7 Requirement — Read data from Database
Priority: High
Class: Persistence

Read data from database into memory (table/streictur
Note: Usually this behaviour is supported by the tartgiguage or the supporting
environment to ease the development of databasa@lihgnABAP for instance has special
functions that allow coping database tables intonory. Java supports similar functions with
frameworks such as Hiberndte
Sample code:
ABAP:

READ TABLE table INDEX 1 INTO field
JAVA:

Connection con;
...
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM t able WHERE
Index=1");
field = rs.next();

7.2.1.8.4.8 Requirement — Write data to Database

Priority: High

Class: Persistence

Write data from memory (table/structure) into datksd

Note: Usually this behaviour is supported by the tartgiguage or the supporting
environment to ease the development of databas#lihgnABAP for instance has special
functions that allow coping database tables intonony. Java supports similar functions with
frameworks such as Hibernate. Therefore the reopging is not important for PIM level

models.

Sample code:
ABAP:
INSERT INTO table VALUES(")
JAVA:
Connection con;
...
Statement stmt = con.createStatement();
stmt.executeQuery(" INSERT INTO table VALUES (")");
7.2.1.8.4.9 Requirement — Modify Database
Priority: High

Class: Persistence

Database manipulation

Note: Usually this behaviour is supported by the tartmiguage or the supporting
environment to ease the development of databas#lihgnABAP for instance has special
functions that allow coping database tables intonony. Java supports similar functions with

" http://www.hibernate.org/

-87-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

frameworks such as Hibernate. Therefore the reopging is not important for PIM level
models.
Sample code:
ABAP:
UPDATEable SET field="updated”.
JAVA:
Connection con;
...
Statement stmt = con.createStatement();
stmt.executeQuery("UPDATE table SET field=\"updated\"");

7.2.1.8.4.10 Requirement — Function calls and declaration

Priority: Medium (considered as covered by UML anyway, however th¢ARGING
declarations may not be covered)

Class: Function calls

Method calls with parameters (call parameters,rneparameters and change parameters).
The example below shows only the method calls m@teclaration. Most important is that is
should be possible to define multiple return partanse

Sample code:

ABAP:
DATA:
local_datal TYPE String.
local_data2 TYPE String.

CALL METHODNnethodName
EXPORTING

paraml = ‘paraml’

param2 = ‘param?2’
CHANGING

local_method_datal = local_datal

local_method_data2 = local_data2
RECEIVING

local_method_datal = returnl
local_method_datal = return2.
JAVA:
//Struct return = {returnl, return2, changel, ch ange2};
String local_datal, local_data2;

return = methodName(paraml, paramz2);

local_datal = return.changel;
local_data2 = return.change2;

7.2.1.8.4.11 Requirement — Exception handling
Priority: High
Class: Exception/Error Handling
Exception/Error handling deals of unexpected pnogbahaviour.
Sample code:
ABAP:
TRY .

- 88 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

CATCHe .

ENDTRY
JAVA:
try {
}

catch (Exception e)

{...}

7.2.1.8.5 Language Requirements from the Aspect Oriented Modkng Viewpoint

For a UML model to be executable, its specificati@eds to be more complete than what can
be specified through the standard structural arfthldeural models. The actual operations
need to be specified.

The UML Action Semantics provides the means to ipetg define an operation's behaviour.
Based on the UML meta-model, the model elementsbeanavigated and manipulated in an
object-oriented way. Mathematical expressions aambdelled as well as conditional logic.
'Signals’ and explicit operation invocations are tneans to implement communication
between different entities.

A specification this complete, makes it possibleetecute it through an interpreter or to
generate executable code from it.

In order to provide support for modelling "crossiy concerns” in a modular way, an
extension shall be developed, that supports agpesntted techniques in UML models.
Specifically, the most important aspect-orientechaspt, the "pointcut”, needs to be
supported. It must be possible to externally defiiggers in model elements or operations,
that intercept the "control flow" and lead to ex@omn of an aspect module's operation
(advice).

For this, the targetable elements in the ASL (o& point shadows) need to be determined.
Aside from model elements (e.g. classes, opergtitims could be elements of the ASL itself,
like if-statements, loops, function definitionsstatements of the ASL, like find, find-all, etc.
All keywords of the ASL could potentially be a tatgWilkie, I. and King, A. et al. 2001).

All those targets need to be unambiguously refexalble. Furthermore, the join point context
that will be exposed to aspects needs to be defined

In addition it needs to be investigated, how thpeat weaving can be implemented and
integrated into the VIDE toolset. At which levelethveaving will be performed is also a
subject of research. It is not clear yet, whetlspreats will be visible at PSM level at all.

One possible solution could be to perform a modeigformation before execution or code
generation. Aspect invocations could be insertethatjoin points that are selected by the
pointcut definitions.

Another possibility would be to make the tools tiselues aspect-aware, in a way that they
would interpret the pointcut definitions and pravithe crosscutting behaviour. This way
however, every tool operating on the model wouldd® be made aspect-aware.

7.2.2 Enterprise Modelling Languages

This section gives a short overview on language£i level. The task for languages on
CIM level is to represent the user requirements gimd an abstract, high level view on the
software. Additionally they should contain modedraknts that can be easily transformed into
(parts of) platform independent models. Therefore modelling languages are described in

-89 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

this section. A definite decision of which of thdaaguages VIDE applies will be postponed
to the corresponding task in Work Package 7.

Enterprise Modelling (EM) can be defined as thec&rexternalising’ enterprise knowledge,
i.e. representing the enterprise in terms of itganisation and operations (e.g. processes,
behaviour, activities, information, objects, andtenal flows, resources and organisation
units, system infrastructure and architecture). oal is to make explicit the facts and
knowledge that add value to the enterprise or eashlared by business applications and users
in order to improve the performance of the entsgori

Enterprise Modelling Languages (EMLs) should allbwilding the model of an enterprise
according to various points of view such as: fusrtgtiprocess decision, economics, etc. in an
integrated way.

7.2.2.1 Petri Nets

The Petri Nets are a formal, graphical, executedtbnique for the specification and analysis
of concurrent, discrete-event dynamic systems; conigue undergoing standardization,
initially developed by C. A. Petri (Petri 1962) fure specification of concurrent (parallel)
systems. The technique has been refined into dessbtéechniques, such as coloured Petri
Nets (Jensen 1997). The main application domairniterprise Modelling (process analysis
and implementation):
0 Manufacturing/Logistics
o Workflow Management
Other Application Domains (behaviour modelling oftavare products):
o Distributed systems
Embedded systems
Hardware and software architectures
Software engineering in general
User interfaces
The recognised benefits of Petri Nets in the camiéEnterprise Modelling are:
o Modelling power (resource sharing, conflicts, mltaaclusion, concurrency, non-
determinism, visual modelling)
o Analysis (deadlock detection, bottleneck analyammation, simulation)
o0 Code generation for Controlling Manufacturing Syste
However, below there is a list of recognised protdevith Petri Nets:
0 Net size in real world problems
o Difficult to understand due to its operational setws and to the lack of real
abstraction mechanisms
o Code generation in generic distributed systems asl tbecause many important
information (e.g., lack of abstraction) may be dar not represented, generating an
inefficient code.
It seems, in any field of application, that Petatdlare positioned at too low level for direct
modelling: therefore, they should be used in thetext of complete methodologies that, first,
provide high level models and then make it posdiblransform (automatically or not) these
models into (a kind of) Petri Nets.

© O O0Oo

-90 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.2.2.2 |IDEF

IDEF® (for Integrated Definition) is a group of modetiimethods that can be used to describe
operations in an enterprise. IDEF was created éythited States Air Force and is now being
developed by Knowledge Based Systems. Originallyelbped for the manufacturing
environment,

IDEF methods have been adapted for wider use argbftware development in general.
Sixteen methods, from IDEFO to IDEF14 (and inclgdiiDEF1X), are each designed to
capture a particular type of information throughdeking processes. IDEF methods are used
to create graphical representations of variousegsyst analysis the model, create a model of a
desired version of the system, and to aid in thesition from one to the other. IDEF is
sometimes used along with gap analysis.

7.2.2.3 XPDL

XPDL (The Workflow Management Coalition Specificati 2005) was developed by the
workflow Management Coalition (WfMC). The languagses an XML-based syntax,
specified by an XML schema. The main elements eflimguage are: Package, Application,
Workflow- Process, Activity, Transition, ParticigaiDataField, and DataType. The Package
element is the container holding the other elemehi® Application element is used to
specify the applications/tools invoked by the wtowf processes defined in a package. The
element WorkflowProcess is used to define workflpvocesses or parts of workflow
processes. A Pattern and XPDL 4 WorkflowProcessimsposed of elements of type Activity
and Transition. The Activity element is the basiglding block of a workflow process
definition. Elements of type Activity are connectdtdough elements of type Transition.
There are three types of activities: Route, Impletawgon, and BlockActivity. Activities of
type Route are dummy activities just used for mytipurposes. Activities of type
BlockActivity are used to execute sets of smalletivities. Element ActivitySet refers to a
self contained set of activities and transitionsBlAckActivity executes such an ActivitySet.
Activities of type Implementation are steps in gvecess which are implemented by manual
procedures, implemented by one of more applicationgmplemented by another workflow
process. The Participant element is used to sp#odfyparticipants in the workflow, i.e., the
entities that can execute work. There are six tygfeparticipants: ResourceSet, Resource,
Role, OrganisationalUnit, Human, and System. Eldmehtype DataField and DataType are
used to specify workflow relevant data. Data isdute make decisions or to refer to data
outside of the workflow, and is passed betweerviiets and subflows.

7.2.24 BPML

The Business Process Modelling Language (BPML) aeasloped by the Business Process
Management Initiative (BPMI). It is based on XMLdaallows the description of business
processes. A process is viewed as a series ofitedjva single activity represents a
component that performs a specific function. A deupf activities can be composed into
more complex activities which are executed withigcoatext which is transmitted from parent
to child and allows two activities to share projgext The data flow of BPML is composed by
these properties.

The control flow is modelled as ‘activity’, it usasblock-structured approach, wherein each
block can itself be considered an activity. Blocks be nested to arbitrary levels. A process
can also be ‘spawned’ or ‘called’. The ‘called’ neoseems to be synchronous as the activity

8 http://www.idef.com/

-01 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

is a simple activity. In particular that limits thesility of the ‘sub-process process’ to
‘collaborate’ with the parent instance. Spawnectpsses can be joined via the ‘join’ activity.
As graphical representation of BPML the Businessc®ss Modelling Notation (BPMN) can
be used.

7.2.3 Business Process Modelling Notation

The Business Process Modelling Notation (BPMN)ais,UML, an OMG standard (Object
Management Group 2006). There is however no offigimnment with UML: BPMN is
supposed to provide a process oriented view orsi@sy while UML is strictly following an
object-oriented approach. BPMN tries to provide adation that is understandable by all
business users (White 2004), including business$ystsa(creating the initial drafts of the
processes), the technical developers (responsiblariplementing the technology that will
perform those processes), and the business peaple Will manage and monitor those
processes).

BPMN defines business process diagram models,asitailflowcharts, consisting of activities
as nodes and directed edges describing the flowngrtieese activities. Figure 8 describes a
simple business process.

[A Task

Ea Start Event : Check or Cash

Accept Cash or

Chack En End Event

Payment 3
|darntify Method? Prapara |
Payment Package for
Method Customer

Process Credil
Card

| A Sequence
Flow 'Cradit Card
A Gateway
“Decision”

Figure 8: A simple process described with BPMN (Whe 2004)

BPMN models can be structured within pools and stnmes and are modular by allowing
for collapsed/expanded activities. There is a sdatided mapping to BPEL, the de-facto
standard for process execution and a number ofeimghtations of BPMN For VIDE,
BPMN could be a suitable modelling standard onGhd level.

7.2.3.1 Event Driven Process Chain (EPC)

The Event-driven Process Chain (EPC) (Keller, Naiigyet al. 1992; Scheer 1999; Keller
2000) was developed in 1992 at the Institute fdormation Systems in Saarbruecken in
cooperation with SAP AG. EPC-models are centrahelgs of BPM, not least because of its
use in the SAP R/3 reference model of SAP AG aedARIS Toolset of IDS Scheer AG.
Enterprises model their process data as EPC-madeaisder to plan, design, simulate and
control private enterprise processes. The EPC ¢sra part of the ARIS-framework and

® http://www.bpmn.org/BPMN_Supporters.htm

-02.-
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

combines the different views towards the descniptb enterprises and information systems
in the control view on the conceptual level.

An EPC describes processes by the use of alteghatictions and events as time-referring
state changes Events and functions are linked byctintrol flow as directional edges.
Functions describe activities and events passatestcontrol flow functions and events can
only be connected to each other. To split and jhi@ control flow operator with the
occurrences OR, XOR, and AND can be used aftertiume and events (excepting that the
OR- and XOR-Operators must not be used after exenbte last remaining element, that
could be connected via the control flow are procetgsfaces. These can be applied at the end
and the beginning of an EPC to connect two EPCsm fdifferent models. Additionally
resources (such as organisational units) can behatl to functions.

7.3 Meta-Modelling Standards

Models are central artefacts of MDSD based proje&tsnodel is described in terms of a
meta-model, which represents the vocabulary of rimelling domain. A meta-model

conforms to the meta-meta-model, which is abstembugh to allow for meta-model

authoring in envisioned development domains. Ferrdst of this chapter, these modelling
levels will be referred to as M1 through M3 cormsgingly. This terminology has been
proposed by the MOF specification (Object Managen@oup 2002).

7.3.1 Requirements

The VIDE project poses certain requirements onesdaly and extensibility of the underlying

modelling infrastructure. These requirements areofi@ngineering nature only, but are also
stressing the conceptual fundament of the modelimgastructure. The concepts of the
modelling infrastructure are cemented in the M3 atpproviding the language for M2 model
creation.

The M3 model is, under normal conditions, not cleainde within the functional scope of the
modelling infrastructure. Therefore, its choice wWdobe made with most possible care for
details, because of the influence of this decigionthe flexibility of the tools, eventually

delivered by the project.

Another requirement is the industrial adoption. &exe of the limited scope of the VIDE
project, it will not be possible, to construct ateded tools in the timeframe of this project.
Therefore, the tools landscape should be taken wdosideration during modelling

infrastructure selection.

