
Supporting Stakeholders in the MDA Process 

 
Keith Phalp, Sheridan Jeary, Jonathan Vincent, John Mathenge Kanyaru, 

& Simon Crowle 

 

 

 Software Systems Modelling Group, 

Bournemouth University, Poole, Dorset. BH12 5BB 

kphalp;sjeary;jvincent;jkanyaru;scrowle @bournemouth.ac.uk 

 

 

 

Abstract 
 

By providing a route from model to architecture, Model Driven Architecture 

(MDA) promises, among other things, to narrow the gap between business users 

and software developers. That is, the approach is intended to involve stakeholders 

in modelling, so that, by transformation from Computationally Independent 

Models (CIM), through Platform Independent Models (PIM), to Platform Specific 

Models (PSM), the resultant software systems will be aligned with the client’s 

business needs.  

 

However, there has been little attempt to consider who the stakeholders in an MDA 

process would be, or whether the models and supporting tools used would be 

appropriate to their backgrounds, expertise and needs. In contrast, this paper 

suggests a classification of stakeholder roles and their relationship to MDA phases. 

The paper then presents a brief review of existing toolsets, and ties the support 

offered to each of the MDA modelling levels; CIM, PIM and PSM.  

 

In brief, we find that whilst there appears to be good support for what amounts to 

traditional development, at PIM and PSM, there is still relatively little support for 

CIM. Since a proportion of key stakeholder roles appear to be working at this level, 

it would appear that MDA is lacking in providing appropriate support for, a 

significant, and perhaps the most vital, subset of stakeholders. 

 

1.0  Introduction to Model Driven Architecture and 

Requirements 

Model driven development (often referred to as Model Driven Architecture and 

referred to in the rest of the document as MDA) provides mechanisms for 

formalising the abstraction level of models in software development, and for 

managing transformations among them (that is, moving from the Computationally 

Independent Models (CIM) through Platform Independent Models (PIM) to 

Platform Specific Models (PSM). However, MDA initiatives tend to focus on 

modelling notations which are clearly within the domains of those already versed 



in software development. For example, class diagrams still feature heavily [1]. 

Similarly, tools for MDA tend to support traditional software engineering 

notations, largely those within the UML, and transformations, downstream, from 

them. While this clearly offers many advantages in providing a systematic 

development path, it is not clear that there are distinct advantages offered in the 

earlier requirements phases.  

 

As a first step in understanding this issue, this paper considers who (or what roles) 

would be found in MDA projects, by suggesting classes of stakeholders. Where 

other authors have sought to identify key stakeholders in the MDA process, they 

have, in all of the papers we have found [2,3], taken only a software development 

perspective, and identified roles within the development team, with the most 

upstream roles considered being something akin to a systems analyst. Note, 

however, that whilst we focus on MDA development roles, there are existing 

taxonomies, e.g., [4,5] which describe the complexities of stakeholder impact, 

(many of whom are outside the development) in far greater depth than here. 

Indeed, our rationale for identifying specific MDA user groups was motivated by 

our intention, as part of a collaborative European Commission Framework 6 

project VIDE [6], to produce tools to support model driven development and, 

specifically, to enhance the involvement of non-technical stakeholders in the 

development process. Hence, we believe that the explicit identification of such 

roles, as described within this paper, is an important first step towards 

understanding their needs, and ultimately supporting development with appropriate 

models and toolsets. In particular, we attempt to understand the nature of 

modelling, be it at CIM, PIM or PSM levels. 

 

This paper then considers whether MDA is sympathetic to the needs of those 

stakeholders, in terms of the models and paradigms offered to them. Given the 

promise of MDA, it seems particularly important to ensure that all of the people, or 

at least all of the stakeholder roles, can be identified, such that one may maximise 

their involvement in requirements determination and validation, and in the 

production and validation of the models which will drive subsequent development. 

The remainder of the paper is as follows. Section two examines briefly the 

importance of stakeholders and of identifying stakeholder roles. Section three then 

considers those stakeholders specific to MDA and maps these roles to MDA 

phases. Section four examines existing toolsets, and section five considers the 

appropriateness, or otherwise, of existing approaches. Section six offers some 

conclusions.  

