
Assessing Graphical User Interfaces in
Modelling Tools for MDA using the Cognitive

Dimensions Framework

John Mathenge Kanyaru, Sheridan Jeary, Melanie Coles, Keith Phalp,
Jonathan Vincent

Software Systems Research Centre,
Bournemouth University, Poole, Dorset. BH12 5BB.

jkanyaru;sjeary;mcoles,kphalp,jvincent@bournemouth.ac.uk

Abstract

Model driven development provides a method for moving through modelling
phases, allowing for a separation of concerns, among Computationally
Independent, Platform Independent and Platform Specific Models. In addition to
the production of a variety of models, maintenance of the linkages among
successive (e.g., derived) models is an important goal, and, hence, appropriate tool
support is vital.

Although there are many tools providing support for software development based
on a Model Driven Architecture (MDA) approach, little work has attempted to
assess the extent to which these tools provide accessible modelling environments
for the range of users who may often participate in model driven development
processes. For example, whereas engineers may be familiar with the nuances of
particular tools, non-technical users (e.g., business people), who often provide
valuable requirements input may have difficulties in making revisions (or
amendments).

This paper applies the Cognitive Dimensions framework to assess a number of
modelling tools with respect to their support for some typical modelling tasks (e.g.,
for the creation of use cases, activity diagrams and class models).

Our assessment of the various tools indicated that no single tool satisfied all of the
cognitive dimensions used with respect to the selected models. Further, that by
recognising explicitly that there are trade-offs in cognitive dimensions in the
production of such tools, we may be able to better understand the issues
encountered by different groups of users.

1.0 Introduction
The Unified Modelling Language (UML) comprises notations for describing
various aspects of a software system. For example, the use case notation is used
primarily for expressing software requirements and specifications [1] and in a
Model Driven development process is often used to augment Computationally
Independent Models (CIM) [2,3,4].

Our work in the VIDE project [5] centres on the design and specification of an
Integrated Development Environment (IDE) for MDA, though, clearly these ideas
also apply more generally to model driven development. This IDE has to be
accessible to business stakeholders, business analysts, systems developers and
programmers. For a full discussion on this see [6]. We found that there has been
little assessment of existing tools for MDA, save for Tariq and Akhter [7].
However, they do not assess the Graphical User Interfaces of the tools. In addition,
there has been little work on assessing the suitability of MDA tools for building
different types of model. Thus users have little information at the model level as to
the usefulness of the interfaces. In addition, most MDA tools (e.g., [8,9,10]) are
geared to programmers and software developers rather than non-technical
stakeholders. Thus, the MDA process may not fully benefit from the participation
of all stakeholders at the business level, due to the inaccessibility of the existing
modelling environments. Hence, we attempt to assess the extent to which MDA
tools provide accessible features for those common modelling tasks, such as the
construction of use cases, class models and their associated activity models, which
involve a breadth of stakeholders, and which, in the experience of the project
partners, are those most vital in moving through the MDA process (notably from
CIM to PIM).

For this study, we selected three tools, firstly due to their ubiquity in the modelling
arena, and secondly due to their apparent use in a number of MDA developments.
These are all tools on the Object Management Group list of MDA ‘Committed
Companies and their Products’ [11] and, in addition, they all support the
construction of UML class models, an important notation for MDA-based
development ([8,12,13]).

2.0 Cognitive Dimensions Framework
The evaluation of programming and modelling environments presents a number of
challenges for which traditional usability techniques are not suitable for evaluating
the environment and the notational design issues [14]. The Cognitive Dimensions
Framework [15] provides a systematic way of assessing notations in terms of the
cognitive impact on users. In addition, it allows for broad brush analysis thus
avoiding ‘death by detail’ and is, thus, excellent for use early in design [14].
Furthermore, it allows for the articulation of many ideas and notions that designers
have in mind but have not necessarily formulated fully [16]. The number of
Cognitive Dimensions has been increasing although the standard set is thirteen
[17]. The interested reader is referred to [16] for a full tutorial. However, this

research considers only those six core Cognitive Dimensions which were used
successfully by Green and Petre in the evaluation of three different Programming
environments [18]. The six dimensions, and how we will use, them are:

• Viscosity – How much effort is required to perform a single change? We
assess the ease with which users of the tools can make changes to models.
To undertake this assessment, we will build sample models and try to add
or change the models within each of the modelling tool’s editors.