7.3.1.1 Scalability requirements

REQ — NonFunc 9 | Scalability of proposed solution. | MUST
The proposed solution must at least conceptuadliedo enterprise level.

The scalability of a modelling infrastructure, iven by factors like response time of the
gueries, in face of increasing number of model el Because many operations, like
transformations, require multiple lookups (e.g.rseuand target elements with distinctive
properties), sub-linear lookup times for elememésraquired.

-93 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

The scalability problem has mainly two dimensidasstly, the performance with respect to

an increasing number of M1 model elements is todresidered. Secondly, the impact of the
number of M2 elements on the overall performancéhefmodelling infrastructure is to be

considered. Both problems are tightly coupled. @wrsan M2 model with two classes A and

B. Further, there exist a number of instances cheadass. The first question is how many
operations it would take, to deliver all instanoé#\.. Is a complete model lookup required, or
is there a notion of extents, which would speedthg lookup? The second dimension, is
represented by the question, how the addition tiird class C (not necessarily having any
instances) would impact the overall performancec&the VIDE project is mainly concerned

with enterprise scale systems, large numbers ofali@ M1 instances are to be expected.
Experience shows, that to model an enterprise, 6¢ng¥2 models and thousands of M1

models, having tens of elements each, are requiiadar, or over linear model lookups are
not feasible in this environment.

The solution of the presented problems can be @aetiithrough extensive model partitioning.
Therefore, the modelling infrastructure, used by YHDE project can not be based on the
closed world assumption. Thus, some notion of abseel elements is needed in the M3
model.

7.3.1.2 Extensibility requirements

The extensibility is defined by the ability of a dadling infrastructure, to allow for the

addition of new concepts, without the need to mothE existing M2 models. Like scalability
requirements, the fulfilment of extensibility recgments on a modelling infrastructure is
rooted in the M3 model.

The most widely accepted convention for model esitamis the M2 model federation. Here,
a number of M2 models are linked (federated), kovafor richer information sets. The most
basic example of M2 model federation is the creatiba diagram of a part of the meta-model
population. The population of the domain M2 modall wwave to be linked with the
population of the graphical M2 model. This is nekdeorder to retain the consistency of the
diagram in the face of domain model changes. Howeévis very desirable to introduce these
links without altering either the domain or thegrecal model. The M3 model chosen for the
VIDE project will have to provide such linking cdpkties.

7.3.1.3 Industrial adoption
REQ — Tool 1 | Usage of Industrially Adopted Tools | MUST
VIDE must use industrially adopted meta-modellitapsglards where applicable.

Description:
As decided by partners and as derivation from REQnRg 5.

The industrial adoption is an important factor, daese of the lock-in effect of the particular
modelling infrastructure. Provided that a modellimdrastructure (and its M3 model) are
widely adopted, a large number of tools based oantbe reused without the need to develop
them again for the VIDE project.

MDSD projects require an unusual amount of toolsg tb the large number of artifacts
required by model driven development. These toais lme editors for the particular M3 and
M2 model populations, code generators, workflow agmms or any other kind of
development assisting tools.

-94 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Further, the dissemination efforts can largely fietterough the adoption of a widely spread
M3 model and the corresponding modelling infragtrce

7.3.2 Existing M3 Models

A number of M3 Models exist either as a formallyfided standard or as an industrial de-
facto standard. The two most known M3 Models are lfieta Object Facility (Object
Management Group 2002; Object Management Group)200@F) provided by the Object
Management Group and Ecore, provided by the Eclmendation as the basis of the EMF
framework (Budinsky, Steinberg et al. 2004).

7.3.2.1 Meta Object Facility (MOF)

The Meta Object Facility (MOF) is an M3 model, pospd by the OMG. There are two
relevant versions of this standard, MOF 1.4 (Objanhagement Group 2002) and MOF 2.0
(Object Management Group 2004). MOF 1.4 is an é&steddl standard, with at least one
compliant repository (NetBeans MDR (Sun Microsyste?004)) available. MOF 2.0 is the
newer MOF revision, split in two parts: EMOF and OM EMOF is Essential MOF
providing the subset of Complete MOF (CMOF). EMGFonceptually related to the Ecore
M3 Model described below. An automatic migrationhps being provided, for MOF 1.4 to
CMOF 2.0 migration. However, there are no MOF 2@mpliant production grade
repositories available at the moment.

7.3.2.2 Ecore

Ecore is the foundation of the EMF framework. Asa@éed above, Ecore is closely related
to the EMOF specification. As part of EMF, Ecoredslivered to production environment
within Eclipse distribution (as of Callisto releas&herefore, a large user base is ready for
EMF based applications. Further, there exist aelaigmber of tools, contributed by the
community ready for usage with the EMF Framework.

7.3.3 Feature Comparison of M3 Models

Following table provides an overview of the ideetif features and their availability in
corresponding M3 Models.

Feature MOF 1.4 CMOF 2.0 | EMOF 2.0 | Ecore
Extents capability X X

Associations X X

Industrial Adoption X
Repository Available X X

7.3.4 Selection

The partners decided to use EMF as VIDE’s modelfiagnework. The rationale for this
decision is the availability of tools for EMF. Howe¥, concepts from MOF like Associations
should be simulated by means available in EMF.

-95 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

REQ — Tool 2 | Meta-modelling Framework | MUST
VIDE must use EMF as it's modelling framework

Description:
As decided by partners.

REQ — Tool 3 | Meta-modelling Concepts | SHOULD
VIDE meta-models should be constructed to be caillpavith MOF concepts
Description:

As described in this chapter.

7.3.5 Selected Standard

The consortium selected the Eclipse Modeling Framewk (Budinsky, Steinberg et al.
2004) to be the used modelling infrastcructure. EMRs based on the Ecore Metamodel,
which is conceptually comparable to EMOF 2.0.

7.4 Model Transformations

Model transformations are needed, to reduce dupiceof effort during the creation of
correlated modelling artefacts. There two distikicids of transformations: Model-to-Model
(M2M) and Model-to-Text (M2T). Model-to-Model trafusmations are normally executed on
a model graph, in order to create another, cosélatmodel graph. Model-to-Text
transformations are executed, to create a textiafaat from information contained in a
graph based model. There are approaches, to deddallel-to-Text transformations in a
Model-to-Model manner (e.g. considering AST of theget artefact as a model graph). These
approaches however are not in scope of the VIDgeprodue to the immature state of
research in that domain.

7.4.1 Importance for the project

Because VIDE focuses on executable models, moaesfisrmations will be essential to the
project. It will be the responsibility of the trdosmations to deliver the code (during design
or runtime) which will eventually be executed. Dioethe importance of this role, the VIDE
project poses some requirements on the model tnanafions.

7.4.2 Requirements

Main requirement on model transformations is thedceability. Thus, when some artifacts

are being created via a transformation, the coomdipng elements in the source model should
be traceable from the created element.

The traceability requirement is of central impodanto model level debugging. This form of

debugging enables the user, to observe the resfultmdel’s execution in the same notation,
used for model authoring.

-96 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.4.3 Available Model-to-Model standards

The simplest way of creating Model-to-Model tramgfations is the creation of an imperative
program, which inspects an existing source modelceates the target model. An imperative
implementation can be created in a most unobtrusiag, by implementing the visitor
pattern. This approach requires the least numbtrimf party tools, but lacks any support for
traceability and tends to break in the face of M@dél changes. Another way of supporting
Model-to-Model transformations is the usage of aailable Model-to-Model transformation
standard implementation. The rest of this sectmmcentrates on declarative Model-to-Model
transformations, as these are considered to benthsd maintainable and fruitful way to
support the required functionality.

Object Management Group has recently published Gheeries/Views/Transformations
(QVT)(Object Management Group 2005) standard. $tasdard targets transformations and
gueries on MOF 2.0 models. As of now, there isomglete implementation available.

The Eclipse Foundation hosts the ATLAS Transfororatianguage (ATL) (ATLAS group
and LINA & INRIA Nantes 2006), which is a result tfie ModelWar& project. This
transformation language is closely related to théTtandard and provides a running
implementation. Although hosted by the Eclipse Ftaiion, the ATL project provides
bindings for the MOF 1.4 compliant NetBeans MDR mltdg repository. ATL does not
provide tracing support out of the box. Howeveprapches allowing the addition of tracing
capability to ATL transformations exist. Anotheartisformation language to be evaluated is
Tefkat (Lawley and Steel 2005). Tefkat has beereliged at the University of Queensland
and is available as SourceForge project.

Following table provides an overview of transformatlanguage features.

Name MOF 1.4 | MOF 2.0 | EMF Abstract | Concrete | Traceability
Support Support Support Syntax Syntax Support
ATL X X X X X
Tefkat ? ? X X X ?
7431 QVT

As its name suggests the specification MOF QVT (Q@ueView / Transformation) is

intended to provide technology neutral solutions daerying, transforming and specifying
views of MOF-based models. The language is buitedaon parts of MOF and OCL and
combines declarative and imperative styles of @ogning. Such functionality is of

significant importance for model transformationssutased by MDA. The document is
currently in the “Final adopted specification” statits adoption may further raise the
importance of using MOF-compliant meta-models.

REQ — Tool 4 | M2M Transformation Technology | SHOULD
VIDE should use ATL as it's transformation framewaunless it is proven insufficient
Description:

As decided by partners.

19 http://www.modelware-ist.org/

-97 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.4.4 Available Model-to-Text standards

Analogously to Model-to-Model transformations, #emare numerous Model-to-Text
transformation standards.

First, there is the possibility to execute Modelfext transformations in an imperative
manner. This possibility can be ruled out for tame reasons as this approach has been ruled
out for Model-to-Model transformations.

Second, there is the possibility, to use existemgplate engines like Jakarta Velocity. These
engines decouple the form of the transformatiopaiutrom the input parameters. However,
no modelling specific features are currently supgubr

Third, there exists specialized Model-to-Text tfammation languages like MOFScript
(Oldevik 2006). MOFScript is being standardized@YG and provides features specific to
Model-to-Text domain. An implementation of the MQFipt standard is available from
Eclipse Foundation. This implementation howeveksamportant features like traceability.
The fourth alternative is the usage of XPAND largrifrom openArchitectureWare toolset.
This language has been proven in real world prsject

REQ — Tool 5 | M2T Transformation Technology | SHOULD
VIDE should use XPAND as its M2T transformationdaage, unless proven insufficient.
Description:

As decided by partners.

7.45 Available Text-to-Model tools

The textual parts of the behaviour specificationento be parsed, to acquire their abstract
syntax representation. XText is a framework prodidg openArchitectureWare and allowing
for automated ANTLR grammar generation. The draklmd¢he Xtext usage is the similarity
of the generated M2 model to textual notation’s ctete syntax. This requires a
transformation from the generated M2 model intoigoned domain M2 model (in this case
UML Action Semantics). A valid alternative to XTéxtapproach is manual creation of
grammar definitions, followed by automated parsemegation via ANTLR or similar parser
generators. In this case, the ASTs provided by#rser will have to be mapped by hand onto
Action Semantics M2 model.

REQ — Tool 6 | T2M | SHOULD
VIDE should use XText framework, unless proven ffisient. An alternative can be parsers
generated with ANTLR or LPG.
Description:

As decided by partners.

7.5 Graphical Modelling Frameworks

A graphical modelling framework is required, tooall for easier graphical tool creation on
top of domain models created by the VIDE projediere are two possible approaches to
graphical tool creation. Firstly, a graphical tamn be programmed explicitly, using an
existing graphical framework like GEF (Aniszczyk(0B). Secondly, a declarative graphical
framework like GMF (2006) can be used.

-98 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

The explicit approach has its advantages, dueetimimediate feedback to the tool developer.
Thus, the tool creation can precede using same adelibgies as a transitional software
project. However, this approach tends to break,nwti domain models are subject to
frequent changes.

The declarative approach calls for a mapping batwveedomain M2 model and the provided
graphical model. This mapping is in case of GMF lengented as a population of the M2
model, called the mapping model. This approachéateeper learning curve, but is more
stable in face of M2 model changes. Further, thigr@ach allows for easier synchronization
between domain model populations and the correspgmiaphical representations.

At the time of this writing, only one stable grapdli modelling framework, the Eclipse

Foundation’s GMF is available. This implementatistightly bounded to EMF and therefore

the Ecore M3 model.

REQ — Tool 7 | Meta-modelling Framework | SHOULD
VIDE SHOULD use GMF as it's graphical modellingrrawork

Description:

As decided by partners.

7.6 Query and Constraint Language Standards

7.6.1 OCL

The Object Constraint Language (Warmer and Kle#9)— originally a part of the UML
standard — with version 2.0 of UML and MOF has bpmwvided as a separate specification
aligned with the core of MOF and UML. Within the UNand MOF style of model and meta-
model definitions the OCL statements serve as tbst precise means of model specification
(together with less precise class-model based itlefis and natural language description).
For that purpose OCL was defined to be able toesgpconstraints for any (first-order) kind
of UML elements. At the same time the purpose ©f lBnguage prohibits its statements from
causing any side effects. The side effects forvargunit of behaviour can be specified only
declaratively and indirectly through the pre- arabtpcondition clauses. This allows for the
successful expression of any functional behavi@ur the other hand, the declarative way of
OCL of modelling is commonly assumed to be lesgiiive for users which think in terms of
actions. Moreover it is presumably a larger gapcéone to executable models from a
declarative specification (OCL) than from an impeeaspecification (Action Language).

OCL’s “native UML" standard status and fully speéetf concrete syntax makes the language
a viable option for complete platform independeahdviour modelling needed for MDA
(Kleppe, Warmer et al. 2003). With its declaratisgyle and operators dealing with
collections, OCL may at least inspire introductiohexplicit higher level constructs into
UML action semantics or even become a part of thiemlanguage.

The specification distinguishes two language levelgpporting the UML-specific elements
and the core elements common with MOF. The follgnapplications of OCL within UML
language are indicated in the document (Object Igament Group 2003):

guerying the model

0 invariant specification for classes and types

o invariant specification for stereotypes

0 pre- and postcondition specification for operatiand methods

0 guard description (in state diagrams)

o

-99 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

0 specification of target (sets) for messages andrasct

0 specification of constraints on operations

0 specification of derivation rules for attributes émy expression over a UML model.
OCL expressions can accgsopertiesof model elements, that is, attributes, associatio
ends, as well as side-effect-free methods and tpesa
The semantics of OCL (Object Management Group 2@08pecified through a UML-based
model of its semantic domain and its mappings vellistract syntax. Moreover a strict
semantics definition based on set theory is pravidethe specification as a non-normative
appendix based on (Richters 2002).