2.0 The Importance and Identification of Stakeholders 

Much of the software engineering literature recognises that the requirements phase 

is particularly important to a successful project outcome and that inadequate 

determination of requirements is the biggest single factor in project failure. For 

example, Glass [7] notes that many software projects fail due to poor or non-

existent requirements processes, and Hall, Beecham et. al. [8] report that 48% of 

development problems are in the requirements phase. Research in the area agrees 



that one way to improve the requirements process is to increase the involvement of 

stakeholders [9] in both the elicitation of requirements and the validation of 

specifications. 

 

The software engineering community has long understood the importance of 

stakeholder involvement in validation of requirements and specifications, and 

development of quality systems (see [10,11,4,12]) and some enlightened authors 

go so far as to explicitly define requirements as “the effects that stakeholders wish 

to be brought about in the problem domain” [13,14]. Indeed, [15,5] even argue that 

perhaps the most common single mistake in development efforts is to leave an 

essential person [stakeholder] out of the process. There is significant work in 

requirements engineering (and related fields), over many years, which supports this 

view. For example, the CORE approach [16] to requirements engineering 

specifically attempted to make explicit the multiple perspectives of differing 

individuals (stakeholders). Similarly, Checkland’s Soft Systems approach [17] (and 

its extension by [18]), has at its core the idea that different stakeholders will have 

contrasting worldviews and perspectives.  

 

However, although it may be widely recognised that understanding ‘who your 

users are’ is vitally important in the development of the software product [19], to 

actually identify those people that may have requirements for any system (that is, 

to determine who are the stakeholders) is far from trivial. In fact, stakeholders can 

be identified as anyone that could be materially affected by the implementation or 

outcome of a new system [20]. Traditionally, the customer and user would be the 

only people identified as having a requirement on the system. However, it is a 

mistake to class users as a homogenous group. Two broader groups, containing a 

selection of roles (as identified by [21]) are involved in any system development. 

Firstly, people on the development side, including: programmers, systems analysts, 

business analysts, project managers, senior IT management and the chief 

information officer. Secondly, there are those people from a business for whom the 

system is required. Further definitions in [21] classify these users as individuals 

that utilise output or outcomes of an interaction with the system. These will include 

business users, business management and business strategy management. In 

addition, there may be external users, who are outside the boundary of the 

company, which the system will serve. For example, customers or potential 

customers, information users, trusted external users, shareholders or other sponsors 

(even the society at large), that are affected by the system.  

 

The following section attempts to provide an indication of roles of typical 

stakeholders within model driven development approaches. An added dimension 

for MDA is that there are various levels (CIM, PIM and PSM) or phases within the 

development, with models being transformed from one phase to the next. Hence, 

stakeholders are also placed within this hierarchy and their typical skills, 

experience and goals are articulated. Note, however, that since we wished to 

concentrate on actual, or potential, modellers (or tool users), only a single role 

(Domain User) represents the breadth of stakeholders who are not part of the 

development team.  



3.0 MDA Stakeholders 

The stakeholder descriptions below are based on roles in an MDA process as 

defined by the OMG and applied to the domain of business software. Our efforts at 

identifying such roles were further informed by the experiences and opinions of all 

partners within the VIDE project [6]. Clearly, any delineation into categories is 

somewhat arbitrary. However, since partners cover a range of business domains 

and a breadth of development activities, we have reasonable confidence in the 

scope covered. We were most concerned with coverage of the development 

lifecycle, from business process modelling (of which there was extensive 

experience in the consortium) through traditional analysis and requirements 

activities (our main focus) to traditional software development.  

 

 
Figure 1. User Roles and MDA levels 

 

Figure 1 (taken from VIDE deliverable 1) depicts the involvement of stakeholders 

within the MDA levels. Starting from obtaining (informal) requirements from 

domain users the behavioural model is extended in each step and by the specific 

role until it can be transformed into coding. The user roles are described in more 

detail in the following sections. 