• Visibility – How easy is it to view components? We assess whether the
tools provide users with model editors where components are easily
viewed for use in model construction. This assessment will be based on
how we view the layout of modelling components being visible and
accessible for each modelling task.

• Juxtaposition – Is it possible to place any two components side by side?
We assess whether the tools provide modellers with a means to view
models side by side. This may be deemed necessary when a given
modelling activity is informed by another, e.g., construction of a class
model based on a use case model. An important side to this dimension for
this paper is whether or not one can derive parts of a given model from
another directly, including traceability of information between models.

• Hidden dependencies – Is every dependency overtly indicated in both
directions? Is the indication perceptual or symbolic? We assess whether
there are any hidden dependencies between components.

• Premature commitment – Do modellers have to make decisions before
they have the information they need? We assess the extent to which the
tools require premature commitment during modelling.

• Secondary notation – Can modellers use layout, colour and other cues to
convey meaning beyond the official notation of the language? We assess
whether tools provide secondary notation to provide extra information
about models. Although Petre considers secondary notation with reference
to visual programming she believes that is generalised to user interfaces
and environment. She believes that good graphics rely on secondary
notation and that secondary notation is what makes the difference between
experts and novices. Graphical features do not guarantee that a graphical
representation will be clear. It is the use of secondary notation which
gives the clarity and the poor use of secondary notation is what
distinguishes novices from experts.[19]

The purpose of the framework is to encourage discussion on design decisions and
as such there are always likely to be tradeoffs made. Blackwell [18] gives the
example of changing the structure of a notation to reduce the viscosity which is
likely to affect other dimensions such as introducing hidden dependencies or
increasing abstraction. These tradeoffs can be shown in Figure 1.

Viscosity Secondary notation

Need for lookahead

Abstractions

Hidden dependencies

Visibility

can increase

can increase

can reduce

increases cost

can increase

can increase

complex relationship

Figure 1: Cognitive Dimensions tradeoffs [20]

3.0 Application of cognitive dimensions
We consider software systems modelling tools that have an established support and
user base. These tools are: Borland’s Together [21] IBM’s Rational Rose [22] and
the Eclipse [23] toolset. These three tools also support many UML modelling
activities central to MDA development and all three tools artefacts can be imported
into a number of MDA tools. (For example Together: Rational Rose and XDE
[22,24] and Model-in-Action [25]; Rational Rose: Real Time Studio [26]
smartGenerator [27] and Model-in Action [25]; Eclipse: Bridgepoint [28], iQGen
[29] and Adaptive [30]). In assessing tools according to our chosen cognitive
dimensions, this paper provides examples and subsequent discussion of the way in
which the tools represent use case diagrams and descriptions, class and activity
models. We review the similarities and differences among the models and their
environments across the tools with a view to highlighting the extent to which the
tools provide users with facilities to amend or add to any of the models.

3.1 The modelling case
Our modelling case considers a hotel business where guests might make room
reservations online, or may telephone the hotel to make such a reservation. The
proprietors of the hotel may use a credit card system to obtain payments from
guests during check-in to the rooms. Typically, prior to any of these activities, a
guest want to determine whether or not there is a room available in the first place.

3.2 Use case models
In this section, we compare use case models as represented in each tool. We review
the viscosity of use case models, the visibility of use case modelling components,
and whether or not it is possible to juxtapose use case models with any other
models (e.g., class models, or sequence diagrams) for a given development project.

3.2.1 Use case model – Together
The Together tool requires a user to be familiar with the notion of a project, and
indeed, a model such as the use case in Figure 2 does belong to a UML type of
project. Other project types include a Java project, and a Plug-in project among

others. Hence, the project to which the use case model belongs may consist of
others, which are listed in a tree structure to the far left of the development pane.
To the right of this, and to the left of the model editor window is a toolbar with
components (e.g., subject, actor, use case, association line) for use case modelling.
We did not experience any issues with regard to the visibility of use case modelling
components in Together.

Figure 2: Use case model in Together 2007

It was apparent, however, that the model was viscous in that amending or adding to
it required work on other parts of the model that did not require direct amendment.
For example, if a user builds the use cases and associated actors, and then
remembers to add a system boundary, it becomes necessary to move the use cases
inside the system, and align the actors accordingly. The associations also require
alignment. This is an illustration of knock-on viscosity of Together’s use case
editor.

The tool provides useful drag and drop functions, but a link or linked element
would have to be moved to a desired position individually. There is no automatic
relocation of links or use cases (or actors) when extra elements are added or some
removed, or moved.