OCL could be closely integrated in the VIDE actiamguage. The action language will
necessarily need to incorporate a language foressprg expressions, for conditional
expressions for instance. This is however exactytwOCL can do. So OCL could be a
subset of the VIDE language as discussed below.

There has been a project for visualizing OCL, tdegner, Taenzer et al. 2002). The results
give insights into the difficulties of modelling dwal expressions graphically, which any
language which deals with logical expressions (B3EY has to cope with.

In the following subsections we discuss the roleO&L in model driven approaches and
compare a purely OCL based approach to MDA witlagproach which includes OCL in the
action language.

7.6.1.1 MDA and OCL

Considering the OCL from the point of view of MDAyo fundamentally different OCL-

based approaches can be discussed:

» purely constraint-based specification using OCL farariants, preconditions and
postconditions (as presented in (Kleppe, Warmat.€x003)),

* imperative specification of operation behaviour regged with UML Actions, Activities
and supported with OCL expressions embedded wihiaction language (Haustein and
Pleumann 2004).

Comparison of those two approaches is illustratddvb in two examples based on the same
schema consisting of classEmployeeand BonusGiven Accordingly to the VIDE project
aims we focus on the latter approach, but predsntthe constraint-based solution to show
the different purpose of the OCL there and to discpros and cons of the imperative
approach assumed by VIDE. The two examples has beestructed so as to show the
strengths and drawbacks of those two approaches.

- 100 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

7.6.1.1.1 Domain classes used in these examples:

Employee BonusGiven

beneficiary amount Decimal
givenOn Date
isTransferrec Boolean = false

name String

salary Decimal
rank Integer 4 B
job String

Company

+distributeBonus (in bonusBudget Decimal in bonusBase Double) : Boolean
+raiseSalary(in raise Integer in jot String)

Figure 9 Domain classes for the OCL example

Therank attribute reflects the current result of the eatibn of an employee’s achievements.
The higher it is, the higher the bonus amount shbelwhen it is distributed.

The objects of a class BonusGiven are created dizate the decision of paying a given

employee the bonus of particular amount. When theumt is paid to the employee, the
isTransferredlag changes to true.

7.6.1.1.2 Example 1

Procedure to specify:
distributeBonus(bonusBudgelnteger, bonusBaseReal) : Boolean

Natural language description of the intended behavi

When this method is invoked, an employee shouldiveca bonus exactly of the amount that
is calculated as a product of: (rank * bonusBase)ad receive the bonus at all. The fact of
giving a bonus is reflected in the creation of BamusGiven object connected to appropriate
Employee object.

The sum of bonuses to be paid may not exceed the vdbonusBudget.

In case the calculated sum of all bonuses doeexmded the bonusBudget, all employees
should receive the bonus calculated as above angrtdtedure should return true.

Otherwise, the employees should be ordered desugigi the value of the rank. Then for
each employee in that sequence an attempt shoutdalde to give him / her the bonus. The
remaining amount of bonusBudget should be caladlate the iteration in which the
remaining budget becomes not sufficient to givetlagobonus, the BonusGiven object is not
created and the whole procedure returns false.

UML Behaviour + OCL specification using ad-hoc Jika syntax for actions

Code only:

distributeBonus(bonusBudget : i nt eger, bonusBase : real): bool ean{
moneyRemaining: real = bonusBudget;
Sequence<Employee> s =

-101 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007
new ExpressioninOcl(* Employee.allinstances()->sortedBy(rank)”);
f or (emp : Employee i ns)
bonusCalculated : real = (emp.rank*bonusBase);

i f (bonusCalculated<=moneyRemaining){
moneyRemaining-=bonusCalculated;
new BonusGiven(emp, bonusCalculated, Date.today());
}
el se return false;
}

return true;

}

Code commented to indicate the underlying actiomipives involved:
Note that this syntax is in some constructs ofghéi level nature than the respective UML
behaviour elements. Not all actions and flows ag#aened in the comments.

distributeBonus(bonusBudget : i nt eger, bonusBase : real): bool ean{
moneyRemaining: real = bonusBudget;
/'l AcceptCal | Acti on:
/1 QutputPin: bonusBudget : integer
/1l -> Variable: noneyRemaining : integer;
/1 QutputPin: bonusBase : real
/1l -> Variable: bonusBase : real;
Sequence<Employee> s =

new ExpressioninOcl(“ Employee.allinstances()->sortedBy(-rank)”);
for (emp : Employee i nsy

/I ExpansionRegion; ExpansionNode = Employee {order ing = FIFO;

/[upperBound = *}

bonusCalculated : r eal = (emp.rank*bonusBase);

i f (bonusCalculated<=moneyRemaining){
moneyRemaining-=bonusCalculated;
new BonusGiven(emp, bonusCalculated, Date.today());

}
el se return false; /'l Repl yAction
}
r et urn true; /'l Repl yAction
}

The ExpressionInOcl is assumed to be connectedtiviftyML 2 meta-model as a meta-class
specializing the OpaqueExpression. This solutiorplemsizes the distinction of these two
languages, resembling to some extent the one of $@bedded into general-purpose
programming language code. Since the UML Expresdaes not specify the multiplicity, it
is expected that multivalued results of OCL exgmesswill be described as OCL collections
(i.e. Bag, Set, OrderedSet, Sequence). It is nbt &lear, if such results can be considered
compatible with UML Behavior Pins and Parameteus vie make such assumption here.

Pragmatically, OCL expression successfully perfoitagob, reducing the amount of code
needed to retrieve and order the Employee objectthe bonus assignment. The details of
integration such expressions into UML Behavior edats that require clarification are:

» compliance of OCL collections with UML Pins and &aeters,

» support of UML Actions and Activities for OCL-geraded tuples. Considering the data
manipulation constructs available, it seems that tthple should be represented at the
UML side as an instance of single Pin or Paramelarse type is a Tuple (which could be
a specialization of UML’s DataType) rather thanea af Pins or Parameters one for each
tuple field.

- 102 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

The above example could be easily extended tardlesthe need for tuple. Rather than being
a ready attribute, the rank could be calculated éach employee from some other data (e.g.
evaluations). Then, the iteration would work nottbe sequence dmployeeobjects, but
rather on the sequence of tuplés:: Employee, rank : real}

Based on the above considerations, there seenes o beason for not including the notions
of tuple and various kinds of collections as theement, predefined elements of UML
specification.

To fully avoid the “impedance mismatch” between tie languages, the elements describing
the OCL expression should be treated as inherehbp&ML Behavior (which would make
the ExpressioninOcl non-opaque). Alternatively, UMttivities should be accompanied with
elements covering this part of OCL which has natitgecounterparts in UML Behavior.

UML + OCL purely constraint-based solution

cont ext Company::distributeBonus(bonusBudget : integer, bon usBase : real) : Boolean
| et : alEmployees = Employee.allinstances() in

-- not more than necessary left

post : allEmployees->collect(e|e.bonusGiven.amount)->sum 0
+min(allEmployees->select(e|e.bonusGiven.size()=0)- >collect(rank*bonusBase))
> bonusBuget

-- if one employee got no bonus all lower-ranked go t it neither
post : allEmployees->forAll(el,e2 | el.rank<e2.rank and el.bonusGiven.size()=0
implies e2.bonusGiven.size=0)

-- if one employee got a bonus all higher-ranked go tit too
post : allEmployees->forAll(el,e2 | el.rank<e2.rank and e2.bonusGiven.size()>0
implies el.bonusGiven.size>0)

-- budget not exceeded

post : allEmployees->collect(e|e.bonusGiven.amount)->sum ()<bonusBudget

-- all employees who got bonus, got the right amoun t

post : allEmployees->forAll(e|e.bonusGiven->size>0 impli es
e.bonusGiven.size=1 and e.bonusGiven.amount=e.rank* bonusBase)

-- we return true if all employees got the bonus
post : result=allEmployees->forAll(e.bonusGiven.size>0)

This example shows that it is not necessarily tsedhat OCL style specifications are easier
to understand. While the OCL specification disttésuinformation to several constraints, the
action language style specification is more compack more closely resembles the informal
natural language description. On the other hanel,QEL specification allows for several
implementations (one could use recursion insteadaying for instance) and just describes
the result, while the action language specificat®axact in the algorithmic details. There is
another issue worth mentioning: in OCL, it would &a&sy to make the specified method
change something completely irrelevant, such usgihg the name of the employee. In
action language, this cannot be done, since ordy wlnat is specified is executed, nothing
more. This problem is referred to as the frame lgrobin literature, and there are several
approaches to cope with it in OCL, but it is nallyraasier to deal with it in action language.

7.6.1.1.3 Example 2

Procedure to specify:
raiseSalary(raiseinteger, job :string);

- 103 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Natural language description of the intended behavi

The method iterates over all the Employee objents iacreases thsalary attribute in the
objects having the attributeb equal to thgob parameter by the amount provided by the
raise parameter.

UML Behavior + OCL specification using an ad-howakike syntax for actions
(Not all actions and flows are explained in the coents.)

Code only:
raiseSalary(raise : i nteger,job: string){
String query = Employee.allinstances()->select(job==\" "+job+* \") 7
Sequence<Employee> s = new ExpressionInOcl(query);
f or (emp : Employee i ns){
emp.salary = emp.salary + raise;
}
}

Code commented to indicate the underlying actiomipives involved:

raiseSalary(raise : i nteger,job: string){
/'l AcceptCal | Acti on:
/1l QutputPin: raise : integer
/1l -> Variable: raise : integer;
/[l QutputPin: job : real
/'l -> Variable: job : string;

/l ReadVariableAction: job

String query = * Employee.allinstances()->select(job==\" "+job+* \") 7
/I AddVariableValueAction: result; isReplaceAll = t rue
Sequence<Employee> s = new ExpressioninOcl(query);
/I ReadVariableAction: result;
for (emp : Employee i nsy
/I ExpansionRegion; ExpansionNode = Employee {order ing = FIFO;

/I upperBound = *}

emp.salary = emp.salary + raise;

/l ReadVariableAction: raise

/I ReadStructuralFeatureAction: salary

/I FunctionBehavior: salary + raise

/I AddStructuralFeatureValueAction: salary; isRepla ceAll = true

}
}

This example uses mainly the UML Behavior notioM¢ith the assumptions as in the
previous example (that is, the assumed compayilwitOCL and UML types), we may use
OCL expression to ease the selection of objectsgb@pdated. Note that the resulting style is
typical to the query embedding known from populagoamming languages used with SQL.
The mismatch resulting from such arrangement isasatevere as in case of embedded SQL
since the types of data structures being extendedamsidered fully compliant. Similarly like

in case of SQL, the OCL expression is opaque (ireated as text) and thus raises the
guestion about the possible impedance mismatchoicepsing of such code.

In fact, the ExpressionInOcl as a specializatiobL OpaqueExpression is not prepared to
accept any parameters. We thus assume that thateoation providing the value of job

- 104 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

parameter is performed within the query variablbiclv is then passed to ExpressionInOcl as
its body attribute. The specification of UML doest rstate explicitly whether the body is
allowed to be dynamically constructed. Another pt& drawback of such usage is the
inability to (re)use the iteration encapsulateth@ OCL expression to perform the updates in
the same loop.

UML + OCL purely constraint-based solution

cont ext Company::raiseSalary(raise : integer, job : string)
-- Each employee of matching job gets the raise if his/her salary

post : Employee.allinstances()->select(e | e.job = job)
->forAll(e | e.salary = e.salary@pre + raise)

7.6.1.2 Conclusions

From looking at the simple examples above, we nimerve that either of those approaches
may turn out to be advantageous for one or ther otfe¢hod, depending on the characteristics
of the business requirement.

Using constraints can be also considered the uiinabstract specification of behaviour,

since no accidental algorithmic choices are fixad the intended result is described. At the

same time however, using constraints solely mayrbklematic for the following reasons:

* The business requirements described imperativelydcaesult in fairly complex set of
constraints, making it difficult for an analyst tormulate them and verify their
completeness (see the first of our examples).

* The ultimate transformation of requirements inte tmperative code (e.g. of the target
platform) is much more challenging than in caseingperatively specified behaviour.
Consider for instance the easy specification ofstiigare rootresult*result=x in OCL,
this is non-trivial to make executable.

» The constraint approach also requires maintainileye of granularity of behaviour units
sufficiently fine to enforce with pre- and postcarmhs all the meaningful steps of the
business logic having specific requirements coretkwaiith it.

* One often explicitly wants to say which method aledd from which other method (grey
box specifications). OCL allows this in a certaiaywbut one cannot specify the temporal
order of these calls. Nevertheless such grey-bekiipations are needed if one wants to
describe a model-view-controller pattern for ins&n

In the action language approach, the use of emie@@t. expressions is very compelling in
order to:
» ease the specification of iterating on the datakbkao the query operators provided by
OCL,
» avoid loosing the level of abstraction when confiragn the model of behaviour, through
UML Actions, and towards the target platform lange#possibly supporting queries).
There are some limitations though. OCL is capablegcoessing any features of UML models
and instances and — in its primary purpose — pesvitie results of its expressions for UML
constraint checking. On the other hand, the integrawith UML in the area of exchanging
data structures between OCL expressions and UMIoAgtis an issue. As suggested above,
a non-opaque treatment of OCL expressions insielé&JL Actions and Activities would be
expected to achieve truly seamless integratioma$e constructs. We argue that while some

- 105 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

heterogeneity may appear at the program code [evgl the mentioned SQL embedding),

there is no reason to allow for it at the PIM levahother aspect of the OCL integration is the

ability to pass parameters into the OCL express(aasshown in the example 2). This issue

seems to be solvable with the non-opaque treatroemDCL expressions inside UML

behaviour models.

The landscape of OCL-related specifications is noa@plicated though. It is necessary to

note that for the purpose of MOF QVT specificat{@bject Management Group 2005) the

OCL has been recently provided with imperativeestants (so-called Imperative OCL) and

is to a great extent analogous to existing elementdML Behavior. This may be considered

as a kind of redundancy within the OMG specificasi@nd as a sign that the development of

UML/OCL and MOF/OCL takes the form of two, separdéyelopmental tracks.

Taking those issues into account, VIDE needs tk $eethe solution for integrating the

guery language capabilities into UML behaviour wiheould:

» Firstly, guarantee a fully seamless and uniform lmimation of those language constructs
and not to limit their expressive power.