 

3.1 Domain User (Customer) 

The domain user is the end user of the constructed software solution. They work 

for the customer and are experts in their special domain. For example, an insurance 

salesman knows about his company’s offers and legal regulations and is supported 

by software solutions without any knowledge of technical realisation. The domain 

CIM 

PIM 

PSM 

CODE Test Cases 

Maintainer 

Business analyst 
(Requirements Analyst) 

 

Analyst/Designer 

 

Analyst/Programmer 

Architect 

Tester 

Domain User 
(Customer) 



user normally has no knowledge about business modelling but can draft the 

requirements for a software application. In combination with a business consultant 

the CIM level models can be constructed. The language and the graphical 

representation should be easy to understand so that domain users can validate the 

correctness of the models. Since domain users usually use specific vocabulary all 

tools should support translations into the domain specific language. The domain 

user serves as a software tester for acceptance tests, i.e., reviews whether a 

simulated model performs the expected tasks. 

 

A domain user has special skills in his field of work, often knows about business 

economics and enterprise management but has normally only office application 

skills. Experience in modelling business processes can not be assumed. 

3.2 Business Analyst 

Business Analysts advise enterprises on the analysis, conception and 

implementation of IT solutions. They constitute the connection between the 

customer and the involved IT specialists and need technical as well as social 

competences. A business analyst is one of the main user types envisaged for MDA 

toolsets. They accomplish interviews with domain users and analyse and model the 

proposed solution on the CIM level. Since they have knowledge of the modelling 

of business processes, as well as technical architectures, it should be easy for them 

to use any supporting MDA tools. 

 

Business analysts should have a variety of different skills to fulfil their diverse 

tasks. They should have knowledge about business processes, modelling, IT 

concepts and technologies, procedure models, project management and business 

economics. Beyond these technical skills they require social competences like 

leadership, team organisation, partner management or knowledge of legal 

regulations. Typical tools used by a Business Analyst are business rule 

management systems and business process modelling tools.  

3.3 Analyst/Designer 

Analysts/Designers are responsible for the conceptual models of business entities 

and the high level business logic. They use design artefacts and models produced 

by the business analyst and transform them into designs. The software designer is 

also responsible for deciding if predefined components may be reused or composed 

or if they need to be re-implemented. The role of the software designer is often 

combined with that of the programmer especially in smaller development projects 

and organisations. 

 

The software designer is a PIM level expert with a strong background in 

conceptual modelling and UML class diagrams. The software designer defines the 

first level of behaviour, but leaves the details to the programmer. For reusing or 

composing new applications from pre-existing components the designer has an 

understanding of CIM level artefacts.. Typical tools for a software designer are 

graphical modelling tools. 



3.4 Analyst/Programmer 

The Analyst Programmer is responsible for completing the behavioural modelling 

that will allow model simulation (i.e., for testing) and the transformation of the 

models into code. The Analyst Programmer is a PIM level expert with a strong 

background in behavioural modelling. The Analyst is one of the main users of tools 

for detailed behavioural modelling. The Analyst uses the format that is most 

appropriate for that task.  

 

Analysts will also implement components defined by software designers. 

Therefore, they will model the behaviour/business logic of the interfaces that have 

been designed and also provide the documentations for the components.  

3.5 Architect 

The architect is an expert in the target platform (for example, Struts) and the 

programming language (for example, Java) but also has a good understanding of 

UML. An architect works in application or systems development. The architect is 

the expert for the PSM level. The architect should have knowledge of different 

target platforms and programming languages. Experience in technical system 

specification and implementation of the proposed solution is mandatory as well as 

knowledge about programming concepts like software testing methods for quality 

assurance. 

4.0 Tool Support for Model Driven Development 

The principal aim of this study of MDA tools is to determine the extent to which 

the MDA approach is supported by the tools currently available in industry, the 

extent to which existing MDA tools adapt a mainly visual development approach 

(often amenable to those without IT expertise), and the extent to which we view 

such environments to be accessible to business people. Within this paper, the scope 

of the review concerns functional support for MDA development.  