Whereas the use case elements in the model are visible, the use case components
for selection in the palette are not particularly visible to the user. However, this has
been addressed by the tool by providing different Layout mechanisms (e.g., List,

Columns, Details, etc). The Layout chosen in Figure 2 is Columns as it allowed
greater visibility.

3.2.2 Use case model - Eclipse
In contrast to Together, Eclipse lays out use case modelling components at the top
of the model editor space. An issue with building use case models in Eclipse is that
it is not possible for a user to lay out associations in a style that they want. That is,
moving an actor or a use case, or indeed adding an extra use case causes the
Eclipse modeller to move any other use cases. Whereas the automatic moving of
model elements ensures space for the newly added or moved use case, this may not
be laid out the way a user would like. This makes modification of models difficult
as some time may be spent trying to place model elements in positions that make
the model more legible. It is important to allow such flexibility.

Hence, a modeller experiences both knock-on viscosity and repetition viscosity.
Knock-on viscosity is experienced because additions to the model cause other
model elements to be moved without user intervention, and repetition viscosity is
experienced because a user who is not happy with the automatic layout of the
model will have to try and alight model elements manually – a tedious task. There
are also implications for the secondary notation dimension. A similarity between
Together and Eclipse in use case modelling is their use of the notion of a project as
a container of the use case model. Additionally, both tools provide a means to
show the system boundary.

3.2.3 Use case model – Rational Rose
In Rational Rose the concept of a system boundary for the use cases is not
explicitly represented. The use case modelling components are laid out in a toolbar
to the left of the model editor window very much like Together. A tree structure of
the various model objects is shown to the left of the toolbar. A modeller new to
UML modelling with Rational Rose can use the tool-tip facility to find out what
each component is.

Viscosity of use case models will be experienced when modifying a use case or
actor that is on top or in the midst of several other use cases or actors. Such an
amendment does have the knock-on effect of necessitating the movement of other
use cases and actors below or in the neighbourhood. Rational Rose allows the
modeller to write a specification for each use case element. Since descriptions are
not part of the standard notation, one might argue that Rational Rose allows
modellers the use of a secondary notation to provide more detail about the use case
using unstructured text.

3.3 Class models
In this section we consider class models built using each of the tools. We try to
find out whether or not a user is able to directly use some elements from a use case
model in constructing a class model.

3.3.1 Class model - Together
Since Together requires models to belong to a project, we initiated the class design
editor within the same project as the Together use case model seen in Figure 2.
Again, this was done to determine whether a user would be able to directly obtain
elements of a use case model to build a class model. This was not possible, and the
class diagram was built without such direct derivation.

Class modelling components in Together are laid out in a vertical toolbar, which is
common with the use case modelling components in the tool. There is a choice
between Column and List layout. The components have clear visibility in the
Columns layout but in List layout, however, (even taking into account a Detail
component) the visibility of the class components diminishes markedly. Moving
the class elements in the editor is relatively easy, but reorganisation becomes
difficult when the amended class is at the top or middle of a hierarchy, which
requires moving lower level classes and associations around to produce a legible
model.

It is likely that modellers would want to derive some classes from a use case
model. However, there is no way for a user to lay out a use case model and a class
model side by side for such cross-referencing. In other words, the cognitive
dimension of juxtaposition of models is not facilitated in Together. Again, there is
no way to derive the classes (or other class model elements) from the use case
model. Additionally, there is no way to display the use case model adjacent to the
class editor for reference while building the class model.

3.3.2 Class model - Eclipse
Eclipse behaves quite differently from Together when building a class model. For
example, as soon as a modeller makes an association between any two classes (e.g.
Guest and Room), Eclipse assigns roles to both ends of the associations, and also
assigns the cardinality of the roles.

It was also noticed that Eclipse automatically provides the getter and setter
methods based on the associations. This is an interesting feature of Eclipse, and
may be a useful feature when creating PIM (or PSM) classes for code generation
but has no value for business stakeholders. Eclipse also lays out the classes in the
model, based on the class size and decides where on the screen a class is
positioned. For example, moving the Room class causes Eclipse to redraw the
association between Guest and Credit Card System differently. This is not intuitive
since a modeller might wish to place classes and association lines in screen areas
where they feel most appropriate (see Figure 3).