» Secondly, minimize the redundancy between diffe@MG specifications and minimize
the need to introduce new language elements.

REQ — Tool 8 | Use of OCL | SHOULD

VIDE should re-use existing standards (REQ — Lapg@stUML (REQ — User 3), and [n
particular OCL. The goal is to achieve a seamletegration with the concrete syntax of the
action language to be developed.

7.7 Related Standards

7.7.1 XMI

XML Metadata Interchange (Object Management Grod@52 is a MOF-based specification

providing the rules of XML serialization of modetd|owing their transfer between standard-
compliant tools. This specification is generic hstsense, that it is not limited to UML

models serialization, but instead may handle anymedel defined using MOF. This results
in both models and meta-models being the subjeekofiange: From a MOF defined meta-
model a XML Schema definition is produced and thedeis are expected to match that
schema. As such the specification becomes impoitamxchange of whole models between
tools (in contrast, it would be rather clumsy toplement tightly coupled tool integration

around XMI).

7.7.2 CWM

Common Warehouse Meta-model is a remarkable exaofpéestandalone domain specific
meta-model standardized as a part of the OMG famofly modelling specifications.
Specification is described as “interfaces that banused to enable easy interchange of
warehouse and business intelligence metadata betwaehouse tools, warehouse platforms
and warehouse metadata repositories in distribbietdrogeneous environments” (Object
Management Group 2003).

- 106 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Since its meta-model is specified independentlyl (aot as a UML profile), this exemplifies
the application of MOF-based meta-modelling to tats platform independent modelling
means for a particular domain. It is interestingotoserve how the concrete notions of
particular technology are abstracted into platfoentral modelling constructs.

VIDE language development may encounter the neeathafarly in-depth meta-model-based
extension of existing modelling infrastructure. Tegquired extensions or customizations may
come from two directions. First, bringing new pramgming solutions onto platform
independent modelling level may require addition@hguage constructs. Second (as
suggested by the idea of Pervasive Services of Méd)e features of target implementation
platform may have enough in common, such that thbstract form should be available
during specification of PIMs.

- 107 -
© Copyright by VIDE Consortium

8 Tool Selection

Like many software development approaches, MDA d@ghieve little without tool support.
VIDE aims to enhance the MDA approach by providitaplsets for model driven
development whereby application code is generatedth fCIMs and PIMs. There are
numerous tools that already support MDA developnibgnoffering varying functionality for
MDA specification. To determine the issues that EIBwst address, it is vital that some of
the main MDA tools are studied, in order to leamonf existing work and to improve on it.
The review method adopted is based on (KitchenhadnJanes 1997) and is focussed on a
number of features that the OMG considers essefttaboftware development using the
MDA approach. Some of these include the capabiitytools to support PIM to PSM
transformation, and the automated generation oé ¢ one or more PSMs. What follows
then, is an overview of industry and research tdws exhibit some of these features.

8.1 MDA Tool review

This section outlines a set of MDA tools and thatdees they each provide. The summary of
the tools is provided in a table, and the featln®isg investigated are provided below. The
features are derived from literature on MDA (acaregpapers and the OMG website).

The tools discussed are Optimald (Compuware 2006%5tyler (Objects 2006), Constructor
(DotNetBuilders 2006), Codagen Architect (Codagdi06), Objecteering (Objecteering
2006), Ameos (Aonix 2006), Together Architect (Bod 2006), XMF Mosaic (Xactium

2006), Jamda (Boocock 2006), PathMate (PathFindia¢iSons 2006), NetBeans (NetBeans
2006), Rational XDE Developer (IBM 2006), Eclipseodiélling Framework (Eclipse 2006)
and Websphere (IBM 2006).

The tools

Short word Full Name Company

0J OptimalJ Compuware

AS Arcstyler Interactive Objects

CT Constructor Dot Net Builders

CA Codagen Architect Codagen

oG Objecteering Objecteering Software [SOFTEAM]
AM Ameos Aonix

TA Together Architect Borland [Inprise]

XM XMF Mosaic Open source

JD Jamda Open source

PT PathMate IBM

NB NetBeans NetBeans & Sun Microsystems
RX Rational XDE Developer IBM

EMF Eclipse Modelling Framework IBM

WS Websphere IBM

Aris Aris Toolset IDS Scheer

Project supported by the European Commission withirSixth Framework Programme
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Features studied are summarised as follows:

CIM — whether or not the tool provides support (v@ations such as use cases, or
activity diagrams) for CIM modelling.

PIM — whether or not a tool provides support favihodelling.

PSM — whether or not a tool provides an explicgmart for PSM modelling by further
development of PIM or transformation of PIM to PSM.

UML 2.0 — whether or not the tool supports UML2dimpliant modelling activities.
MOF 2.0 — whether or not the tool offers MOF2.0 pdiant meta-modelling.

Action Semantics — whether or not the tool providesmplementation of action
semantics for production of executable models.

UML profiles — whether or not the tool supports thehoring of UML profiles.

XMI — whether or not the tool supports the XMl siard.

CWM — whether or not the tool provides supporttfer CWM standard.

QVT — whether or not the tool supports the QVT dtad via some form of
implementation of the standard.

OCL — whether or not the tool supports expressorgtraints over modelled objects
using the OCL standard.

PIM-> PSM>Code — whether or not the tool supports MDSD onhalthree phases.
PIM&PSM&Code — whether or not the tool supports reverseneegng of models in
these three phases.

PIM->Code — whether or not the tool supports direct ggeteeration form PIM models.
PSM>PSM bridge — whether or not the tool offers a beitly derive PSMs for different
specific platforms (e.g. Java or .NET).

Legacy code>PSM — whether or not the tool supports productioR®M from existing
legacy code.

Traceability of transformation® whether or not the tool allows for modellers tact
transformations between models (e.g. between ChdsPaMs or between PIMs and
PSMs).

Transformation based on patterns — whether orheotdol provides patterns for
transforming CIMs to PIMs, PIMs to PSMs or PSMe&dtole. These patterns may be
domain specific at lower levels, or platform spiecdt later levels.

Merging of models — whether or not a tool providapability to merge different models
(e.g., 2 or more PIMs or 2 or more PSMs).

More than one implementation platform — whethenairthe tool supports derivation of
application code for more than one target platf¢erg., C++, Java, or SmallTalk)

- 109 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Feature oJ AS | CT | CA | OG | AM | TA | XM | JD PT NB | RX | EMF | WS | Aris

Support for:-

CiM

AN
AN

PIM

AN

PSM

*

AN

UML 2.0

MOF 2.0

ANANENAN
NN
ANANENAN
ANENENANAN
ANENENAN
ANENENAN
ANENENANAN

NRNEN
ANENENENAN
NNRNEN

Action Semantics

UML profiles

<

NN

NN

NN

SNENENENEN
<

XMI

<
<
<
(\
<

CwM

QVT

AN

OCL

PIM >PSM->Code
transformation

(\
<
<
<
<
(\
ANRN
*

PIM<& v v
PSM<Code

transformation

<
<
<

PIM->Code
transformation

<
<
<
<

PSM->PSM bridge

Legacy code
->PSM transformation

Transformation based on
patterns

<

<
ANERNERSNR IR
(\

Traceability of
transformations

v |V

<
<
<
<\

ANERSERNERNANERN

Merging of
models

<
<
<\

More than one
implementation platforms

ANERNERNEENIRN
<\

v v |V |V |V |V |V v

Table 3: Overview of tool support for modelling stadards
v’ = Direct suppor¥ * = Support through "3 party plug-in

8.1.1 Tool overview

There is an emerging pattern across the tools degathe modelling notations used. The
notations used for CIM construction (where CIM mlbdg is supported) are UML use case
diagrams and activity diagrams, also class diagraines conceptual level. PIM modelling is
predominantly by way of a UML class diagram, anchyntools subsequently base the PSM
model on the PIM class diagram in order to readr ttarget platform. Other observations
include:

* Only a few tools (such as NetBeans) describe dmoeddée mechanism by which an
implementation of MOF is made.

» Other tools such as OptimalJ implement transforonatusing patterns.

* Most of the studied tools do not indicate how theyplement the OMG’s MDA
standards (e.g., MOF and QVT).

* Most tools have an implementation supporting XMI.

* Some tools support MDA by following recommendatidneam OMG; others are
‘inventive’ about how they provide MDA supportingedtures within their
environments.

- 110 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

» Some of the studied tools only support direct gatn@n of code from PIMs, which
also means that the construction of PIMs is a m®deat involves embellishing PIMs
with some formal language.

Different approaches have been adopted by the verafdhe tools reviewed. For example,
there are MDA tools that adopt a component bas@doaph to providing MDA functions.
The Eclipse IDE is one such example, providing afrastructure for developing Java
applications, and a plugin mechanism supportingMimsA development approach based on
the Eclipse Modelling Framework (EMF). Models cam $pecified using annotated Java,
XML, or using Rational Rose, then imported into EMFom a model specification, EMF
provides a transformation mechanism for producinget of Java classes for the model.
Finally, EMF provides the foundation for interopaitdy with other EMF-based tools and
applications, such as ATL, and WebSphere.

Other examples include the NetBeans project (whahseen the production of the NetBeans
IDE) has provided an implementation of MOF using Metadata Repository (MDR). The
MDR implements the OMG's MOF standard and integrateinto the NetBeans Tools
Platform (Matula 2003; NetBeans 2006). Similarlypj€xteering offers support for UML
(including model merge), PSM and transformatiorfif@® for Java, C++, C#, CORBA, SQL
and even Fortran. The model transformation is $ie€écin a transformation language called J
(this is supported through a Java-based API).

In the review of tools conducted thus far, it ispontant to note that whereas most tools
support code generation from PSMs, there are adgeres found with the completeness of the
code generated. In all the tools presented hereuahdtweaks’ of the generated code are
required to varying degrees.

8.2 Tools from the European Research Project MODELWARE

MODELWARE is a project co-funded by the Europeanm@assion under the "Information
Society Technologies" Sixth Framework Program (200@6). The overall objective of
MODELWARE is to improve productivity in software weopment. This objective is
pursued by contributing to the realization of th&on of model-driven development (MDD).
MODELWARE participates in the realization of thision by pursuing three main goals:
* Improve MDA technologies through new modelling teclogies and tools, and
through generalized interoperability techniquesveen tools.
» Define the appropriate software development pr@setkat take advantage of the
MDD evolution. MDD maturity levels are defined wiiththis task.
» Use these technologies and processes on largeaseftypplication developments, in
order to measure the ROI and to prove the addedevaf MDD with the new
techniques and processes.

MODELWARE is a large research project (IP: IntegdaProject) with 19 partners. It has
already increased the knowledge and maturity ofpédicipants. Lessons can already be
learned from this project and its experiments.

MODELWARE contributes to realizing the vision of NIDby taking up three main

challenges: (1) new development processes musiaberated, with better and more mature
tools to support them; (2) know-how must be reusadross development projects; (3) tool
chains must be open to allow interoperability amdbssitutability between tools, thereby

-111 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

avoiding tool vendor lock-in and allowing existingodels to be capitalized. In the
MODELWARE MDD whitepapel* , these challenges are described in detail, aedniy
MODELWARE addresses these challenges is explained.

MODELWARE has produced research results on modelkstormation, model composition,
model weaving and on the MDA Tool Component notwhich is now proposed for
standardization, and for architecture modelling.

MODELWARE has developed tools dedicated to modaledr development, most of them
being based on the Eclipse EMF infrastructure. us that are the most relevant to the
VIDE goals are the following ones:

1. ModelBus? ModelBus enables a transparent integration ofehbased tool. It is an
infrastructure based on the Service Oriented Aectuire. The functionalities provided
by tools are considered as modelling services. IQtwds can benefit from these
services using them in a transparent way. The &atufe of ModelBus is possibility
to exchange models in heterogeneous formats. ModghBovides an abstraction layer
for service description, run-time infrastructurelam integration toolkit for Java-
based tools. The Orchestration Tool allows sequgreervice execution and in this
way provides a means for constructing highly-relestdmol chains. Several
commercial tools have been adapted to be conndutedgh ModelBus, the
Objecteering Case tool being one of them.

2. MDA Modeler tool set: This tool allows for modeljriMDA extensions to the UML,
and to package a specific MDA approach into MDA [T@omponents. It has been
developed on top of the Objecteering case took Tdol provides reusable services
over ModelBus.

3. OCL Tool"* An open source OCL2.0 interpreter has been dpeeldit is based on
the Kent OCL library and provides services over glads.

4. Model Transformation Tool Suite (MTTS): This is aogp of three model
transformation engines: ATLA4 QVT from France Telecom and MOFSctpt
ATLAS is a general purpose open source model fioamstion infrastructure,
MOFScript is a language and an engine that allawgenerate text (such as code
typically) from the model. MOFScript is an open s@uimplementation.

5. IBM has developed a tool for model simulation amdts — it offers an interesting
approach that could be reused within the VIDE projehe model can be simulated
and becomes testable.

The MODELWARE project has defined bespoke softwdaeelopment processes adapted to
MDA approaches, and has defined the maturity letheds are relevant for organization using
MDA.

The developed approaches and tool suites have \md&lated using large industrial use.

These use cases have produced indication on theéaOdan be expected while using MDA.

The technologies used and developed within the MOMERE project are of a high

relevance for the VIDE project. MDA Tool Componen#s be used to adapt UML for VIDE
specific purposes. The model transformation teagies can be reused within the VIDE
project. For example, the code generation thaVidE project will provide can be based on

1 MODELWARE MDD Whitepaper (Modelware/I6. L http://www.modelware-ist.org/index.php?option=cormpsitory&
Iltemid=74&func=download&id=87&chk=f119523ab5e60eX@01b941dd1734

12 ModelBus white paper: http://www.eclipse.org/mddodie|BusWhitePaper_V1.2.pdf

13 http://oslo-project.berlios.de/

14 http://www.eclipse.org/gmt/atl/

15 http://www.eclipse.org/gmt/mofscript/

-112 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming
Version 1.0

Work Package 1 — Deliverable D1.1
Date 08.01.2007

MOF2text implementations such as MOFScript from MEMWARE. The ATLAS model
transformer is one candidate for internal modeigfarmations that might be necessary. The
simulation tool from MODELWARE, which is not openwsce, can provide input on how to
use the UML language for modelling more completély behaviour in an executable way.
The ModelBus is an integration mechanism that isrthvaconsidering as a possible
architectural approach.