 

An initial source of tool vendors is the list of contributors to Object Management 

Group efforts, including the MDA approach [22].  

 

Given the wide ranging set of tools currently being researched and developed for 

MDA development, this paper focuses on mainstream tools, that is, those which 

exhibit a thriving support base or active support consortium. Hence, tools solely 

developed during academic research are omitted since these more frequently form 

the basis for further industrial research. Similarly, we omit tools which, whilst they 

may feed in to some part of the MDA process (e.g., requirements tools), are not 

principally MDA tools. 

 
As mentioned above, a key MDA development task is model transformation; 

hence, the following analysis also outlines circumstances where tools support (or 

do not support) transformation from CIM to PIM to PSM, or PIM to PSM. The 

authors recognise that the main MDA process model is the transformation PIM to 

PSM to Code; however, some tools support variants of this process (e.g., PIM to 



Code), and these are indicated in our analysis where they occur.  As a relatively 

new development paradigm, MDA continues to enjoy much attention, and tool 

vendors will inevitably continue to evolve their tools to provide further support for 

MDA type features, or improve on the already provided ones. Hence, this is not 

definitive statement of the extent to which tools do (or will) support MDA, but 

rather a snapshot of the state of the art.   
 

4.1 CASE Tool Support for Model Driven Development 

This section provides an outline of tools that exhibit MDA capability, alongside 

their associated providers. Short names have been provided for tools to enable 

management and layout within the presentation tables’ real estate. The tools 

considered are OptimalJ [23], ArcStyler [24], Constructor [25], Codagen Architect 

[26], Objecteering [27], Ameos [28], Together Architect [29], XMF Mosaic [30], 

Jamda [31], PathMate [32], NetBeans [33], Rational XDE Developer [34], Eclipse 

Modelling Framework [35],Websphere [36] and Aris [37]. 

 

Short word Full Name    Company 
OJ    OptimalJ     Compuware 

AS  Arcstyler     Interactive Objects 

CT  Constructor    Dot Net Builders 

CA  Codagen Architect    Codagen 

OG  Objecteering    Objecteering Software [SOFTEAM] 

AM  Ameos     Aonix 

TA  Together Architect    Borland [Inprise] 

XM  XMF Mosaic    Open source 

JD  Jamda     Open source 

PT  PathMate     IBM  

NB  NetBeans     NetBeans & Sun Microsystems  

RX  Rational XDE Developer   IBM  

EMF  Eclipse Modelling Framework IBM  

WS  Websphere    IBM  

Aris  Aris Toolset    IDS Scheer 

 

In order to be able to compare the tools capabilities, a set of MDA features that 

each tool would be assessed against was adapted from [38]. For example, whether 

or not each tool provides functionality for model to model transformation, 

including support for standards such as MOF, and UML. The overall set of 

assessment metrics can be found at [39]. Table 1 provides a summary of our 

analysis. 

 



Feature/Support 

for

OJ AS CT CA OG AM TA XM JD PT NB RX EMF WS Aris

CIM � � � � � �

PIM � � � � � � � � � � � � � � �

PSM � � � � � � � � �*

UML 2.0 � � � � � � � � � � � � � �

MOF 2.0 � � � � � � � � � � �

Action  

Semantics

� � � � �

UML profiles � � � �

XMI � � � � � � � � � � �

CWM

QVT �

OCL � �

PIM 

�PSM�Code 

transform

� � � � � � �*

PIMPSMCo

de transform

� � � � �

PIM�Code 

transform

� � � � � � � � � � �

PSM�PSM 

bridge

� �

Legacy 

code�PSM 

transform

� � � � � � �

Transform 

based on 

patterns

� � � � � � �

Traceability of 

transforms

� � � � � � � � � � �

Merging of 

models

� � � � �

More than one

implementation 

platforms

� � � � � � � � �

 
Table 1.Overview of tool support for modelling standards  

(� = Direct support �* = Support through 3
rd

 party plug-in) 

It is clear from the table that most tools provide MDA modelling based on UML 

models, and that key requirements for MDA development such as model 

transformation are also supported by most tools. What is also apparent is that some 

MDA environments diverge from a PIM to PSM to Code development process to a 

PIM to Code development pattern. There is no explicit reason given for this 

deviation from the main MDA process, but our inferences are that the PIM to Code 

development process provides quicker turn around of application code (akin to 

agile development).  