Figure 3: Class model in Eclipse

In Eclipse, drawing components for the class model or activity diagram, are laid
out at the top of the drawing palette. A tree structure is produced to the left of the
model to show the existing models for the current project. The classes are built
from scratch as there is no facility to move any elements of a use case, or activity
diagram into the class model. Eclipse allows a modeller to edit the roles,
cardinality or the methods to depict a general class diagram. The Eclipse
environment does not provide for juxtaposition of different models (e.g., use case
and class models), nor is there a way to obtain class elements directly from a use
case model in Eclipse.

3.3.3 Class model – Rational Rose
In Rational Rose, building class models is straightforward, but there is no facility
to ‘drag’ a use case element and use it as a class or class property or method.
However, if a modeller builds a class that is given the same name as an existing
actor, Rational Rose gives the class an icon that has the look of an actor, with a
stereotype indicating that the class is from the use case view.

It is possible to amend the class to have the standard look of a UML class notation,
but one cannot remove the stereotype indicating the class is associated with an
actor in the use case view. That is, Rational Rose does not allow the modeller to
remove the stereotype implying that the class is associated to an actor in a use case
model. This forces premature commitment on the modeller in deciding that such a
relationship between objects in the different models exist. Moreover, there seems

to be a hidden dependency between the respective model elements, i.e., actor and
class, but one is not sure which parts of the elements matter in the dependency
(e.g., is it just the name, or the whole object?). That is, there seems to be little
value in the forced stereotype since there is nothing more (e.g., methods or
attributes) a modeller would get from the actor in building the class.

3.4. Activity Models
This section considers activity models built in each of the tools. The section
attempts to determine whether a modeller is able to derive activities from a use
case model. The creation of an activity diagram is particularly necessary in MDA
in order to allow the developer to create a design model at the PIM level based on a
rigorous understanding of the system behaviour.

3.4.1 Activity model - Together
The set of components for drawing an activity model in Together occupies more
real estate than those for drawing use cases. Hence, the layout for the components
(at the left of model editor window) can be changed from columns to list, to allow
for most of them to be shown.

The icons in component view occupy considerable screen estate, but, the tool
provides a means to scroll down should one need to. Another issue with the
activity model itself (rather than drawing components) is the viscosity of the
model. That is, if a modeller were to add a partition or lane, there is a knock-on to
the existing model, and activities and control flow get shifted such that the model
loses clarity. There is no facility within Together for directly exporting use case
elements into an activity model.
3.4.2 Activity model - Eclipse
Unlike Together, the drawing components for activity models in Eclipse are spread
across the top of the editor window. The components have no textual description
attached to them, but there is a tool-tip describing what each component is. Eclipse
does not provide any other layout for the drawing components. In addition, Eclipse
does not allow the use of the vertical bar to merge activities (use of the vertical bar
to split activities is allowed).

3.4.3 Activity model – Rational Rose
In Rational Rose, as with Eclipse and Together, it is not possible to obtain
activities from either use case or class models.

Figure 4: Activity model in Rational Rose

Rational Rose provides an intuitive activity modelling area where start and end
states are easy to add to the model, and the vertical bar for splitting or merging
activities is easy to use (see Figure 4).

4.0 Discussion
There are some modelling concepts that cross-cut the tools assessed so far. For
example, all the tools tend to deploy the concept of a project as a container for
software models. This is an important aspect of modelling or software development
in general as several models may often be built to depict different views of a
system.

Some tools (e.g., Together, Rational Rose and Objecteering) provide modelling
components on a vertical toolbar to the left of the model editing window, while
other tools (e.g. Eclipse) lay out such components just above the model editor
window. The placement of the toolbar and the information that is provides is
important, particularly with novices and new users of the tool. Eclipse did not
provide any flexibility in laying out models in the model editor. It is important,
particularly with respect to secondary notation to allow this to aid both the clarity
and understanding of graphical representations for both novices and experts alike.

Table 1 provides an overview of the way in which the tools have been evaluated in
terms of the cognitive dimensions framework which has been used to assess
modelling activities.

Tools/
Dimension

Together Eclipse Rational Rose

Viscosity Knock on viscosity
experienced when
additions are made to a
model

Both knock on and
repletion viscosity
experienced when
additions are made to a
model

Knock-on viscosity
experienced when
additions are made to a
model

Juxtaposition Does not facilitate
juxtaposition of models.
One has to minimise
one model to view
another.

Does not facilitate
juxtaposition of models.
One has to minimise
one model to view
another.

Does not facilitate
juxtaposition of models.
One has to minimise
one model to view
another.

Visibility Modelling components
clearly visible and
different layouts
provided for laying out
components on a
vertical toolbar.