8.3 Modelling and Language Implications for Tool Seleabn

This review has shown that there is a broad rarigactvities that currently support the
development of the MDA/MDD method through the psien of frameworks, languages and
tools. In order to reach a conclusion on a pamiculevelopment tool set (and associated
frameworks and standards), it is necessary to densgihe modelling requirements as they are
set out in Chapter 7.

A brief summary of the VIDE modelling requirememdicate that:

* VIDE should comply with MDA standards (e.g. UML).

* Related standards may be used to extend VIDE G&\{V).

» Interoperability standards should be adopted §&My).

* CIM level models should include business modeltogcepts.

» Transformation between CIM and PIM models shoulduggported by VIDE.

» VIDE should be extensible via a plug-in mechanism.

» Action semantics should be used for producing etadstet models.

* An extension of the action semantics should beigeavto enable modelling of
aspects.

» Already adopted industrial modelling standards. (&ML, Ecore) should be adopted
by VIDE.

* VIDE will use EMF as its modelling framework.

* VIDE will conform to MOF and its meta-models wiletMOF compliant.

* Model transformation framework within VIDE are pieed to be implemented through
ATL.

» Model to text transformations will be by XPAND tsfarmation language.

» Text to (diagram) models will be by use of XTEXarnework.

» Graphical modelling will be done using Eclipse’s GM

The impact of these decisions across the scopleeoYIDE project is described in the table
below:

CIM PIM PSM

Standards BPMN UML2.0 — AS JMI

UML UML XMI

MOF XMI

XMl EMF-Ecore

QVT QVT

MDR CWM

JMI

Frameworks Zachman IDEF EMF

ARIS EMF ATL

CIMOSA NetBeans

IDEF ATL

ARIS MDR

ATL Xtext

MDR GMF

© Copyright by VIDE Consortium

- 113 -

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007
Xtext
Languages Petri Nets UML2.0-AS EMF-Ecore
BPML EMF-Ecore Java
EPC ATLAS
MOF TefKat
UML OCL
CWM MOFScript
XPDL XPAND
ATLAS
MOFScript
XPAND
OCL
Tools ARIS Eclipse Eclipse
ANTLR ATLTrace ATLTrace
NetBeans NetBeans
ANTLR

Table 4 Outline of standards, frameworks, language& tools discussed in section

In the following sections, potential software toalsd frameworks from this review (including
a few bespoke entities where appropriate) are redtalgainst VIDE modelling demands.

8.3.1 VIDE Development Tool Requirements: Support for Stadards

A number of requirements have been identified iis gection that relates modelling and
imperative language standards to the levels of GIN| and PSM.

REQ — Tool 9 | CIM modelling standards | MAY
VIDE may support CIM level modelling with BPMN; where there is inadequate or no
support for BMPN, VIDE may provide CIM modelling capability with UML activity
diagrams.

Tools available Appian Enterprise hitp://www.appian.com)/ and TeamWorks
(www.lombardisoftware.cojnfor BPMN support; Rational Rose, Together, angeCtieering
(for activity diagrams).

Selection Bespoke development.

REQ — Tool 10 | PIM, PSM modelling standards | SHOULD
VIDE SHOULD provide support for PIM modelling with UML and action semantics;
the meta-modelling standard for VIDE should be Ecore.

VIDE SHOULD support well known PSM modelling standards (e.g. XMI for model
and meta-model interchange, JMI for Java based PSM).

PIM Tools availableEclipse with EMF; Rational Rose; Eclipse UML (fradmondo).
Selection Eclipse & EMF

PSM Tools availableObjecteering, OptimalJ, Together, Eclipse/EMF.

Selection Eclipse framework

8.3.2 VIDE Development Tool Requirements: Support for Mocelling Frameworks

The following requirements reflect some of the sarfipg software APIs/frameworks that
have been identified for inclusion within the VIREEvelopment configuration.

REQ — Tool 11 | Framework for CIM, PIM, PSM modelling | SHOULD
VIDE SHOULD adopt the ATL framework as its transformation framework, and

- 114 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

should use XPAND for model to text transformations.
VIDE SHOULD adopt EMF as its framework for PIM modelling

VIDE SHOULD adopt EMF as the meta-modelling framework.

CIM Tools availableATL Model Weaver, OpenArchitectureWare toolset.
Selection ATL

PIM Tools availableEclipse, ATL Model Weaver

Selection Eclipse framework, ATL

PSM Tools availableEclipse, Eclipse UML, ATL Model Weaver
Selection Eclipse framework, ATL

8.3.3 VIDE Development Tool Requirements: Support for Mocelling Languages

Here the requirements for specific, executable wioraatic transformation formalisms are
expressed as requirements for CIM, PIM and PSMdeve

REQ — Lang 7 | Language for CIM, PIM, PSM modelling | SHOULD
VIDE SHOULD support requirements definition tasks and business process
description with BPML

VIDE SHOULD adopt action semantics for the modelling of executable PIM models

VIDE SHOULD provide support for target PSM environments e.g. Java, C++, or
SmallTalk; VIDE should provide platform implementation mappings in PIMs or CIMs.

CIM Tools available:no known implementations of BPML; may use sistezcdration —
BPMN with possible support from Appian EnterprisefeamWorks technologies.
Selection--

PIM Tools availableno tool known that fully implements action senmestas required by
VIDE.

PSM Tools availabteEMF, ATL Model Weaver, OptimalJ

SelectionEMF, ATL

-115 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

8.3.4 VIDE Development Tool Requirements: Interoperability of VIDE Technology

REQ — Tool 12 | VIDE extensibility | SHOULD
The VIDE tools should be extensible via a plug-in mechanism.

Tools available Eclipse or EclipseUML, Together, OptimalJ, Obgsing, Rational
Enterprise
Selection Eclipse framework

This requirement implies in particular that a piufpr ensuring quality on model level can be
added:
* The visualization of the model (i.e., PIM) shoulel éxtensible in order to augment it
with information about quality defects (e.g., waigns).
* The information describing the model (i.e., the Pishould be accessible from an
extension or plugin in order to analyse the model diagnose quality defects.

REQ — Tool 13 | Integration and metadata interchange | SHOULD
VIDE should provide model and meta-data interchange capability by adopting the
XMI standard

Tools available VIDE to provide its capability adhering to MOFXMI standard; (e.qg.
Eclipse’s EMF, NetBeans MDR) for model and metaaddbrage.
Selection Eclipse framework

8.4 Conclusion

All the observations from the MDA tool review (Sect 8.1) and more specifically, the tool-
based resource review for supporting the modehaggirements (Section 8.3) serve to show
that there is substantial (but not complete orgrated) tool support for many of the
development requirements of VIDE. From this reviévis clear that the Eclipse environment
offers the greatest degree of support for the dgweéent of the VIDE tool. Where VIDE
addresses entirely new areas of innovation and hwodgration, further development or the
inclusion of bespoke software components shouldmaele compatible with the Eclipse
framework.

- 116 -
© Copyright by VIDE Consortium

9 Implications for the VIDE Architecture

The requirements gathered so far imply requirementthe VIDE architecture, both for the
VIDE tools and the language.

9.1 The VIDE Architecture as Contribution to MDSD

VIDE is contributing to Model Driven Software Dewpiment as envisaged by OMG’s Model
Driven Architecture (MDA). It thus follows a stricbeta-modelling approach. This entails the
separation of:

1. abstract representation as an instance of M2 maahels

2. concrete representations as mappings from M2 ioetato graphical or textual
representations.

We refer to the former as abstract syntax and ¢oldkter as concrete syntax. For a given
abstract syntax we may have several concrete ssstaxdefining alternative mappings.

The framework selected for VIDE which supports thedinition of abstract syntaxes and
mappings to concrete syntaxes is the Eclipse MiodeFramework EMF. With this choice,
the VIDE tool:

* has no need for any manual synchronisation betgesgrhical and textual
representation of action language sentences—thesdor free with the meta-
modelling framework,

» can offer, if needed, a number of concrete synteb@h graphical and textual,

* can much more easily provide an editor with sym@xpletion for the textual
concrete syntax.

The following Figure illustrates the meta-modellaghitecture.

MOF/EMF

M3 /T\
\

Mapping: PEC Graphical Notation Mapping: Smalltalk-like
GraphicX ume * Text
M2 p ° Mapping: Altern. Graphical Notatig ® Mapping: Java-like
Rectanagl V
A
\ |
=Z or v=w [:ConditionalNod]
Examp|e IF y | chl)nalNod | l
then:ClI Ise:Claus
M1 e en:Claus else:Clau
X:=y [:Assignmer | [:Expressio |
false
X:=y

Example
MO

Figure 10 Meta Modelling Architecture

Project supported by the European Commission withirSixth Framework Programme
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Note that this figure mainly provides a conceptualv on the meta-modelling architecture.
To a very large extent, it can be realised techiyiexactly this way. For transformations
between model and text we may, however, utilis€igfised techniques as pointed out in the
Standards and Languages chapter.

To clarify once again: Any concrete syntax, textoiavisual of the VIDE language is just a
viewon the abstract syntax given by UML. As in thesslaal Model-View-Controller pattern,
only the representation in terms of abstract symalxeld in the repository (plus additional
information on coordinates of the graphical elerspnrt changes that occur here trigger
changes in all views.

Instance of U
Meta-model

including actions,
activities, behaviour

= Abstract Synta

View Concrete| | View Concrete| | View Concrete| | View Concrete
Syntax 1: Syntax 2: Syntax 3: Syntax 4:

VIDE PEC Another Graphical| | Some Smalltalk-| | Some Java-like
Graphical Notation Notation like Syntax Syntax

Figure 11 Views on UML Abstract Syntax

REQ — Tool 14 | Model driven approach | MUST
The VIDE tool strictly follows a model driven appich as stipulated in Figure 10.
Description:

As described in this section.

Technically, the strict model-driven architectutws for an easy construction of tools as
the following example demonstrates. We have prpedya VIDE tool with the Eclipse
Modelling Framework simply by drawing a meta-modslin Figure 12. It is a simplified
excerpt from the UML meta-model. The equivaleng tsgucture can be seen in

-118 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

H Mamedobiject

= name
H Mode
cortrolFlo
activityNodes
H Executablerode 5 activity H ConditionalMode conditionClauses | H Clausekode

= condition

returmnType
body

H DataType

Figure 12: Meta-model of a VIDE Demonstrator

Together with a declarative mapping to the graphiltanain, we obtain automatically an
editor for an activity diagram like notation of aation language, integrated in Eclipse as can
be seen in Figure 13.

-119 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007
€ Java - default2 svide_diagram -Ecipsespk eI

File Edit Mavigate Search Project Diagram Run Window Help
[%0 -B-Q- | B&8G-|BI®E 2 |G- B]@)5
| |Tatia 2 | PR [| = I A e = |IIDD% -v[

T | [package Ex... 2 \\I:h:erarchy e agram X N @ default svide =0
@ dlaslz~ a||—Palette — »
|% Select
[-1=* appletest context for 65 e
1= bomaptest this activity is: e AFib e
1=+ primtest Orcler i NOME ARachment ~
: l=F SupplierInvoice <= Bckivity
- svide o & Executabls
i & default.svide | calculateDiscount PRt < Conditional
[ﬁ] default,svide_diagram S
& defaultz svide & start i
E] defaulkz . svide_diagram . ()
[T umlkest
maps to Clause En;rEtsliégn o
customer isPrermium() 4 lcustomer.isPremium()
o= Outline 52 - 4 discount += 0.5 ||
) AL
maps to
i Sequencel
|4 calculatePriced)| :
« : | LI_I I
= Properties 53 |
|Appearance
Rulers & Grid
Advanced | Tahoma B3| ERES
8| 1]] 4|3
| b I

Figure 13: The generated editor

- 120 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

An example model draws with this tool is depictedrigure 14.

context for
this activity is:
Crder
<4 calculateDiscourt maps to Activity
& start
maps to
5 0 (€ Conditionalkode
 customer.isPremiumi) < lcustarmer.isPremium()
4 discount += 0.5
maps to
Sequencetiode

& ralculatePrice()

maps to maps toCalOperationAction
AddStructuralFeaturetcion

Figure 14: A model drawn with the prototype

9.2 The VIDE Architecture from a User’s Point of View

The embedding into the MDSD is reflected in théolwing overall architecture of the VIDE
tool:

-121 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Modelling of Modelling of platform- Code
business viewoptional) independent technical detgifs” Generation

y A 4
CIM Editor | QA Support|—>| PIM Editor |S|mu|at|od

Aspect
CIM PIM |« Weaver PSNV Code

~ \
pre-generat \ v
\ generat Platform speg.
\ -

Model Transformation Framework

store Model

Repository

Figure 15: The VIDE architecture from the user’s pant of view

VIDE users may interact with the system dependimgheir background and skills either on
CIM or on PIM layer. The PSM layer is not touched i is read-only). The steps from CIM
to PIM layer and from PIM to PSM layer and to cadle performed by employing the model
transformation framework only. Allowing for modifiion on the PIM layer, rather than
translating from CIM to Code in one step seemsagarable alleviation to the complexity of
the problem as a whole.

REQ — AR1 | Architecture | SHOULD

Concerning the behaviour from a VIDE user’s pertipecthe VIDE tool should follow thg
architecture as depicted in Figure 15.

117

Description:
See above.