 



Many tools do not yet provide any CIM modelling capability. The version of 

TogetherArchitect evaluated during our study supports CIM modelling with UML 

activity charts, but our recent assessment of Together 2006 for Eclipse indicates 

that this version supports Business Process Modelling Notation (BPMN) as well.  

The Eclipse Modelling Framework 2.2 provides support for CIM modelling with 

UML activity diagrams. A general point to be made here is that the choice of CIM 

modelling notation seems to be either UML activity charts or BPMN. Regarding 

model transformation, our recent study indicates that there is no support for 

transformation between CIM to PIM.  In fact, even within standard UML 

modelling, there is no way in which a modeller can automatically (or semi-

automatically) move from an activity model to say a class model or vice versa.  

 

The main PIM modelling construct is the UML class diagram. The EMF 

framework provides an interesting feature whereby EMF class diagrams can be 

constructed (with the Omondo UML modeller), such that Java source code can be 

generated automatically from those EMF class models.  This process is automated, 

and no other tool provides similar automation.  A similar concept for CIM 

modelling might be useful where the aim would be to generate an executable 

business model for simulation of business logic as a means of validation with 

stakeholders. 

5.0 Findings: Support for Stakeholders in MDA 

In order to understand the ramifications of support offered by tools, it is perhaps 

worth brief consideration of the somewhat complex relationships among 

stakeholders. It seems clear that developers have clear understanding of their own 

(internal stakeholders) and some understanding of the direct contacts with their 

(business customers). Likewise tool support seems to have a clear understanding of 

the needs of these (internal) software development roles. However, the business 

also has a number of stakeholders who, although not directly involved in the 

development process, may be vital to requirements determination. One of the aims 

of model driven approaches is to bring together these two groups of stakeholders, 

and to provide tool support which is both accessible and useful to both. However, it 

is not always clear who (what roles) will use the tool, at what stage or phase and 

for what sort of model. Hence, again there is a pressing need to understand the 

range of stakeholders, and any additional insights into their modelling needs may 

be a significant advantage in the production of appropriate support mechanisms.  

 

The previous section described support offered by a variety of MDA toolsets. As 

suggested above, it is also worth bearing in mind that in supporting Model Driven 

Development (or MDA) complications may arise, both in terms of tool users, and 

the abstract levels at which the users are envisaged to be working. For example, 

one would not usually be sure whether stakeholders are to be producing 

computationally independent, platform independent, or platform specific models, 

hence, the need to understand the relationship between the stakeholder role and 

background and the level(s) at which they may, typically, be working.  

 



The analysis of roles, given in section three, reveals that at least two key 

stakeholders (the customer and the business analyst) are typically concerned only 

with CIM models. Whilst we have focussed only on those stakeholders directly 

linked to (or part of) an MDA development process there is (as noted in sections 

one and two) a much greater variety of stakeholders within the requirements phase 

than our simple taxonomy suggests. Hence, whilst it might appear that only or two 

roles (or groups) suffer the wider requirements context is that many varied 

stakeholders, (beneficiaries, purchasers, users etc.) are involved, and this further 

strengthens the need to have stronger support for CIM. 

 

It is instructive, therefore, to consider the extent of tool support for CIM. While all 

tools investigated supported PIM, and the majority PSM, only a minority support 

CIM, and this is often somewhat limited. Furthermore, whilst PIM to PSM 

transformations are common, moving from CIM to PIM is often far from trivial, 

perhaps reflecting the hidden paradigm shift that this often requires.    

6.0 Conclusions 

This paper considers the support offered to stakeholders within model driven 

development. As a first step in this endeavour, the paper introduces a description of 

MDA stakeholder roles, giving typical goals, experience and tasks for these 

stakeholders. Existing work of this nature tends only to consider stakeholders from 

a development perspective and overlooks the importance of the business or 

customer. In addition, this paper attempts to tie these stakeholder roles to their 

relevant MDA models, CIM, PIM or PSM.  