Small icons used for
modelling components;
seems reasonably
visible to a user

Quite reasonable
visibility of components

Hidden
dependencies

None of this
experienced in the
modelling tasks
performed

None of this
experienced in the
modelling tasks
performed

Experienced when
building a class model –
classes named the same
as an existing actor
seem to be stereotyped
accordingly.

Secondary
notation

None for the modelling
tasks performed

None for the modelling
tasks performed

Use of text to provide
descriptions of model
elements, e.g., use case
spec.

Premature
commitment

None experienced so far Forces naming of roles
and specification of
multiplicity

Forces implication of a
class to be based on an
actor where a similarly
named actor exists.

Table 1: Summary of tools assessment with cognitive dimensions

An important point to reiterate is that whilst many modelling tools, including those
that were assessed, allow forward and backward tracking between sequence,
collaboration and class diagrams none of the assessed tools, provide a means to
carry forward information from a use case or activity model to a class model.

5.0 Conclusions and further work
Our application of cognitive dimensions to MDA tools provided valuable insights
into the user experience for modellers. For example, whereas some linkages are
often maintained (such as sequence and collaboration diagrams) most tools do not
provide a means to move from a use case or activity model to a class model.
Despite the issues involved in supporting such a transition, it is desirable that such
a feature is incorporated in a MDA development tool. Moreover, juxtaposition of
models is important where a source model is used to inform the development of a
target model. The authors have no knowledge of any UML modelling tool that
provides such a feature, though we are of the view that this would be desirable for
traceability purposes.

Other issues, such as the visibility of modelling components may not be
straightforward to address, since working towards high visibility might in many
cases also mean reducing the screen estate available for the building of models.
The viscosity of models is an aspect that may also be relatively difficult to address
since it is inevitable that changes at a high level in a model may cause many
changes at a lower level of detail. These factors thus mean that tool vendors have
to make pragmatic decisions of the cognitive measures they consider most
important to tool users [16]. We are of the opinion that the visibility of the
modelling components and the viscosity of models are the most important factors
to be considered in any design, coupled with the use of secondary notation.
However, by recognising that such trade-offs exist, and by explicit identification of
the impact of design decisions on different cognitive dimensions, we hope that
such decisions will be informed by the needs of a variety of user groups.

This work has been funded under the VIDE project by the European Commission within the Sixth
Framework Programme (FP6-IST-2004-033606).

6.0 References
1. Mannio, M. and Nikula, U. Requirements Elicitation Using a Combination of

Prototypes and Scenarios. in The 4th Workshop on Requirements Engineering,
2001. Buenos Aires, Argentina.

2. Elkoutbi, M., I. Khriss and Keller, K. "Automated Prototyping of User Interfaces
Based on UML Scenarios." in Automated Software Engineering, 2005, 13(1).

3. Engels, G., Förster, A., Heckel, R. and Thone, S. Process modeling using UML. in
Process-Aware Information Systems. M. Dumas, W. van der Aalst and A. ter
Hofstede 2005, New York, Wiley Publishing: 85-117.

4. Garrido, J. L., Noguera, M., Gonzalez, M., Hurtado, M. V. and Rodriguez, M. L.
"Definition and use of Computation Independent Models in an MDA-based
groupware development process." in Science of Computer Programming 2007,
66(1).

5. VIDE. "Visualize all model driven programming. FP6-IST-2004-033606." 2006,
from http://www.vide-ist.eu/index.html.

6. Phalp, K., Jeary, S., Vincent, J., Kanyaru, J. and Crowle, S. Supporting
stakeholders in the MDA process. in 15th International Software Quality
Management, 2007. Tampere, Finland.

7. Tariq, N. A. and Akhter, N. 2005. Comparison of Model Driven Architecture
(MDA) based tools. Department of Computer and Systems Sciences. Stockholm,
Royal Insititute if Technology (KHT). Masters.

8. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R. and Grose, T. 2004. Eclipse
Modelling Framework. E. Gamma, L. Nackman and J. Wiegand, Addison-Wesley.

9. Eshuis, R. and Wieringa, R. "Tool Support for Verifying UML Activity
Diagrams." in IEEE Transactions on Software Engineering, 2004, 30(7).

10. Fabro, D., Bezivin, J. and Valduriez, P. Weaving Models with the Eclipse AMW
Plugin. in Eclipse Modelling Symposium 2004. Esslingen, Germany.