-122 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming

Version 1.0

Date 08.01.2007

Work Package 1 — Deliverable D1.1

10 List of Requirements

Requirement Number Name Priority
REQ — NonFunc 1 Accessibility at the CIM level SHOULD
REQ — NonFunc 2 CIM level collaboration MAY
REQ — NonFunc 3 On-line support for CIM/PIM users SHOULD
REQ — NonFunc/Semantics | Clear and unambiguous notation SHOULD
4
REQ — NonFunc 5 Model view saliency SHOULD
REQ — NonFunc 6 Appropriate textual/graphical fidelity SHOULD
REQ — NonFunc 7 Timely feedback and constraints SHOULD
REQ — NonFunc 8 Runnable and testable VIDE prototypes SHOULD
REQ — NonFunc 9 Scalability of proposed solution. MUST
REQ — User 1 Flexibility and interoperability of VIDE SHOULD
language and tools
REQ — User 2 Reuse of UML Standard SHOULD
REQ — Semantics 1 Semantics of VIDE Internal Communication | SHOULD
REQ — Semantics 2 Simple VIDE semantics SHOULD
REQ - Lang 1 Usage of UML2 Behaviour (“Action SHOULD
Semantics”)
REQ — Lang 2 Simplified UML meta-model MAY
REQ — Lang 3 User Language & Concepts SHOULD
REQ — Lang 4 Compliance with Standards SHOULD
REQ — Lang 5 Deviation from Standards MAY
REQ — Lang 6 Modularisation and extensibility SHOULD
REQ —Lang 7 Language for CIM, PIM, PSM modelling SHOULD
REQ —Tool 1 Usage of Industrially Adopted Tools MUST
REQ — Tool 2 Meta-modelling Framework MUST
REQ — Tool 3 Meta-modelling Concepts SHOULD
REQ — Tool 4 M2M Transformation Technology SHOULD
REQ —Tool 5 M2T Transformation Technology SHOULD
REQ —Tool 6 T2M SHOULD
REQ — Tool 7 Meta-modelling Framework SHOULD
REQ —Tool 8 Use of OCL SHOULD
REQ —Tool 9 CIM modelling standards MAY
REQ — Tool 10 PIM, PSM modelling standards SHOULD
REQ — Tool 11 Framework for CIM, PIM, PSM modelling SHOULD
REQ — Tool 12 VIDE extensibility SHOULD
REQ — Tool 13 Integration and metadata interchange SHOULD
REQ — Tool 14 Model driven approach MUST
REQ — AR1 Architecture SHOULD
-123 -

© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

11 Glossary

Analyst / Designer: Analysts/Designers are responsible for the comegphodel of business
entities and the high level business logic. They dssign artefacts and models produced by
the business analyst and transforms them into ardeAnalysts/Designers work on PIM
level in the VIDE tool stack.

Analyst/VIDE Programmer: The Analyst/VIDE Programmer is responsible for the
completion of the behavioural model to allow mosietulation (i.e. for testing) and the
transformation of the models into code. AnalystBlIProgrammers work on PIM level in
the VIDE tool stack.

AOP: AspectOrientedProgramming is a programming paradigm that attertgpsd
programmers in the separation of concerns, spatiificross-cutting concerns, to advance the
modularization of software. AOP uses crosscuttxgyessions that encapsulate the concern
in one place.

Architect: The architect is responsible for building the sfanmations of the behavioural
models described using VIDE into platform speatiocling. The architect is an expert in the
target platform (i.e. Struts, ...) and the prograngrianguage (i.e. Java) but also has a
sufficient understanding of UML and VIDE to be abdedefine the transformation. Architects
work on PIM&PSM level in the VIDE tool stack.

ATL : TheATLAS TransformatiorL anguage is a result of the MODELWARE project. This
transformation language is closely related to tM& Qtandard and provides a running
implementation.

BPMN: Business Process Modelling Notation. The OMGdaath BPMN provides a notation
that is understandable by business users, inclumisgess analysts (creating the initial drafts
of the processes), the technical developers (regperfor implementing the technology that
will perform those processes), and the businespledaho will manage and monitor those
processes).

Business Analyst:The Business Analysts advise enterprises on asabmnception and
implementation of IT solutions. They constitute tmanection between the customer and the
involved IT specialists and need technical as a®kocial competences. Business Analysts
work on CIM level in the VIDE tool stack.

CIM: A Computationlndependenilodel represents the user requirements in an abstrac
high level view on a software or business systene. ffansition of a CIM Model into a
Platform Independent Model (PIM) should be don@muattically using a model
transformation.

Domain User (Customer):The Domain User is the end user of the construséisvare
solution. He works for the customer and is an exipeis special domain typically without
knowledge technical issues. The Domain User work€/ level in the VIDE tool stack.

- 124 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

EMF: EclipseModelingFramework is a modelling framework for building te@nd other
applications based on a structured data model. pid¥des tools and runtime support to
produce a set of Java classes for the model, @ aeliapter classes that enable viewing and
command-based editing of the model, and a basiore@MF provides the foundation for
interoperability with other EMF-based tools and laggpions.

GEF: GraphicalEditing Framework allows developers to create a rich grabladitor from
an existing application model. Developer can takeaatage of many common operations
provided in GEF and/or extend them for the specdiéimain. GEF employs an MVC (model-
view-controller) architecture which enables simgihanges to be applied to the model from
the view.

GMF: TheGraphicalM odelingFramework provides a generative component and rentim
infrastructure for developing graphical editorsdzhen the Eclipse Modeling Framework
(EMF) and Graphical Editing Framework (GEF).

IDE: IntegratedDevelopmenEnvironment assists computer programmers in devedppi
software usually consisting of a source code edt@ompiler and/or interpreter, build-
automation tools, and a debugger. The VIDE projpglttextend an existing IDE with tools
for describing UML2 Action Semantics

M3/M2/M1 Layers: Metamodelling is defined into a four-layered atebiure. The M3 layer
provides a meta-meta-model at the top layer. Tt8smvbdel is the language used by MOF to
build meta-models, called M2-models. These M2-m®dekcribe elements of the M1-layer,
and thus M1-models. The MO-layer is used to desdtie real-world.

MDA: ModelDriven Architecture is a software design approach intefidetipport model-
driven engineering of software systems. MDA wasated by the OMG.

MDST: ModelDriven SoftwareTesting derives test cases in whole or in part feomodel
that describes some (usually functional) aspectseofest system. In VIDE testing should be
supported on model (e.g. model simulation) and d¢ede verify the correctness of code
transformations.

ModelBus: ModelBus are tools dedicated to model driven dgselent developed by the
MODELWARE project. The key feature of ModelBus @spibility to exchange models in
heterogeneous formats and a transparent integrattioodel based tool.

MOF: Meta{ObjectFacility is standard for Model Driven Engineeringpposed by the

OMG. MOF provides a meta-meta-model at the toprlapel means to create and manipulate
models and meta-models. There are two relevanioverf this standard, MOF 1.4 (Object
Management Group 2002) and MOF 2.0 (Object Managef@soup 2004).

OCL.: ObjectConstraintLanguage. OCL statements serve as the most preeesesrof

model specification within the UML and MOF modebameta-model definitions. For that
purpose OCL was defined to be able to express i@ntst for any kind of UML elements.
OCL moreover provides means to express any (fndr query on some instance of a UML
class diagram.

- 125 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

OMG: ObjectManagemenGroup (OMG) is a consortium, originally aimed attsef
standards for distributed object-oriented systeand,is now focused on modelling (programs,
systems and business processes) and model-basddrgi®in some 20 vertical markets.

Petri Net: Petri Nets are a formal, graphical, executablertegte for the specification and
analysis of concurrent, discrete-event dynamicesyst a technique undergoing
standardization, initially developed by C. A. Pébri the specification of concurrent (parallel)
systems.

PIM: A PlatformIndependentiodel is a model of a software or business systemigh
independent of the specific technological platfarsed (PSM Level) to implement it. The
transition of a PIM Model into a Platform-specifleSM) model should be done automatically
using a model transformation.

PSM: A Platform Specific Model is a model of a software or business systatisHinked to
a specific technological platform (e.g. a spegiiogramming language, operating system or
database). The PSM Model should allow for an autimntransformation into code.

Query: A guery is the extraction of data from a struetlisource of information. In the VIDE
context, queries are sub-expressions of the VIDBUage which extract data from a UML
class diagram.

QVT: Query /Views /Transformations is an emerging OMG standard provieesnology
neutral solutions for querying, transforming andafying views of MOF-based models.

SDL: The Specification andescriptionL anguage is a specification language for describing
system behaviour. Its major use case is in thedetenunication industry for descriptions of
process control and real-time applications.

SME: Small & Medium-sizedEnterprises is an abbreviation to classify compawiesse
headcount or turnover falls below certain limits.

Tefkat: Open source model transformation language deedlap Queensland University.
User: A person who interacts with a system.
User Interface (UI): All aspects of a system with which a user carradieand perceive.

UML: Unified ModelingL anguage is a specification language for object hodelefined
at the OMG. UML2 Action Semantics is an essentsat pf UML 2.0 for the VIDE project.

UML Action semantics: UML Action Semantics refers to the capabilitied L to

describe behaviour algorithmically. UML Action Semtias were in UML 1.4 separated from
the rest of UML; since UML 2, one should ratherapef the behavioural part of UML
(which is sub-divided in UML actions, activitiesycabehaviour). Contrary to its name, UML
Action Semantics, does primarily define an abstsgotax rather than semantics.

Visual Design: The portion of a user interface that is concemigd the aesthetic quality of
an application. Composed of variables that addaesgsecific purpose or function, such as

- 126 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

font, color, and images, which impact the appeaaoganization and layout of the graphical
elements in a user interface.

XMI: XML M etadatd nterchange is a MOF-based specification providimegrules of XML
serialization of models, allowing their transfetvween standard-compliant tools.

-127 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

12 References

(2006). GMF Tutorial.

Abraham, R. (2003). FoXQ - XQuery by Forms. 200EBESymposia on Human Centric
Computing Languages and Environments, Auckland, Kealand

Ahrendt, W., T. Baar, et al. (2005). "The KeY TdOdboftware and Systems Modelidgl):
32-54.

Alcatel, I. Logix, et al. (2001). Action Semantits the UML OMG ad/2001-08-04 Response
to OMG RFP ad/98-11-01, Alcatel, I-Logix, Kennedg€&r, Kabira Technologies Inc.,
Project Technology Inc., Rational Software CorporatTelelogic AB.

Allen, E. (2002). Bug patterns in JaBerkeley, Apress, USA, New York, NY.

Aniszczyk, C. (2005). Using GEF with EMF

Aonix. (2006). "Ameos toolset for MDAh{tp://www.aonix.com/ameos.htmil). Retrieved
08/2006, 2006, fromttp://www.aonix.com/ameos.html

Ark, W., D. C. Dryer, et al. (1998). RepresentatMatters: the Effect of 3D Objects and a
Spatial Metaphor in a Graphical User InterfaPeoceedings of HCI 98, the Conference on
Human-Computer Interaction, Springer.

Atkinson, C. and T. Kihne (2003). Model-Driven Dmment: A Metamodeling
Foundation. IEEE Softwar20(5): 36-41.

Atkinson, M. and P. Buneman (1987). Types and Bterste in Database Programming
Languages. ACM Computing Survey®: 105-190.

Atkinson, M. and R. Morrison (1995). OrthogonallgrBistent Object Systems. The VLDB
Journal 4: 319-401.

ATLAS group and LINA & INRIA Nantes (2006). ATL: Ads Transformation Language,
ATL User Manual.

Aurum, A., H. Petersson, et al. (2002). "Statekaf-art: software inspections after 25 years."
Software Testing, Verification and Reliability, UKvol 12 (Sept. 2002), no 3, p 133 54, 56
refs.

Avison, D., A.T.Wood-Harper, et al. (1998). "A foer exploration into information systems
development: the evolution of Multiview?2.". IT aReéople 124 -138.

Avison, D. and G. Fitzgerald (2006). Informationsg&ms Development: Methodologies,
Techniqgues and Toaolsondon, UK, McGraw-Hill.

Avison, D. E. and A.T.Wood-Harper (1990). Multiviewan exploration in information
systems developmerntlaidenhead,UK, McGraw-Hill.

-128 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

B. G. Ryder, M. L. S. M. B. (2005). The Impact obfvare Engineering Research on
Modern Programming Languages. ACM Transactions aftw@re Engineering and
Methodology 14: 431-477.

B. Shneiderman, C. P. (2003). Designing the ugerface: Strategies for effective human-
computer interactiorReading, MA, Addison-Wesley.

Baar, T. (2003). "Metamodels without Metacirculi@st" L'Objet9(4): 95--114.

Barbosa, P. A. A.,, C. F. G. Contreras, et al. (Q008DA and Separation of Aspects: An
approach based on multiple views and Subject Gateimiesign. Proc. of 5rd International
Workshop on Aspect-Oriented Modeling with UML, AO2D05, Chicago, IL

Barclay, P. J., T. Griffiths, et al. (2003). Teaha- A Flexible User-Interface Development
Environment for Object Database Applications. sWl Languages and Computiigh(1):
47-77.

Barnett, M., K. R. M. Leino, et al. (2005). The $gdProgramming System: An Overview.
Construction and Analysis of Safe, Secure, andrdprable Smart DeviceBerlin /
Heidelberg, Springer.

Bennett, K. H. and V. T. Rajlich (2000). Softwareiktenance and Evolution: A Roadmap
Future of Software Engineering Track of 22nd IC&Hnerick, Ireland, ACM Press, New
York.

Berry, G. and G. Gonthier (1992). The ESTEREL syoobus programming language:
design, semantics, implementation. Science of CéenfRrogrammingv.19 n.2:87-152.

Bézivin, J., S. Hammoudi, et al. (2004). Applyind& Approach for Web Service Platform.
EDOC 2004 58-70.

Blackwell, A. F., M. Burnett, et al. (2004). Changpa Prototyping: A Research Technique
for Early Evaluation of Complex End-User ProgramgniBystems._VL/HCC'04: IEEE

Symposium on Visual Languages and Human-Centric [fitimg, Rome, Italy, September
26-29, 2004.

Blanc, X. (2005). ModelBus, MODELWARE.

Blau, H., N. Immelman, et al. (2002). A Visual Laragie for Querying and Updating Graphs,
University of Massachusetts.

Bock, C. (2004). "UML 2 Activity and Action ModelRart 4: Object Nodes." Journal of
Object Technolog(1): 27-41.

Boocock, P. (2006). "The Jamda projedty://jamda.sourceforge.net/).Retrieved 08/2006,
2006, fromhttp://jamda.sourceforge.net/

Borger, E. and R. Stark (2003). Abstract State Mah A Method for High-Level System
Design and AnalysidHeidelberg, Springer.

- 129 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Borland. (2006). "Together Architect
(http://lwww.borland.com/us/products/together/indéxIh." Retrieved 07/2006, 2006, from
http://www.borland.com/us/products/together/indéxlh

Braubach, L., A. Pokahr, et al. (2002). Tool-Supgdrinterpreter-Based User Interface
Architecture for Ubiquitous Computing. Interacti8ystems - Design, Specification, and
Verification. Q. L. B. U. J. V. P. Forbrig, Springer Heidelbeg§--103.

Bray, I. (2002). _An Introduction to Requirements gifreering Harlow, UK, Pearson
Education Limited.