 

The paper then examines a variety of MDA tools, and summarises the support 

offered by such tools. A further contribution is the attempt to understand the 

support offered by tools specific to CIM, PIM or PSM, and thereby to consider the 

support offered to the various stakeholder roles.  

 

In particular, the findings are that whilst there is excellent support for PIM, and 

good support for PSM, support for CIM is somewhat lacking in the majority of 

tools. Hence, at least two classes of stakeholders, customers (and associated 

customer representatives) and business analysts are not catered for. In addition, 

whereas transformations from PIM to PSM are supported, moving from CIM to 

PIM (typically another analyst / designer task) relies heavily on analysts having 

understanding of both. Hence, whilst MDA tools would appear to offer strong 

support for software development activities from design onwards, the major issue 

with software development, that is of facilitating requirements, of moving from 

domain and business models, to software specification and design is largely 

overlooked. 

 

Acknowledgements 
 

This work is funded partially by the EC 6th Framework project VIDE (IST-

033606). 



7.0 References  

1. Kleppe, A., Warmer, J. and Bast, W. MDA Explained: The Model Driven 

Architecture--Practice and Promise Boston, Addison-Wesley Professional, 2003. 

2. Mellor, S. J. and Watson, A. "Roles in the MDA Process:MDA will make 

developers more productive not redundant."   Retrieved 26 April, from 

www.omg.org/registration/registration-roles_mda.htm  

3. Aagedal, J. and Solheim, I. New Roles in Model-Driven Development. in  Second 

European Workshop on Model Driven Architecture, 2004. Canterbury, UK. 

4. Siakas, K. V., Georgiadou, E. and Sadler, C. "Software Quality Management from 

a Cross-Cultural Viewpoint." in Software Quality Journal, 1999, 8: 85-95. 

5. Alexander, I. F. "A Taxonomy of Stakeholders : Human Roles in System 

Development." in International Journal of Technology and Human Interaction, 

2005, 1(1): 23-59. 

6. VIDE. from http://www.vide-ist.eu/index.html. 

7. Glass, R. Software Runaways.  Harlow, Prentice Hall, 1998. 

8. Hall, T., S. Beecham and Rainer, A. Requirements problems in twelve software 

companies: an empirical analysis. in  6th International Conference on Empirical 

Assessment in Software Engineering, 2002. Keele, Keele University. 

9. Nuseibeh, B., J. Kramer and Finkelstein, A. ViewPoints: Meaningful 

Relationships Are Difficult! in  Proceedings of International Conference on 

Software Engineering(ICSE'03), 2003. Portland, Oregon, USA, IEEE CS Press. 

10. Sutcliffe, A. and Maiden, N. Use of Domain Knowledge for Requirements 

Validation. in  Proceedings of IFIP WG 8.1 Conference on Information System 

Development Process, 1993. Elsevier Science Publishers. 

11. Leonhardt, U. Decentralised process enactment in a multi-perspective 

development environment. in  17th international conference on Software 

engineering, 1995. Seattle, Washington, United States, ACM Press. 

12. Pfleeger, S. Software engineering: theory and practice. Prentice Hall., 2005. 

13. Jackson, M. Software Requirements & Specifications:a lexicon of practice, 

principles and prejudices. Addison-Wesley, 1995. 

14. Bray, I. An Introduction to Requirements Engineering.  Harlow, UK, Pearson 

Education Limited, 2002. 

15. Gause, D. C. and Weinberg, G. M. Exploring Requirements: Quality Before 

Design.  New York, US, 1989. 

16. Easterbrook, S. M. 1991. Elicitation of Requirements from Multiple Perspectives. 

London, University of London. 

17. Checkland, P. B. Soft Systems Methodology in Action. John Wiley and Sons Ltd, 

1999. 

18. Avison, D. E. and A.T.Wood-Harper. Multiview - an exploration in information 

systems development.  Maidenhead,UK, McGraw-Hill, 1990. 