11. OMG. "MDA Committed Products." Retrieved 20 December 2007, from
http://www.omg.org/mda/committed-products.htm.

12. Mellor, S. J., Kendall, S., Uhl, A. and Weise, D. MDA Distilled: Principles of
Model-Driven Architecture. Addison-Wesley, 2004.

http://www.vide-ist.eu/index.html
http://www.omg.org/mda/committed-products.htm

13. Raistrick, C., Francis, P., Wright, J., Carter, C. and Wilkie, I. Model Driven
Development with Executable UML. Cambridge, UK, Cambrideg University
Press, 2004.

14. Green, T. R. G. and Petre, M. "Usability Analysis of Visual Programming
Environments: A 'Cognitive Dimensions' Framework." in Journal of Visual
Languages and Computing, 1996, 7: 131-174.

15. Green, T. R. G. Cognitive dimensions of notations. in People and Computers V.
A. Sutcliffe and L. Macaulay 1989, Cambridge, UK, Cambridge University Press:
443-460.

16. Green, T. and Blackwell, A.Cognitive Dimensions of Information Artefacts:a
tutorial. 1998, Cambridge University & Leeds University

17. Blackwell, A. F. Dealing with New Cognitive Dimensions. in Workshop on
Cognitive Dimensions, 2000. University of Hertfordshire.

18. Blackwell, A. F., Whitley, K. N., Good, J. and Petre, M. "Cognitive Factors in
Programming with Diagrams." in Artificial Intelligence Review, 2001, 15(1/2): 95-
114.

19. Petre, M. "Why Looking Isn't Always Seeing: Readership Skills and Graphical
Programming." in Communications of the ACM, 1996, 38(6): 33-44.

20. Blackwell, A. F. and Green, T. R. G. Notational Systems - The Cognitive
Dimensions Framework. in HCI Models, Theories and Frameworks: Towards a
multidisciplinary science. J. Carroll 2003, San Fransisco, USA, Morgan
Kaufmann.

21. Borland. "Together Architect " Retrieved 8 July 2006, from
http://www.borland.com/us/products/together/index.html.

22. IBM. "Rational XDE Developer " Retrieved 5 August 2006, from http://www-
306.ibm.com/software/uk/rational/awdtools/swdeveloper.html.

23. Eclipse. "Eclipse project." Retrieved 7 August 2006, from
http://www.eclipse.org.

24. IBM. "Rational Software Architect." Retrieved 20 December 2007, from
http://www-306.ibm.com/siftware/awdtools/architect/swarchitect.

25. Mia-Software. "Model-In-Action." Retrieved 19 December 2007 2007, from
http://www.mia-software.com.

26. Artisan. "Real Time Studio." Retrieved 20 December 2007, from
http://www.artisansw.com.

27. BITPlan. "smartGenerator." Retrieved 20 December 2007, from
http://bitplan.com.

28. MentorGraphics. "BridgePoint/xtUML or EDGE UML Suite." Retrieved 19
December 2007, from http://wwww.mentor.com.

29. innoQ. "iQgen." Retrieved 19 December 2007, from http://www.inoq.com/iqgen.
30. Adaptive. "Adaptive Software " Retrieved 20 December 2007, from

http://www.adaptive.com.

http://www.borland.com/us/products/together/index.html
http://www-306.ibm.com/software/uk/rational/awdtools/swdeveloper.html
http://www-306.ibm.com/software/uk/rational/awdtools/swdeveloper.html
http://www.eclipse.org/
http://www-306.ibm.com/siftware/awdtools/architect/swarchitect
http://www.mia-software.com/
http://www.artisansw.com/
http://bitplan.com/
http://wwww.mentor.com/
http://www.inoq.com/iqgen
http://www.adaptive.com/

	Assessing Graphical User Interfaces in Modelling Tools for MDA using the Cognitive Dimensions Framework
	Abstract
	1.0 Introduction
	2.0 Cognitive Dimensions Framework
	3.0 Application of cognitive dimensions
	3.1 The modelling case
	3.2 Use case models
	3.2.1 Use case model – Together
	3.2.2 Use case model - Eclipse
	3.2.3 Use case model – Rational Rose

	3.3 Class models
	3.3.1 Class model - Together
	3.3.2 Class model - Eclipse
	3.3.3 Class model – Rational Rose

	3.4. Activity Models
	3.4.1 Activity model - Together
	3.4.2 Activity model - Eclipse
	3.4.3 Activity model – Rational Rose

	4.0 Discussion
	5.0 Conclusions and further work
	6.0 References