Brown, W. J. (1998). AntiPatterns: refactoring s@fte, architectures, and projects in crisis
Wiley.

Bruntink, M., D. A. van, et al. (2004). "An evali@t of clone detection techniques for
crosscutting concerns.” Proceedings. 20th IEEE rhateonal Conference on Software
Maintenance, Chicago, IL, USA, 11 14 Sept. 2004€% Alamitos, CA, USA: IEEE Comput.
Soc, 2004, p 200.9

Brykczynski, B. (1999). "A survey of software ingpien checklists.” Software Engineering
Notes24(1): 82-89.

Buck-Emden, R. and P. Zencke (2004). mySAP CRM: Offecial Guidebook to SAP CRM
4.0, Galileo Press.

Budinsky, F., D. Steinberg, et al. (2004). Ecligdedeling Framework Addison Wesley
Professional.

C.J. Date, H. D. (1992). Relational Database Wygih989-1991Addison-Wesley.

Campbell, C., W. Grieskamp, et al. (2005). Modes&h Testing of Object-Oriented Reactive
Systems with Spec Explorer. Redmond, Microsoft Rege

Cardelli, L. and P. Wegner (1985). On Understandifigpes, Data Abstraction and
Polymorphism. ACM Computing Surveyk/: 471-522.

Carlisle, M., T. Wilson, et al. (2005). RAPTOR: asWal Programming Environment for
Teaching Algorithmic Problem Solving. Proceedingé tbe 36th SIGCSE technical
symposium on Computer science educatiofé a€“ 180.

Catarci, T. (2000). What Happened When DatabasedResers Met Usability. Information
Systems. 25(3): 177-212.

Cattel, R. G. G. (1994). Object Data ManagemaAdtison-Wesley.

Cattel, R. G. G. and D. K. B. Ed (2000Q). Object ®&anagement Group: The Object
Database Standard ODMG, Release BlOrgan Kaufmann.

Chavez, C. and C. Lucena A Metamodel for Aspecefead Modeling

- 130 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Checkland, P. B. (1999). Soft Systems Methodologidtion, John Wiley and Sons Ltd.

Chitchyan, R., A. Rashid, et al. (2005). ReporttBgrizing state-of-the-art in aspect-oriented
requirements engineering, architectures and dedigncaster University, AOSD-Europe
Deliverable D11, AOSD-Europe-ULANC-9.

Ciolkowski, M., O. Laitenberger, et al. (2002). ®aire inspections, reviews and
walkthroughs Proceedings of the 24th International ConfereoceSoftware Engineering.
ICSE 2002, New York, NY, USA.

Clarke, S. a. and R. Walker Towards a Standardgbdsanguage for AOSD

Codagen. (2006). "Codagen Architect for MDAttp://www.codagen.com/). Retrieved
07/2006, 2006, fromttp://www.codagen.com/

Compuware. (2006). "OptimalJ MDA toditp://www.compuware.com/products/optimalj/).
Retrieved 08/2006, 2006, frohitp://www.compuware.com/products/optimalj/

Crowle, S. (2004). Into the mangle: Software engisgun creases through a user interface
metaphor._Developing User Interfaces with XML: Adeas on User Interface Description
Languages workshop, Advanced Visual Interfaces,'2004.

Czerwinski, M. (2002). Handbook of HCI. J. Jacka #&n Sears, Erlbaum: N19-21.

Date, C. J. (1986). Relational Database: Selectatings, Addison-Wesley.

Demeyer, S., S. Ducasse, et al. (2003). Objectimiereengineering patterrfsan Francisco,
Morgan Kaufman Publishers.

DotNetBuilders. (2006). "Constructor toolset for KD
(http://www.dotnetbuilders.com/constructor.aspx). Retrieved 07/2006, 2006, from
http://www.dotnetbuilders.com/constructor.aspx

Easterbrook, S. M. (1991). Elicitation of Requirensefrom Multiple Perspectives. London,
University of London.

Eclipse. (2006). "Eclipse projedit{p://www.eclipse.org/). Retrieved 08/2006, 2006.

Eichberg, M. (2002). MDA and Programming Languad@®ceedings of the Workshop on
Generative Techniques in the context of Model Drivichitecture. OOPSLA, November
2002

Erwin, M. (2003). Xing: A Visual XML Query Languag@ournal of Visual Languages and
Computing 14(1): 54€“45.

Faulkner, X. (2000). Usability Engineeringondon, Macmillan Press Ltd.

Fenton, N. E. and M. Neil (1999). "Software metriggccesses, failures and new directions."
Journal of Systems and Softwarg2-3): 149-57.

-131 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Fenton, N. E. and N. Ohlsson (2000). Quantitativalysis of faults and failures in a complex
software system. IEEE Transactions on Softwarer&®ging 26, no. 8:797-814.

Filman, R. E. What Is Aspect-Oriented ProgrammReyisited

Fowler, M. (1999). Refactoring: Improving the Deasigf Existing CodeAddison-Wesley.

Freimut, B. (2001). Developing and Using DefectsSSlacation Schemes. Fraunhofer IESE
Report Kaiserslautern, Fraunhofer IESE.

Fuentes, L. and P. Sanchez Elaborating UML 2.0ilesofor AO Design

G.Kiczales, J. Lamping, et al. (1997). Aspect-Oren Programming._Proc. ECOOP
Conf.1997 Springer1241:220-242.

Gardner, T., C. Griffin, et al. (2003). A review @MG MOF 2.0 Query / Views /
Transformations Submissions and Recommendatiorsrtlsnhe final Standard, OMG.

Gartner, 1. (2006). "Hype Cycle for Emerging Teclugies, 2006."

Gasevic, D., D. Djuric, et al. (2005). Bridging MDé#hd OWL Ontologies. J. Web Eng(2):
118-143.

Gause, D. C. and G. M. Weinberg (1989). Exploriregjiirements: Quality Before Design
New York, US.

Génova, G., M. C. Valiente, et al. (2005). A Seimidtpproach to UML ModelsAdvanced
Information Systems Engineering, 17th Int. Conf,iSR05, Portugal, FEUP.

Glass, R. (1998). Software Runawaklsarlow, Prentice Hall.

Go, K. and J. M. Carroll (2004). The Blind Men ahé Elephant: Views of Scenario-Based
System Design. interactionkl: 45-53.

Gordon, D., R. Biddle, et al. (2003). A Technolofgy Lightweight Web-Based Visual
Applications, Victoria University of Wellington -cBool of Mathematical and Computing
Science.

Gosling, J., B. Joy, et al. (2000). The Java LanguspecificationAddison Wesley.

Green, T. R. G. and M. Petre (1996). "Usability lgsia of visual programming
environments: A ‘cognitive dimensions' framework@urnal of Visual Languages and
Computing7: 131-174.

Griffiths, T., P. J. Barclay, et al. (2001). Teaha a model-based user interface development
environment for object databases. Interacting @idmputers14: 31-68.

Groher, I. and S. Schulze Generating Aspect Cania fUML Models

- 132 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Guibert, N., P. Girard, et al. (2004). Example-lobggegramming: a pertinent visual approach
for learning to program. Proceedings of the workiognference on Advanced visual
interfaces, Gallipoli, Italy 2004358 a€“ 361.

Gunter, C. (1992). Semantics of Programming LanggadIT Press.

Gurevich, Y., B. Rossman, et al. (2005). Semansiseece of AsmL, Elsevier Science
Publishers Ltd343:370-412.

Hall, T., S. Beecham, et al. (2002). Requirement®lems in twelve software companies: an
empirical analysis 6th International Conference on Empirical Assemsimin Software
Engineering, Keele, Keele University.

Han, Y., G. Kniesel, et al. (2005). Towards ViséAalpectJ by a Meta Model and Modeling
Notation. Proc. of 5rd International Workshop onpést-Oriented Modeling with UML,
AOSD 2005, Chicago, IL

Harel, D. (1987). Statecharts: A visual formalison é¢omplex systems. Science of Computer
Programming8: 231-274.

Haustein, S. and J. Pleumann (2004). OCL as Expressnguage in an Action Semantics
Surface Language. Workshop on OCL and Model Drivengineering at Seventh
International Conference on UML Modeling Languaged ApplicationsLisbon.

Hendry, D. G. (2004). Communication Functions drelAdaption of Design Representations
in Interdisciplinary Teamdesigning Interactive Systems, Cambridge, Masssetts, ACM.

Hendry, D. G. (2006). Sketching with Conceptual afpdiors to Explain Computation
ProcessesProceedings of IEEE Symposium on Visual Langu&ggnan-Centric Computing
2006, Brighton, UK, IEEE Computer Society Press.

Hundausen, C. D. (2001). Communicative Dimensiorfs Emd-User Environments
Proceedings of the IEEE 2001 Symposia on Human rice@omputing Languages and
Environments (HCC'01) IEEE Computer Society.

IBM. (2006). "Rational XDE Developer hitp://www-
306.ibm.com/software/uk/rational/awdtools/swdevelomml)!' Retrieved 08/2006, 2006,
from http://www-306.ibm.com/software/uk/rational/awdtstsiwdeveloper.html

IBM. (2006). "Websphere MDA tool h{tp://www-306.ibm.com/software/webspheré/).
Retrieved 08/2006, 2006, fronttp://www-306.ibm.com/software/websphere/

International Communication Union (2002). Spectiima and Description Language (SDL).
Recommendation Z.100 (08/2002), International Comication Union.

Jackson, A. and S. n. Clarke (2006). Initial Vensmf Aspect-Oriented Design Approach,
Trinity College Dublin, AOSD-Europe Deliverable D380OSD-Europe-TCD-7.

Jackson, M. (1995). Software Requirements & Spetihns:a lexicon of practice, principles
and prejudicesAddison-Wesley.

- 133 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Jensen, K. (1997). Coloured Petri Nets. Basic Quiscénalysis Methods and Practical Use
Heidelberg, Springer.

K.Subieta (2004)._Theory and construction of obmaénted query language$JIIT -
Publishing House.

K.Subieta (2006). Stack-Based Approach (SBA) amaliSBased Query Language (SBQL).

K.Subieta, Y. Kambayashi, et al. (1995). Procedume®bject-Oriented Query Languages.
Proc. 21-st VLDB Conf., Zurich, 199382-193.

K.T.Phalp and K. Cox (2003). Using Enactable Model€nhance Use Case Descriptions.
ProSim'03, International Workshop on Software PseceSimulation Modelling (in
conjunction with ICSE 2003), Portland, USA, May 2403.

Kang, H., C. Plaisant, et al. (2003). New ApproacteeHelp Users Get Started with Visual
Interfaces: Multi-Layered Interfaces and Integratedial Guidance._Proc. 2003 National
Conference on Digital Government Reseafatil-146.

Kanyaru, J. and K. Phalp (2005). Requirements aabd with enactable models of state-
based use cases. Empirical Assessment in Softwamnéering, EASE 2005, Keele
University, 11-13 April 2005

Keller, G., M. Nittgens, et al. (1992). Semantis€ltezessmodellierung auf der Grundlage
"ereignisgesteuerter Prozessketten (EPK). Verditéningen des Instituts far
Wirtschaftsinformatik Universitat des Saarlandes

Keller, S. (2000). Entwicklung einer Methode zutemrierten Modellierung von Strukturen
und Prozessen in Produktionsunternehnisisseldorf, VDI Verlag.

Kiesner, C., G. Taenzer, et al. (2002). Visual O@\..visual notation for the Object
Coonstraint Language. Forschungsberichte der Fadtult Elektotechnik und Informatik der
TU Berlin.

Kim, S.-K. and D. Carrington (1999). FormalizingetbdML Class Diagram Using Object-Z.
"UML" '99 - The Unified Modeling Language: Beyonbet Standard, Second International
Conference, Fort Collins, CO, USA, October 199%ceedingsR. France and B. Rumpe.
Berlin / Heidelberg, Springer.

Kitchenham, B. A. and L. Jones (1997). "Evaluaaftware Engineering Methods and Tool,
Part 6: Identifying and Scoring Features." Softwangineering Note22(2): 16-18.

Klaas van den Berg, J. M. C. R. C. (2005). AOSDdlagty 1.0 - Public Ontology of Aspect-
Orientation, AOSD-Europe-UT-01, D9, AOSD-Europe.

Kleppe, A. G., J. Warmer, et al. (2003). MDA Explkd: The Model Driven Architecture:
Practice and Promis@ddison-Wesley Longman Publishing Co., Inc.

-134 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Ko, A. J., B. A. Myers, et al. (2004). Six learnibgrriers in end-user programming systems
Proceedings of the IEEE Symposium on Visual Langeaand Human Centric Computing
2004, Rome, ltaly, IEEE Computer Society Press.

Kovse, J. and T. Harder (2004). MT-Flow - An Enwineent for Workflow-Supported Model
Transformations in MDA. CAISE 2004 60-174.

Kozankiewicz, H., J. Leszczylowski, et al. (2008w Approach to View Updates. Proc. of
the Emerging Database Research in Eastern Eurog@BWVorkshop, Berlin, Germany,
2003

Kules, W. and B. Shneiderman (2003). Designing aabfieta-Driven Visual Information
Browser for Federal Statistics. Proceedings of 2003 National Conference on Digital
Government Researchl17-122.

Kulkarni, V. and S. Reddy (2003). Supporting Aspeict MDA. Proc. of the Workshop in
Software Model Engineering on the UML'2003, SamEisco, USA, 2003

Lawley, M. J. and J. Steel (2005). Practical Dextlae Model Transformation With Tefkat.
Satellite Events at the MoDELS 2005 Confererd@anaica, Springer.

Lawrance, J., S. Clarke, et al. (2005). How Well Professional Developers Test with Code
Coverage Visualizations? VL/HCC'05: IEEE SymposiamVisual Languages and Human-
Centric Computing, September 2005

Leffingwell, D. and D. Widrig (2003). Managing Sefire Requirements: A Use Case
Approach.Boston, US, Addison-Wesley.

Leonhardt, U. (1995). Decentralised process enattmmea multi-perspective development
environment.17th international conference on Software engingerSeattle, Washington,
United States, ACM Press.

Leopold, J. L., M. Heimovics, et al. (2002). Webfulate: a Web-based visual continual
guery system. Proceedings of the Eleventh Inteynati World Wide Web Conference
(WWW2002), Honolulu, Hawaii, USA221-231.

Liggesmeyer, P. (2003). "Testing safety-criticditware in theory and practice: a summary."
IT Information Technology#5(1): 39-45.