19. Preece, J., Rogers, Y. and Sharp, H. Interaction Design.  New York, John Wiley 

& Sons, Inc., 2002. 

20. Leffingwell, D. and Widrig, D. Managing Software Requirements: A Use Case 

Approach.  Boston, US, Addison-Wesley, 2003. 

21. Avison, D. and Fitzgerald, G. Information Systems Development: Methodologies, 

Techniques and Tools.  London, UK, McGraw-Hill., 2006. 

22. OMG. "OMG MDA Vendor Driectory (http://mda-directory.omg.org/)."   

Retrieved 7/2006, from http://mda-directory.omg.org/. 

23. Compuware. "OptimalJ MDA tool 

(http://www.compuware.com/products/optimalj/)."   Retrieved 08/2006, from 

http://www.compuware.com/products/optimalj/. 



24. Objects, I. "ArcStyler MDA tool (http://www.arcstyler.com/)."   Retrieved 

08/2006, from http://www.arcstyler.com/. 

25. DotNetBuilders. "Constructor toolset for MDA 

(http://www.dotnetbuilders.com/constructor.aspx)."   Retrieved 07/2006, from 

http://www.dotnetbuilders.com/constructor.aspx. 

26. Codagen. "Codagen Architect for MDA (http://www.codagen.com/)."   Retrieved 

07/2006, from http://www.codagen.com/. 

27. Objecteering. "Objecteering/UML (http://www.objecteering.com/)."   Retrieved 

07/2006, from http://www.objecteering.com/. 

28. Aonix. "Ameos toolset for MDA (http://www.aonix.com/ameos.html)."   

Retrieved 08/2006, from http://www.aonix.com/ameos.html. 

29. Borland. "Together Architect 

(http://www.borland.com/us/products/together/index.html)."   Retrieved 07/2006, 

from http://www.borland.com/us/products/together/index.html. 

30. Xactium. "XMF Mosaic 

(http://albini.xactium.com/web/index.php?option=com_content&task=blogcategor

y&id=27&Itemid=46)."   Retrieved 07/2006, from 

http://albini.xactium.com/web/index.php?option=com_content&task=blogcategor

y&id=27&Itemid=46. 

31. Boocock, P. "The Jamda project (http://jamda.sourceforge.net/)."   Retrieved 

08/2006, from http://jamda.sourceforge.net/. 

32. PathFinderSolutions. "PathMate MDA transformation environment 

(http://www.pathfindermda.com/products/index.php)."   Retrieved 07/2006, from 

http://www.pathfindermda.com/products/index.php. 

33. NetBeans. "NetBeans (http://www.netbeans.org/; 

http://www.netbeans.org/about/press/8.html)."   Retrieved 07/2006. 

34. IBM. "Rational XDE Developer (http://www-

306.ibm.com/software/uk/rational/awdtools/swdeveloper.html)."   Retrieved 

08/2006, from http://www-

306.ibm.com/software/uk/rational/awdtools/swdeveloper.html. 

35. Eclipse.Org. "Eclipse project (http://www.eclipse.org/)."   Retrieved 08/2006. 

36. IBM. "Websphere MDA tool (http://www-306.ibm.com/software/websphere/)."   

Retrieved 08/2006, from http://www-306.ibm.com/software/websphere/. 

37. Scheer. "Aris Toolset ( http://www.ids-scheer.com/)."   Retrieved 7/2006, from 

http://www.ids-scheer.com/. 

38. Tariq, N. A. and Akhter, N. 2005. Comparison of Model Driven 

Architecture(MDA) based Tools. Computer Science Department. Stockholm, 

Sweden, Royal Institute of Technology (KTH). Masters: 74. 

39. SoSym. "MDA - Metrics used for tool comparison 

(http://www.sosym.co.uk/Sections/Projects/VIDE/projectDocs/mdaToolMetrics.ht

ml)"   Retrieved 04/2007, from 

http://www.sosym.co.uk/Sections/Projects/VIDE/projectDocs/mdaToolMetrics.ht

ml. 

 

 