Luyten, K., T. Clerckx, et al. (2003). Derivatiom @ Dialog Model from a Task Model by
Activity Chain Extraction._Interactive Systems OgsiSpecification, and Verification : 10th
International Workshop, DSV-IS 200303-217.

M.Lentner, K. Stencel, et al. (2006). Semi-Strongti€ Type Checking of Object-Oriented
Query Languages. Proc. of 32nd International Cemnfez on Current Trends in Theory and
Practice of Computer Science, SOFSEM’'8pringer3831:399-408.

Mantyla, M., J. Vanhanen, et al. (2003). "A taxoryoamd an initial empirical study of bad
smells in code." International Conference on SaftwaMaintenance, Amsterdam,
Netherlands, 22 26 Sept. 2003 * Los Alamitos, CSAJIEEE Comput. Soc, 2003, p 381 4

- 135 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Mantyla, M. V., J. Vanhanen, et al. (2004). "Badeim;» - humans as code critics."
Proceedings. 20th IEEE International ConferenceSoftware Maintenance, Chicago, IL,
USA, 11 14 Sept. 2004 * Los Alamitos, CA, USA: IEEEBmput. Soc, 2004, p 399 408

Marcus, A., L. Feng, et al. (2003). 3D Represeotsti for Software Visualization.
Proceedings of the ACM Symposium on Software Vigadibn (SoftVis 2003), San Diego,
CA, June 11-1327-36.

Matula, M. (2003). "NetBeans Metadata RepositoP06.

Mayers, B. A., A. J. Ko, et al. (2006). Invited Rasch Overview: End-User Programming.
CHI 2006, April 22-27, 2006, Montreal, Canada, AGN59593-294-4/06/0004

McCrickard, D. S., M. Czerwinski, et al. (2003).tribduction: design and evaluation of
notification user interfaces. International JourmiaHuman-Computer Studigs8: 509-514.

Mellor, S. J. and M. J. Balcer (2002). ExecutablelllJ A Foundation for Model-Driven
Architecture Addison Wesley.

Mellor, S. J. and K. Scott, et al. (2004). MDA Dlisd: Principles of Model-Driven
Architecture, Addison Wesley.

Mellor, S. J. and A. Watson (2006). "Roles in thBMProcess."

Melton, J., A. R. Simon, et al. (2001). SQL:1999Jnderstanding Relational Language
ComponentsMorgan Kaufmann Publishers.

Mens, T. and T. Tourwe (2004). "A survey of softevaefactoring." IEEE Transactions on
Software Engineering, USA * vol 30 (Feb. 2004),2h@ 126 39, 111 refs.

Mezini, M. and K. Ostermann (2005). A ComparisonPebgram Generation with Aspect-
Oriented Programming._ Proc. of the EU-NSF Strated®esearch Workshop on
Unconventional Programming Paradigr8pringer Verlag3566

Millot, P. (2004). MODELWARE fact sheet.

Muller, P. and A. Poetzsch-Heffter (2000). A Typgstem for Controlling Representation
Exposure in Java. Workshop on Formal Techniqueddwa Programs at ECOOP

NetBeans. (2006). "MDR resourcéstp://mdr.netbeans.org/2006.

NetBeans. (2006). "NetBeans httfp://www.netbeans.org/;
http://www.netbeans.org/about/press/8.htmIRetrieved 07/2006, 2006.

Norman, D. A. (2005). Human-Centered Design Comsutiélarmful._interactiond 2: 14-19.

Nuseibeh, B., J. Kramer, et al. (2003). ViewPoin&aningful Relationships Are Difficult!
Proceedings of International Conference on Softwkreggineering(ICSE'03), Portland,
Oregon, USA, IEEE CS Press.

- 136 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Object Management Group (2001). Model Driven Aretiitire (MDA).
Object Management Group (2002). Meta Object FadiMOF) Specification, Version 1.4.
Object Management Group (2002). OMG CORBA/IIOP $tions.

Object Management Group (2002). UML 1.4 with Acti@®emantics. Final Adopted
Specification.

Object Management Group (2003). UML 2.0 Object @Qa@mst Language Specification.

Object Management Group (2003). Common Warehousarivtalel (CWM) Specification,
Version 1.1.

Object Management Group (2004). Meta Object F&cfMOF) Core Specification, Version
2.0.

Object Management Group (2004). UML 2.0 InfrastnoetSpecification.
Object Management Group (2004). UML 2.0 SuperstmgcEpecification.
Object Management Group (2005). MOF QVT Final Adab$pecification.

Object Management Group (2005). Semantics of a érational Subset for Executable UML
Models RFP.

Object Management Group (2005). XML Metadata Iftarge (XMI) Specification. Version
2.0.

Object Management Group (2006). BPMN 1.0: OMG Fidbpted Specification.

Objecteering. (2006). "Objecteering/UMLht{p://www.objecteering.com/). Retrieved
07/2006, 2006, frorhttp://www.objecteering.com/

Objects, I. (2006). "ArcStyler MDA toolhftp://www.arcstyler.com/). Retrieved 08/2006,
2006, fromhttp://www.arcstyler.com/

Oldevik, J. (2006). MOFScript User Guide.

PathFinderSolutions. (2006). "PathMate MDA transfation environment
(http://www.pathfindermda.com/products/index.php). Retrieved 07/2006, 2006, from
http://www.pathfindermda.com/products/index.php

Petri, C. A. (1962). Kommunikation mit Automatemildersity Bonn.

Pfleeger, S. (2005). Software engineering: theod/@actice Prentice Hall.

- 137 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Phalp, K. and K. Cox (2002). Supporting Communiligbwith Use Case Guidelines: An
Empirical Study 6th International Conference on Empirical Assessimand Evaluation in
Software Engineering, Keele University, StaffordshUK.

Preece, J., Y. Rogers, et al. (2002). Interactiesih New York, John Wiley & Sons, Inc.

Rashid, A., A. Garcia, et al. (2006). Aspect-OmgehtSoftware Development Beyond
ProgrammingProceedings of 9th International Conference diw&oe Reuse, Torino, Italy.

Reynolds, J. C. (1998). Theories of Programmingguaiges Cambridge University Press.

Richters, M. (2002.). A Precise Approach to ValidgtUML Models and OCL Constraints.
Logos Verlag, Berlin, BISS Monographs, No. 14, Wmsitaet Bremen.

Riel, A. J. (1996). Object-oriented Design HeudstReading, Mass., Addison-Wesley Pub.
Co.

Robertson, S. (2001). "Requirements trawling: tegines for discovering requirements.” Int.
Journal of Human-Computer Studie/s 405-421.

Roe, D., K. Broda, et al. (2003). Mapping UML Mosléhcorporating OCL Constraints into
Object-Z. London, Imperial College.

Roock, S. and M. Lippert (2004). Refactorings irofdgn Softwareprojekten: Komplexe
Restrukturierungen erfolgreich durchfihréteidelberg, dpunkt Verlag.

Rosson, M. B., J. Ballin, et al. (2004). Everydagglamming: Challenges and Opportunities
for Informal Web Development. IEEE Symposium onudkLanguages and Human-Centric
Computing, Rome, Italy, September 20023-130.

Schauerhuber, A., W. Schwinger, et al. Towards ani@on Reference Architecture for
Aspect-Oriented Modeling

Scheer, A.-W. (1999). ARIS, Business Process Framewerlin, .

Schmitt, P. H. (2001). A Model Theoretic Semant€OCL. IJCAR Workshop on Precise
Modelling and Deduction for Object-oriented Softe/ddevelopmentSiena, Italy, Technical
Report DIl 07/01, Dipartimento di Ingegneria

dell'Informazione, Universitdagli Studi di Siena.

Selic, B., G. Gullekson, et al. (1992). ROOM: An jé&it-Oriented Methodology for
Developing Real-Time Systems. Proc. 5th Internatioworkshop on Computer-Aided
Software Engineering

Shlaer, S. and S. J. Mellor (1991). Object LifeegcIModeling the World in State¥ourdon
Press.

Simon, F., F. Steinbruckner, et al. (2001). Metrizased refactoringFifth European
Conference on Software Maintenance and Reengime@@d8MR), Los Alamitos, CA, USA,
IEEE Comput. Society

- 138 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

Soc. Tech. Council on Software Eng (TCSE)
Reeng. Forum

Inst. Superior Tecnico

University Nova de Lisboa.

Smith, M. and P. King (2002). The Exploratory Coustion Of Database Views, School of
Computer Science and Information Systems, Birkliéakege, University of London.

Sowa, J. W. and J. A. Zachman (1992). "Extendind Barmalizing the Framework for
Information Systems Architecture.” IBM Systems Jjaly IBM Publication G321-5488. 1-
800-879-27531.

Stark, R., J. Schmid, et al. (2001). Java and #na Wirtual Machine — Definition,
Verification, Validation Heidelberg, Springer.

Stavness, N. and K. Shneider (2004). Supportingkidav in User Interface Description
Languages. Developing User Interfaces with XML: Adges on User Interface Description

Languages

Stein, D., S. Hanenberg, et al. (2004). Modelingnteats. Proc. of the 7th International
Conference on the Unified Modeling Language (UMI02)) Lisbon, Portugal, October 11-
15, 2004 Springer3273:98-112.

Stencel, K. (2006). Semi-strong Type Checking itabase Programming LanguagesIIT -
Publishing House.

Stolte, C., D. Tang, et al. (2002). Polaris: A 8wstfor Query, Analysis, and Visualization of
Multidimensional Relational Databases. IEEE Tratieas on Visualization and Computer
Graphics IEEE Computer Societ¥8: 52-65.

Subieta, K. (2004). Theory and construction of obmiented query language®JIT -
Publishing House.

Subieta, K. (2006). Stack-Based Approach (SBA) @ratk-Based Query Language (SBQL).

Subieta, K., C. Beeri, et al. (1995). A Stack-Basggroach to Query Languages. Proc. of
2nd East-West Database Workshop, 1994, Springek&fops in Computing, 1995

Subieta, K., Y. Kambayashi, et al. (1995). Procedun Object-Oriented Query Languages.
Proc. 21-st VLDB Conf., Zurich, 199382-193.

Sun Microsystems, 1. (2004). "NetBeans MetadatapoRiory (MDR)." from.
http://mdr.netbeans.org/

Sutcliffe, A. and N. Maiden (1993). Use of DomaindWwledge for Requirements Validation
Proceedings of IFIP WG 8.1 Conference on Infornmatystem Development Process,
Elsevier Science Publishers.

Tahvildari, L., K. Kontogiannis, et al. (2003). "@liy-driven software re-engineering."
Journal of Systems and Softw#&®&3): 225-39.

- 139 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1
Version 1.0 Date 08.01.2007

The Workflow Management Coalition Specification @8). Workflow Management
Coalition Workflow Standard Process Definition irfiéee
-- XML Process Definition Language.

Tourwe, T. and T. Mens (2003). "Identifying refawtg opportunities using logic meta
programming."” IEEE CompuReengneering Forum; Univ. Sannio. - In Proceesligventh

European Conference on Software Maintenance anadgResering. - Los Alamitos, CA,
USA, USA IEEE Comput. Soc, 2003, xi+420 91-100Rxfs.

Traetteberg, H. (2003). Dialog Modelling with Iraetors and UML Statecharts - A Hybrid
Approach._Interactive Systems Design Specificatimg Verification : 10th International
Workshop, DSV-IS 2003346-361.

Trzaska, M. and K. Subieta (2004). Usability of iat Information Retrieval Metaphors for
Object-Oriented Databases. Proceedings of the Gn Mbve Federated Conferences and
Workshops (DOA, ODBASE, CooplS, PhD Symposium),nagia, Cyprus, 20045pringer.
3292:822-833.

van Emden, E. and L. Moonen (2002). "Java qualtsueance by detecting code smells.”
Reengineering Forum; Virginia Commonwealth UniVEEE Comput Burd, E.. - Los
Alamitos, CA, USA, USA IEEE Comput. Soc, 2002, x93¥%-106, 25 Refs.

Vernadat, F. (1996). "Enterprise Modeling and Inagéign."”

Volter, M. (2005). Models and Aspects. PatternsHandling Cross-Cutting Concerns in the
context of MDSD

Wampler, D. (2003). The Role of Aspect-OrientedgPamming in OMG’s Model-Driven
Architecture, Aspect Programming, Inc.

Warmer, J. and A. Kleppe (1999). The object condirlanguage: precise modeling with
UML, Addison-Wesley Longman Publishing Co., Inc.

Wegmann, A. and O. Preiss (2003). MDA in Enterpigehitecture? The Living System
Theory to the Rescue. EDOC 20@313.

White, S. A. (2004). "Introduction to BPMN."

Whitmire, S. A. (1997). Object-oriented Design M@@&snent New York, NY, USA, John
Wiley & Sons.

Wilkie, I. and King, A. et al. (2001). UML ASL Reafence Guide. Kennedy Carter Limited.

Wohlin, C., A. Aurum, et al. (2002). "Software imspion benchmarking-a qualitative and
guantitative comparative opportunity.” Proceediifighth IEEE Symposium on Software
Metrics, Ottawa, Ont., Canada, 4 7 June 2002 *Alasnitos, CA, USA: IEEE Comput. Soc,
2002, p 118 27

- 140 -
© Copyright by VIDE Consortium

FP6-1ST-2004-033606, Visualize all moDel drivEn gnamming Work Package 1 — Deliverable D1.1

Version 1.0 Date 08.01.2007

Xactium. (2006). "XMF Mosaic
(http://albini.xactium.com/web/index.php?option=carontent&task=blogcateqory&id=27 &I
temid=46)" Retrieved 07/2006, 2006, from

http://albini.xactium.com/web/index.php?option=caontent&task=blogcategory&id=27 &It
emid=46

Xerox AspectJ Programming Guide, Xerox Corporation.

Zachman, J. A. (1987). "A Framework for Informatigstems Architecture.”" IBM Systems
Journal26.

Zdonik, S. B. and D. Maier, Eds. (1990). Fundamient#f Object-Oriented Databases
Readings in Object-Oriented Database Systems. SéedyICA, Kaufmann.

Zhang, G. (2005). Towards Aspect-Oriented Clasgiaias Proceedings of the 12th Asia-
Pacific Software Engineering Conference (APSEC'Pp),763-768, Taipei, Taiwan.

- 141 -
© Copyright by VIDE Consortium

